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Population structure or genetic relatedness should be considered in genome association
studies to avoid spurious association. The most used methods for genome-
wide association studies (GWAS) account for population structure but are limited
to genotyped individuals with phenotypes. Single-step GWAS (ssGWAS) can use
phenotypes from non-genotyped relatives; however, its ability to account for population
structure has not been explored. Here we investigate the equivalence among ssGWAS,
efficient mixed-model association expedited (EMMAX), and genomic best linear
unbiased prediction GWAS (GBLUP-GWAS), and how they differ from the single-SNP
analysis without correction for population structure (SSA-NoCor). We used simulated,
structured populations that mimicked fish, beef cattle, and dairy cattle populations with
1040, 5525, and 1,400 genotyped individuals, respectively. Larger populations were
also simulated that had up to 10-fold more genotyped animals. The genomes were
composed by 29 chromosomes, each harboring one QTN, and the number of simulated
SNPs was 35,000 for the fish and 65,000 for the beef and dairy cattle populations.
Males and females were genotyped in the fish and beef cattle populations, whereas
only males had genotypes in the dairy population. Phenotypes for a trait with heritability
varying from 0.25 to 0.35 were available in both sexes for the fish population, but only for
females in the beef and dairy cattle populations. In the latter, phenotypes of daughters
were projected into genotyped sires (i.e., deregressed proofs) before applying EMMAX
and SSA-NoCor. Although SSA-NoCor had the largest number of true positive SNPs
among the four methods, the number of false negatives was two–fivefold that of true
positives. GBLUP-GWAS and EMMAX had a similar number of true positives, which was
slightly smaller than in ssGWAS, although the difference was not significant. Additionally,
no significant differences were observed when deregressed proofs were used as
pseudo-phenotypes in EMMAX compared to daughter phenotypes in ssGWAS for the
dairy cattle population. Single-step GWAS accounts for population structure and is a
straightforward method for association analysis when only a fraction of the population is
genotyped and/or when phenotypes are available on non-genotyped relatives.

Keywords: genome-wide association, genetic relatedness, single-step genomic best linear unbiased prediction,
spurious associations, mixed models, single step genome-wide association study
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INTRODUCTION

Genome-wide association (GWA) aims to identify regions in the
genome that are related to diseases or traits of interest (Begum
et al., 2012). The method is most often based on statistical
tests to determine if a single nucleotide polymorphism (SNP) is
statistically associated with the trait, at a given probability value
(p-value). If the association is significant, the interrogated SNP
may be in high linkage disequilibrium (LD) with a causative
variant, or the SNP itself may be a common variant that has a
large effect on the trait, although having one or a few causative
variants and validating them can be difficult (Kennedy et al.,
1992). In fact, results from GWA study (GWAS) have confirmed
that most of the complex traits in humans (Yang et al., 2011),
animals (de Oliveira Silva et al., 2017), and plants (Bian and
Holland, 2017) are polygenic. Even in such a case, the GWAS
still fulfills the primary goal of helping to better understand the
biology of a trait.

The first GWAS was developed to understand the biology
of human diseases aiming the prevention (Burton et al., 2007).
Although a couple of studies were published a few years
before, the study from 2007 is considered the landmark of
GWAS because it resulted from a well-designed, large-scale study
(Visscher et al., 2012). After that, GWAS was also adopted in
livestock and plants. The very first studies were based on single-
SNP analysis where each SNP is tested independently (Balding,
2006). However, this approach assumes SNPs are identically
and independently distributed, which is only true when a
population is comprised of unrelated individuals (Risch and
Merikangas, 1996). As populations contain related individuals,
not considering population structure or genetic relatedness in
GWAS can result in spurious associations (Sul et al., 2018)
To resolve the problem with population structure, the use of
principal components (PC) to model relationships have been
suggested (Price et al., 2006). Still, the level of confounding in
GWAS was considerable when 100 PC were fit into the model
or when highly related individuals were removed from a human
population (Sul et al., 2018).

