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Simple Summary: The estimation of the prognosis of low-grade glioma (LGG) patients using deep
learning models and gene expression data has been intensively studied in recent years. Existing
studies, however, have only considered mRNA expression data, ignoring other expression data and
clinical data. The Multi-Prognosis Estimation Network (Multi-PEN), a deep learning model that
employs multi-omics and multi-modal schemes, is proposed in this study to address this limitation.
Using Multi-PEN, MYBL1 and hsa-mir-421 were identified as the most significant mRNA and miRNA,
respectively, in the prognosis of LGG patients. Existing studies that estimate prognostic mRNAs and
miRNAs support the findings of this study.

Abstract: The prognosis estimation of low-grade glioma (LGG) patients with deep learning models
using gene expression data has been extensively studied in recent years. However, the deep learning
models used in these studies do not utilize the latest deep learning techniques, such as residual
learning and ensemble learning. To address this limitation, in this study, a deep learning model using
multi-omics and multi-modal schemes, namely the Multi-Prognosis Estimation Network (Multi-
PEN), is proposed. When using Multi-PEN, gene attention layers are employed for each datatype,
including mRNA and miRNA, thereby allowing us to identify prognostic genes. Additionally, recent
developments in deep learning, such as residual learning and layer normalization, are utilized.
As a result, Multi-PEN demonstrates competitive performance compared to conventional models
for prognosis estimation. Furthermore, the most significant prognostic mRNA and miRNA were
identified using the attention layers in Multi-PEN. For instance, MYBL1 was identified as the most
significant prognostic mRNA. Such a result accords with the findings in existing studies that have
demonstrated that MYBL1 regulates cell survival, proliferation, and differentiation. Additionally,
hsa-mir-421 was identified as the most significant prognostic miRNA, and it has been extensively
reported that hsa-mir-421 is highly associated with various cancers. These results indicate that
the estimations of Multi-PEN are valid and reliable and showcase Multi-PEN’s capacity to present
hypotheses regarding prognostic mRNAs and miRNAs.

Keywords: prognosis estimation; low-grade glioma; deep learning; gene expression; prognostic gene;
ensemble learning; attention mechanism

1. Introduction

Owing to the rapid development of deep learning models, artificial intelligence based
on deep learning has dominated various fields [1–3]. Deep learning models are being used
extensively in diagnostics [4–6], medical imaging [7–10], and genome sequencing [11–13].
Additionally, the prognosis of various diseases can be estimated by deep learning mod-
els [14–16]. In these models, clinical variables, such as age and sex, are often utilized to
predict prognosis. This study aims to propose a deep learning model for the estimation of
the prognosis of low-grade glioma (LGG) [17]. Tumors in the central nervous system are
defined by their origin and their histopathological features [18]. Gliomas are neuroepithelial
tumors stemming from the supporting glial cells located in the central nervous system.
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LGG is a group of primary brain tumors frequently generated in young and healthy
patients. LGG consists of grade one tumors and grade two tumors. Grade I LGG tumors
do not involve histologic features such as atypia, mitotic activity, or necrosis. In contrast,
grade II LGG tumors do involve the aforementioned histologic features [19]. Symptoms
of LGG include headaches, vomiting, blurry vision, memory loss, nausea, and weakness
on one side of the body [20–23]. LGG causes seizures more frequently than other brain
cancers because it is produced in the cerebral cortex. Generally, LGG patients show a
better prognosis compared to high-grade glioma (HGG) patients. However, if it progresses
to HGG, the prognosis may drastically deteriorate, eventually leading to death [24]. As
a result, the early diagnosis and treatment of LGG are essential in order to increase the
likelihood of survival.

Gene expression has become remarkably significant in the identification of tumors.
For instance, mutations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) act as
tumor markers [19]. Additionally, the capicua transcriptional repressor (CIC) gene on
chromosome 19q has recently been extensively explored, where oligodendroglioma and
oligoastrocytomas cooperate with the mutation of the CIC gene [25,26]. CIC gene mutations
are discovered in 69% of oligodendrogliomas. Additionally, mutations of IDH1 and IDH2
and 1p/19q codeletion have been proven to collaborate with CIC gene mutations. Moreover,
the overexpression and mutation of tumor protein 53 (TP53) are described as a genetic
feature of gemistocytic astrocytoma and low-grade astrocytoma.

Therefore, the relationship between gene expression and prognosis in LGG has been
widely studied to estimate the prognosis with deep learning models using gene expression.
For instance, the Gene Attention Ensemble NETwork (GAENET) was proposed as a deep
learning model to estimate the prognosis of LGG patients [27]. In GAENET, the gene
attention mechanism, which is a modification of the attention mechanism [28–30], was
introduced. The gene attention layer scores genes with respect to prognosis. The value
of the scores ranges from zero to one, in which a high value indicates a close relationship
with the prognosis. Since the gene attention layer is trained by a deep learning process,
nonlinear relationships are studied to select the prognostic genes, which is difficult to do
in other conventional models. Additionally, residual learning [31] and ensemble learning
methods [32] are employed in GAENET, which uses deep learning methods to enhance the
prediction performance.

Numerous studies have demonstrated that using multi-omics and multi-modal data
results in improved performance [33–35]. For example, a study proposed two models using
multi-omics data: a risk score model that estimated the prognosis of LGG patients based on
six specific genes and a radiomic risk score model that exploited magnetic resonance images
to predict the pre-operation risk score [33]. Another study used a multivariate Cox-PH
model with various data. It applied numerous combinations of clinical, radiomics, and
molecular data [34]. An integrated multi-omics deep learning network method (i-Modern)
uses one autoencoder to extract significant elements from multi-omics data [35].

Therefore, a crucial limitation of GAENET is that a limited transcriptome data type is
used in the model. Specifically, GAENET only uses mRNA data, but other transcriptome
data types are expected to be related to the prognosis. For instance, it is widely known that
miRNA controls mRNA by regulating mRNA and hindering its expression [36]. Such a
property signifies that miRNA has the potential to be highly related to the prognosis of
LGG patients. Additionally, it is generally accepted that clinical data are also highly related
to prognosis.

This paper proposes a deep learning model that employs not only