A well-known approach among animal breeders, the mixed
linear models (Henderson, 1975), was then adopted for human
GWAS showing to be a reasonable approach to take population
structure into account (Kang et al., 2008, 2010). In this
method, known as efficient mixed-model association expedited
(EMMAX), one SNP is fit in the model as a fixed covariate and,
at the same time, a relationship matrix corrects for population
structure. However, EMMAX-based methods consider only
genotyped individuals with phenotypes. However, only a fraction
of individuals in a population are genotyped, particularly in
livestock and aquaculture. Because of that, the original mixed
linear models were extended to account for genotyped and non-
genotyped individuals in prediction analysis (Aguilar et al., 2010;
Christensen and Lund, 2010). This method is called single-step
genomic best linear unbiased prediction (ssGBLUP) and is widely
adopted for genomic predictions in livestock (Legarra et al.,
2014; Misztal et al., 2020) and plants (Cappa et al., 2019), and
was recently applied to predict polygenic risk score in humans
(Truong et al., 2020). The popularity of ssGBLUP is due to the

added value of phenotypes for relatives that are not genotyped,
and the simplicity when combining information from genotyped
and non-genotyped individuals (Legarra et al., 2014).

The usefulness of ssGBLUP to GWAS in a procedure called
single-step GWAS (ssGWAS) was subsequently extended (Wang
et al., 2012). In this method, SNP effects and variance explained
by SNPs are computed simultaneously for all SNPs while
accounting pedigree and genomic relationships in addition to
all phenotypes available. However, no statistical significance
test was available under the ssGWAS framework. Later it has
been shown that the statistical test used in EMMAX has a
mathematical equivalent that can be used in GBLUP-based
methods (Gualdrón Duarte et al., 2014; Bernal Rubio et al.,
2016) even though SNPs are considered fixed in the former
and random in the latter. This equivalent statistical test was
then implemented in ssGWAS (Aguilar et al., 2019) so that
p-values are computed based on prediction error variance of SNP
effects. Because of the mathematical equivalence, results from
ssGWAS are expected to be similar to the ones from EMMAX.
Here we use different simulated, structured populations (i.e.,
beef cattle, dairy cattle, and fish) to investigate the equivalence
among EMMAX, ssGWAS, and GBLUP-GWAS, and how they
differ from single-SNP analysis. We also evaluate whether the
population structure is fully considered by the mixed linear
models, and when ssGWAS should be the method of choice
for association studies in related populations. We demonstrate
ssGWAS performs similarly to EMMAX and GBLUP-GWAS
when genotyped animals have their own phenotypes or when
only progeny phenotypes are available, so deregressed proofs
have to be used for EMMAX and GBLUP-GWAS.

MATERIALS AND METHODS

Methods and Computations
Single-SNP Analysis Without Correction for
Population Structure (SSA-NoCor)
To estimate allele substitution effect of the ith SNP with SSA-
NoCor, the following model was used:

y = 1µ+ xigi + e (1)

where y is the vector of phenotypes, µ is the mean, xi is a vector
that contains the genotype for the ith SNP for each animal, gi
is the ith allele substitution effect, considered as fixed, and e ∼
N(0, Iσ2

e ) is the residual. The estimate of gi
(
ĝi
)

and its variance(
Var

(
ĝi
))

were obtained by least squares.

Single-SNP Analysis With Correction for Population
Structure Using a Genomic Relationship Matrix
(EMMAX)
For the EMMAX method, the estimated allele substitution effect
and its variance were obtained from the BLUE of the following
linear mixed model:

y = 1µ+ xigi + Za+ e (2)

where Z is a design matrix, a ∼ N(0,Gσ2
a) is the vector of

breeding values (i.e., animal effect), G is the genomic relationship
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matrix, and the rest of the components were previously defined.
The G matrix was calculated as first method following literature
(Zhou and Stephens, 2012):

G =
1
k

k∑
i=1

(xi − 1nx̄i)(xi − 1nx̄i)T (3)

where xi stands for ith SNP locus column, x̄i represented the
marker sample mean of ith locus, n and k are the number of
genotyped animals and SNPs.

GBLUP Association (GBLUP-GWAS)
For the GBLUP-GWAS, the vector of estimated allele substitution
effects ĝ was obtained from a linear transformation of the BLUP
of a under a GBLUP model:

y = 1µ+ Za+ e (4)

of which the mixed model equations can be represented by:[
1
′

1 1
′

Z

Z
′

1 Z
′

Z + G−1 σ2
e

σ2
a

][
µ̂

â

]
=

[
1
′

y
Z
′

y

]
(5)

In this method, G0 was estimated using the first method of
VanRaden (2008):

G0 =
MM′

2
∑

pi (1− pi )
(6)

where M is a matrix of SNP content centered by twice the
current allele frequencies, and pi is the allele frequency for the
ith SNP. Additionally, to avoid singularity problems, the final G
was computed as

G = λG0 + βI (7)

with λ = 0.95 and β = 0.05.
Afterward, the vector of allele substitution effects (ĝ) was

calculated for all SNPs simultaneously (Wang et al., 2012):

ĝ = λ
1

2
∑

pq
M′G−1â (8)

with q = 1− p.
The variance of SNP effects, which is needed to compute

p-values when SNPs are considered random was calculated
following Gualdrón Duarte et al. (2014):

Var(ĝ) = λ
1

2
∑

pq
Z′G−1(Gσ̂2

a − C22)G−1Z λ
1

2
∑

pq
(9)

where C22 is the block of the inverse of the MME corresponding
to the animal effect. The p-value for each SNP effect was then
computed with the formula (Gualdrón Duarte et al., 2014):

p− valuei = 2
(

1−8

(∣∣∣∣ ĝi

sd(ĝi)

∣∣∣∣)) (10)

where sd(ĝi) is the standard error of the SNP effect or
simply sd(ĝi) =

√
Var(ĝi); 8 (·) is the cumulative density

function (CDF) of the standard normal distribution. For a

justification of using sd(ĝi) =
√
Var(ĝi) in the denominator

instead of
√
Var(gi)− Var(ĝi) (Gualdrón Duarte et al., 2014;

Bernal Rubio et al., 2016).

Single-Step GBLUP Association (ssGWAS)
This method differs from GBLUP-GWAS in the sense that all
animals in the pedigree can be used, not only genotyped animals
with phenotypes. Therefore, G−1 is replaced by H−1 in (5), and
the latter combines pedigree and genomic relationships (Aguilar
et al., 2010):

H−1
= A−1

+

[
0 0
0 G−1

− A−1
22

]
(11)

where A−1 and A−1
22 are the inverses of the pedigree relationship

matrix for all animals and only genotyped animals, respectively.
Pedigree and genomic relationships have different genetic base
because allele frequencies from the current genotyped population
are used to center G. Therefore, G in ssGWAS is adjusted so the
average diagonal and off-diagonal matches the averages of A22.
Because of this adjustment, (8) and (9) were modified to:

ĝ = λδ
1

2
∑

pq
M′G−1â22 (12)

and

Var(ĝ) = λδ
1

2
∑

pq
Z′G−1(Gσ̂2

a − C22)G−1Z λδ
1

2
∑

pq
(13)

where â22 is a vector of genomic estimated breeding values
(GEBV) for genotyped animals; δ accounts for the difference
in genetic base between the pedigree and genomic relationship
matrices, and was calculated as in Vitezica et al. (2011):

δ = 1−
0.5
n2 (

∑
i

∑
j

A22(i,j) −
∑

i

∑
j

Gi,j) (14)

with n the number of genotyped animals. After the modification,
p-values in ssGWAS were obtained as in (10) as previously
suggested (Aguilar et al., 2019).

Note that the dimension of ssGWAS system of equations is
greater than the dimension of GBLUP-GWAS because of the
inclusion of non-genotyped animals.

Computations
The allele substitution effects were estimated with different
software: (i) SSA-NoCor solutions were computed with
GASTON R-package (Dandine-Roulland and Perdry, 2018),
(ii) EMMAX solutions were obtained with GEMMA software
(Zhou and Stephens, 2012), (iii) GBLUP-GWAS and (iv)
ssGWAS were computed using the BLUPF90 software suite
(Misztal et al., 2014b).

Overview of Data Simulation
We used different simulated datasets to investigate the
equivalence between EMMAX and ssGWAS, and to explore
the usefulness of each method compared to SSA-NoCor and
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GBLUP-GWAS. Small and large fish, beef cattle, and dairy
cattle populations were simulated using QMSim (Sargolzaei and
Schenkel, 2009), with five replicates for each. Because we wanted
to test the efficiency of the methods in accounting for population
structure, strong assumptions were used to generate extreme
scenarios. The general parameters for each population such as
the number of genotyped animals, effective population size, type
of trait, and heritability are reported in Table 1. The linkage
disequilibrium generated in each small and large populations are
in Figures 1, 2.

Fish Population
The historical population began with 5,000 animals and
decreased to 3,100 after 200 non-overlapping generations, that
were carried out to generate linkage disequilibrium (LD) and
mutation-drift equilibrium. The proportion of males in the

historical population was 32%. Aiming to mimic the beginning
of a fish breeding scheme, a recent population was created by
randomly selecting 20 sires and 20 dams. The recent population
was subject to random selection, culling, and mating for five non-
overlapping generations (Garcia et al., 2018). In every generation,
each female had 2 offspring. After the fifth generation, a new line
was created by randomly mating 20 males and 20 females from
generation 5. For this line, the litter size was set to 100 offspring
per dam, and only one generation was created. The effective
population size was 40. Phenotypes and pedigree of the animals
in the new line, together with their parents, were considered for
the association analysis. A larger fish population was simulated
that had 10 times more animals (Table 1).

The genome was composed of 29 chromosomes with a length
of approximately 100 cM each, 35,000 evenly spaced SNPs, and
one QTN per chromosome. Each QTN was placed in the middle

TABLE 1 | General parameters for the simulated populations1,2.

Simulated
populations

Number of
records

Population size Number of genotyped
animals

Number of genotyped
animals with records1

Trait type Heritability

Small populations

Fish 2040 2040 1040 1040 Both sex 0.25

Beef 5088 10,000 5525 3010 Sex-limited 0.30

Dairy 70,000 (0.38) 140,000 1438 1438 Sex-limited 0.35

Large populations

Fish 20,400 20,400 10,400 10,400 Both sex 0.25

Beef 25,000 50,000 14,250 8985 Sex-limited 0.30

Dairy 250,000 (0.37) 500,000 14,000 14,000 Sex-limited 0.35

1For the dairy population, the records are represented as deregressed proofs. The average reliability of deregressed proofs is reported inside parenthesis.
2For beef populations, association studies with SSA-NoCor, EMMAX, and GBLUP-GWAS were performed only with genotypes for the sex that had records.

FIGURE 1 | Linkage disequilibrium (r2) decay for the small populations of fish (A), beef (B), and dairy cattle (C).
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FIGURE 2 | Linkage disequilibrium (r2) decay for the large populations of fish (A), beef (B), and dairy cattle (C).

FIGURE 3 | First and second principal components of the genomic relationship matrices for the small populations of fish, beef, and dairy cattle.
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FIGURE 4 | First and second principal components of the genomic relationship matrices for the large populations of fish, beef, and dairy cattle.

of its respective chromosome. Although this number of QTN is
not the reality of most of the traits of interest (i.e., complex traits),
this assumption was made to facilitates the QTN discovery in
the association analysis. Altogether, the QTNs accounted for the
total of the genetic variation and their effects were assumed to
follow a gamma distribution with shape parameter equal to 0.40.
The allele frequencies for SNPs and QTNs in the first historical
generation were 0.5, and a recurrent mutation rate of 2.5e-5 per
locus per generation was assumed. A single trait with heritability
of 0.25 was simulated, and a single phenotype per animal was
obtained by adding an overall mean of 1.0, the sum of the QTN
effects, and a residual effect.

Beef Cattle Population
In this dataset, the historical population began with 1,000
animals and steadily increased to 50,000 after 1,000 generations
of random mating. Then, a decrease in number of individuals
followed for another 1,000 generations. After 2,000 generations,
the historical population was composed by 23,000 animals,
of which 3,000 were males. The recent beef cattle population
was created by randomly selecting 10,000 dams and 200 sires,
allowing them to mate randomly for five discrete generations.
Afterward, five groups of 10 sires and 500 dams each were
selected based on EBV to create five different lines. With the
aim of maximizing the difference between the five lines, selection
based on EBV was used in each of them. Finally, 10 sires and
500 dams from each of the five lines were pooled in one single
line and underwent random mating for five generations. This
process was designed to create an intricate population structure.
For the present population, a sex-limited trait was simulated so

that only females had a phenotype for a trait with heritability
of 0.30. A larger beef cattle population was simulated that had
5 times more animals (Table 1).

Genotypes were simulated for males and females from the last
generation of the population and their parents (nbeef = 5525). The
parameters to simulate the beef cattle genome were the same as in
the fish population except for the number of SNPs, which for the
beef cattle population was equal to 65,000.

Dairy Cattle Population
The parameters for the simulation of the dairy historical
population were the same as those in beef cattle. A total of
1,000 sires and 20,000 were chosen as founders of the recent
population. This population was subject to selection based on
estimated breeding values (EBV) for 10 generations and mating
design based on inbreeding (Sonesson and Meuwissen, 2000). In
this simulation, the average Ne was 90. The Ne was calculated as
the change in inbreeding (1F) from one generation to the next
using the following formula (Falconer and Mackay, 1996):

1F =
Fn − Fn−1

1− Fn−1
(15)

Ne =
1

21F
(16)

where Fn is the inbreeding in the nth generation.
All the parameters for the genome simulation were similar to

the ones in the beef cattle population. The only difference was
the genotyping strategy that included only sires of the seventh
generation (ndairy = 1400). Phenotypes for a trait of heritability
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0.35 were available only on females (Table 1). On average, each
genotyped sire in this population had 10 daughters with records.
A larger dairy cattle population was simulated that had 3.5 times
more animals and 10 times more genotyped bulls (Table 1).

Deregressed Proofs (DRP)
One requirement in association analysis is that individuals
should have both genotypes and phenotypes. In some
livestock populations, genotypes may be available for males
and phenotypes for females (e.g., milk production in dairy
cattle). In such a case, DRP are needed as an input for SSA-
NoCor, EMMAX, or GBLUP-GWAS. The DRP are projections
of female phenotypes into their relatives’ genotypes. Because
sex-limited traits were simulated for the beef and dairy cattle
populations, DRP were computed for sires in both populations
following (VanRaden and Sullivan, 2010; Wiggans et al., 2011).

DRP = PA+
EBV − PA

DEprog/(DEprog + DEPA + 1)
(17)

Where PA is parent average;DEprog =
[

EBVrel
(1−EBVrel)

]
− DEPA and is

the daughter equivalent from progeny information; and DEPA =
PArel

(1−PArel)
is the daughter equivalent from PA. The EBVrel and

PArel are reliabilities of parent average and EBV, respectively.
All EBV, PA, and reliabilities used in the DRP formula were
computed using the BLUPF90 software suite (Misztal et al.,
2014b). The DRP were used for the association analysis of
dairy cattle datasets under SSA-NoCor, EMMAX, and GBLUP-
GWAS. As ssGWAS uses all phenotypes, genotypes, and pedigree
information available, it does not rely on DRP.

Quality Control Prior to the Association
Analysis
Quality control of genomic data removed monomorphic SNPs,
SNPs with minor allele frequency (MAF) lower than 0.05, and
with deviation between observed and expected allele frequencies
greater than 0.15. After quality control, and average of 35,000,
58,000, and 58,000 SNPs were kept for the analysis in the fish,
beef cattle, and dairy cattle population, respectively.

Significance and Concordance Tests
A single SNP was considered significantly associated with the
considered trait when its p-value was smaller than a certain
significance level, which was 0.05 with a Bonferroni correction
for multiple testing, i.e., 0.05

n where n is the number of SNPs
in the corresponding simulated population. Additionally, true
positive (TP) and false positive (FP) rates were computed for each
scenario using a window size of ±2 cM, which is equivalent to
20–30 markers (Toosi et al., 2018).

RESULTS AND DISCUSION

Population Structure
Figures 3, 4 show plots with the first (PC1) and second (PC2)
principal components of G for small and large populations,
respectively. PC1 and PC2 represent the two largest sources

of variation in the data, and are often used to investigate
population structure, which was deemed important in our
study. The level of population stratification differed among the
simulated populations because of the different selection and
mating strategies. For the small populations, distinct family
groups (full-sibs) were observed for the fish population, with
variable size and impact on the model (extreme clusters farther
from PC1 = PC2 = 0); however, the PC scores were of small
magnitude. No distinct clustering was detected in the beef cattle
population, although a level of variability was observed. Overall,
it was not possible to discriminate different groups of individuals
but some of them appear more genetically different than others.
In fact, animals belonging to five different lines were randomly
mated for ten generations, and only genotypes for animals in
the 7th generation were retained. Therefore, less genetic distance
among animals was created. Still, the largest graphical distance
was observed in the dairy cattle population, with a large cluster
centered in zero and a few animals genetically distant from the
main cluster; however, the amount of variation explained by
PC1 and PC2 was small. Possibly, this pattern resulted from
non-overlapping generations that created extra genetic distance
among some animals. These distant animals were sires that
had EBV departing from the population mean. For the large
populations, no clustering was observed for the fish and beef
populations, whereas the same pattern was observed for dairy
cattle in both populations.

Association Analysis
Manhattan plots with p-values for the fish, beef cattle, and dairy
cattle populations using SSA-NoCor, EMMAX, and ssGWAS,
and GBLUP-GWAS are in Figures 5–10. Although one QTN
was simulated in each chromosome, the signals were not equally
strong because of the assumption of a Gamma distribution, and
the selection that the populations underwent. Overall, selection
caused fixation for 5–6% of the QTN. To better access the
information in the Manhattan plots, the average number of
true and false positive SNPs were computed and placed in
Table 2. Although the number of TP and FP differed among
EMMAX, ssGWAS, and GBLUP-GWAS, the differences were not
statistically significant (p-value > 0.05).

For all the simulated populations, the greatest number of
false positive SNPs was observed for SSA-NoCor. These results
agree with those from previous studies (e.g., Yang et al., 2014),
which showed that the number of false positives drastically
decreased when correcting for population structure. For the small
populations, the number of false positive SNPs in SSA-NoCor
for the dairy dataset was the smallest one compared to the
other simulated populations, whereas for the large populations,
the smallest number of false positive SNPs occurred in the
beef population. In both cases, the fish population had the
greatest number of false positive signals. Since this population
had a strong structure (e.g., several separate clusters), it can
be concluded that the population structure is related to the
number of false positive signals captured by SSA-NoCor. False
positive associations capture SNPs that relate to the genetic
differences between sub-populations and also with the trait
considered (Sul et al., 2018). These spurious signals can also
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FIGURE 5 | Manhattan plots for the small population of fish using single-SNP analysis without correction for population structure (SSA-NoCor), efficient mixed-model
association expedited (EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). Significant SNPs are indicated
in red, whereas vertical bars indicate the position of the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the stronger QTN effect. The blue
horizontal line corresponds to the rejection threshold based on a significance level of 0.05 with a Bonferroni correction for multiple testing.

FIGURE 6 | Manhattan plots for the small population of beef cattle using single-SNP analysis without correction for population structure (SSA-NoCor), efficient
mixed-model association expedited (EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). Significant SNPs
are indicated in red, whereas vertical bars indicate the position of the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the stronger QTN
effect. The blue horizontal line corresponds to the rejection threshold based on a significance level of 0.05 with a Bonferroni correction for multiple testing.

be interpreted as a wrong prior assumption of marker effects
in the SSA-NoCor model. In such a model, markers are
considered independently distributed, which implicitly means
linkage disequilibrium among SNPs is neglected (Finno et al.,
2014; Sul et al., 2018). The effect of population structure is even
more evident when small sample size and high-density panels are
used in association analyses (Finno et al., 2014). Furthermore,
when traits are polygenic or have low heritability, signals deriving
from population structure can completely override those deriving
from true QTNs (Atwell et al., 2010; Toosi et al., 2018).

In terms of true positives, two situations were observed.
First, SSA-NoCor detected significantly more true positives

than the other methods in the fish and large dairy cattle
simulated populations. However, the number of false positives
was sometimes threefold greater than that of true positives.
The identification of false and true positives is straightforward
in simulated data but not in real data. Second, no significant
differences were observed among methods for the beef and the
small dairy population. Based on the results from the dairy
population, it can be concluded that the use of DRP for bulls in
EMMAX and GBLUP-GWAS, compared to the raw phenotypes
in ssGWAS, did not promote a loss in GWA resolution. The
loss in the ability to correctly detect QTNs when using DRP is
expected in complex models when the estimation of fixed and
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FIGURE 7 | Manhattan plots for the small population of dairy cattle when sires had an average of ten daughters. The association methods used were single-SNP
analysis without correction for population structure (SSA-NoCor), efficient mixed-model association expedited (EMMAX), single-step GWAS (ssGWAS), and genomic
best linear unbiased prediction GWAS (GBLUP-GWAS). Significant SNPs are indicated in red, whereas vertical bars indicate the position of the simulated quantitative
trait nucleotide (QTN). The darker the vertical bar, the stronger QTN effect. The blue horizontal line corresponds to the rejection threshold based on a significance
level of 0.05 with a Bonferroni correction for multiple testing.

FIGURE 8 | Manhattan plots for the large population of fish using single-SNP analysis without correction for population structure (SSA-NoCor), efficient mixed-model
association expedited (EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). Significant SNPs are indicated
in red, whereas vertical bars indicate the position of the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the stronger QTN effect. The blue
horizontal line corresponds to the rejection threshold based on a significance level of 0.05 with a Bonferroni correction for multiple testing.

random effects is not very accurate. According to Aguilar et al.
(2019), information can be lost in the deregression process, which
may result in spurious signals in GWA. Although DRP were used
in the dairy population, no significant differences in TP and FP
were observed between EMMAX and ssGWAS because the model
was simple and included only a general mean as fixed effect and
the additive genetic as random.

The methods in our study were used as binary classifiers
when trying to identify true and false positives. The quality
of a binary classifier can be evaluated from the degree of
randomness of the decisions of that classifier. A perfect
classifier is not random, whereas the worst classifier would
determine whether a signal is true or false with a probability
equal to 0.5 (Agresti, 2013). To compare the methods in our
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FIGURE 9 | Manhattan plots for the large population of beef cattle using single-SNP analysis without correction for population structure (SSA-NoCor), efficient
mixed-model association expedited (EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). Significant SNPs
are indicated in red, whereas vertical bars indicate the position of the simulated quantitative trait nucleotide (QTN). The darker the vertical bar, the stronger QTN
effect. The blue horizontal line corresponds to the rejection threshold based on a significance level of 0.05 with a Bonferroni correction for multiple testing.

FIGURE 10 | Manhattan plots for the large population of dairy cattle when sires had an average of ten daughters. The association methods used were single-SNP
analysis without correction for population structure (SSA-NoCor), efficient mixed-model association expedited (EMMAX), single-step GWAS (ssGWAS), and genomic
best linear unbiased prediction GWAS (GBLUP-GWAS). Significant SNPs are indicated in red, whereas vertical bars indicate the position of the simulated quantitative
trait nucleotide (QTN). The darker the vertical bar, the stronger QTN effect. The blue horizontal line corresponds to the rejection threshold based on a significance
level of 0.05 with a Bonferroni correction for multiple testing.

study as binary classifiers, Receiver Operating Characteristic
(ROC) curves were provided for each simulated population
in Figures 11, 12. Among the plots, it can be observed that

the curve corresponding to SSA-NoCor is the lowest one.
Therefore, as a binary classifier, SSA-NoCor performs worse than
the rest of the methods. The classifier ability of the models
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TABLE 2 | Average (SD) number of true positive (TP) and false positive (FP) SNPs for all the simulated populations1.

Population Association SSA_NoCor EMMAX ssGWAS GBLUP-GWAS

Small populations

Fish TP 85.20 (0.47)a 20.00 (0.31)b 20.60 (0.35)b 20.00 (0.31)b

FP 253.6 (2.50)a 3.80 (1.01)b 5.20 (1.18)b 2.80 (0.96)b

Beef TP 15.80 (0.68)a 5.60 (0.73)a 7.60 (0.50)a 5.60 (0.73)a

FP 68.60 (0.78) 0.00 0.20 (2.24) 0.00

Dairy TP 13.40 (0.20)a 8.60 (0.60)a 12.60 (0.12)a 9.00 (0.55)a

FP 24.20 (0.32) 0.00 0.20 (2.24) 0.20 (2.24)

Large populations

Fish TP 321.40 (72.52)a 106.20 (25.41)b 133.80 (37.93)b 104.20 (25.33)b

FP 1068 (241.67) 0.00 0.00 0.00

Beef TP 24.60 (3.29)a 17.20 (5.54)a 21.00 (5.34)a 17.00 (5.48)a

FP 4.40 (2.19)a 0.40 (0.55)b 0.20 (0.45)b 0.40 (0.55)b

Dairy TP 151.60 (5.98)a 55.20 (3.7)b 61.60 (8.65)b 52.40 (5.94)b

FP 853.80 (39.32) 0.00 0.00 0.00

1Statistical differences were not calculated when the SD of at least one method within a group was null.
The superscripts within a row, group the results that did not differ significantly.

FIGURE 11 | Receiver operating characteristic (ROC) curves for GWAS results for the small populations of fish,beef cattle, dairy cattle with ten daughters per sire.
The association methods used were single-SNP analysis without correction for population structure (SSA-NoCor), efficient mixed-model association expedited
(EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). The dashed line has slope equal to one and null
intercept.

improved in the large populations, but SSA-NoCor still had
poorer performance compared to other methods. The fact large
data improves the resolution of GWAS is well documented
in the literature.

Overall, we observed the size of the populations (e.g.,
small and large) did not change the outcome of our study,
and we confirmed, using simulated populations with intricate
structure, that EMMAX, GBLUP-GWAS, and ssGBLUP account
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FIGURE 12 | Receiver operating characteristic (ROC) curves for GWAS results for the large populations of fish, beef cattle, dairy cattle with ten daughters per sire.
The association methods used were single-SNP analysis without correction for population structure (SSA-NoCor), efficient mixed-model association expedited
(EMMAX), single-step GWAS (ssGWAS), and genomic best linear unbiased prediction GWAS (GBLUP-GWAS). The dashed line has slope equal to one and null
intercept.

for population structure. The equivalence between p-values
obtained in EMMAX and GBLUP-GWAS has been analytically
demonstrated (Bernal Rubio et al., 2016), although the former
considers SNPs as fixed effects and the latter as random.
Lu et al. (2018) extended this idea to single-step and
implemented it with the addition of p-values for ssGWAS in
the BLUPF90 software suite (Misztal et al., 2014b; Aguilar
et al., 2019). This methodology was successfully applied to a
beef cattle population with almost 2 million animals in the
pedigree, 1 million birth weight records, and a little over
1,400 genotyped sires (Aguilar et al., 2019). In our study, we
confirmed that ssGWAS can account for population structure as
EMMAX or GBLUP-GWAS.

Recently, single-step was applied for predicting polygenic
risk score in humans using phenotypes from related individuals
that were not genotyped (Truong et al., 2020). In this study,
authors observed an increase in prediction accuracy when raw
phenotypes of non-genotyped relatives were included in the
model, which is only possible with single-step method. As
the number of genotyped individuals in (Legarra et al., 2009;
Truong et al., 2020) was 288k, the authors complained about
the computing cost of single-step, which is mainly due to the
inverse of G. An efficient algorithm to compute G−1 without
having to directly invert G –the Algorithm for Proven and

Young (APY)– is also available (Misztal et al., 2014a). With
the APY algorithm, animals are designated as core or non-core,
and recursions are done on core animals, whereas predictions
for non-core animals are functions of the information for
core animals. This is possible because of the assumption that
core animals carry all the information about the independent
chromosome segments segregating in the population (Misztal,
2016). In addition, it was found (Pocrnic et al., 2016) that the
number of largest eigenvalues explaining 98% of the variance in
G approaches the number of independent chromosome segments
(Stam, 1980) and can be used as the number of core animals
in APY. This algorithm enables the computation of genomic
predictions for millions of genotyped individuals with much
less memory usage and computing time. Indeed, a successful
computation of genomic predictions for 13.5 million animals in
the pedigree, of which 2.3 million were genotyped, using the
BLUPF90 software suite has recently been shown to be feasible
(Tsuruta et al., 2021). Although the computation of genomic
predictions (GEBV), SNP effects, and variance explained by
SNPs can be done efficiently with APY in ssGBLUP, the same
does not apply to the computation of p-values in ssGWAS.
This is because the formula for p-values (10) relies on the
standard error of SNP effects (i.e., square root of prediction error
variance), which is currently obtained based on the prediction
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error variance of GEBV. The latter requires the inverse of the
left-hand-side of the single-step mixed model equations, and the
computation of inverses of large matrices is extremely expensive.
Therefore, the use of ssGWAS may be limited to samples of
about 20k genotyped individuals, given the number of total
animals in the pedigree is less than 500k. Approximating the
prediction error variance of GEBV or SNPs directly may be a
way to overcome this limitation, and research on the issue is
currently undergoing.

CONCLUSION

Genome-wide association studies in related populations require
the correction for population structure to avoid false positive
statistical associations between SNPs and trait phenotypes.
Several classes of mixed linear models as EMMAX, GBLUP-
GWAS, and ssGWAS can take care of this issue by fitting
a random effect whose covariance matrix is proportional to
a relationship matrix. We demonstrate the three methods
did not significantly differ across association studies in
several simulated populations, regardless if deregressed
proofs or phenotypes from non-genotyped animals are
used in the statistical analysis. Further studies are needed
to investigate the repeatability of those results in real
populations under complex models. Single-step GWAS
accounts for population structure as EMMAX or GBLUP-
GWAS and allows for the inclusion of phenotypes from
non-genotyped relatives.
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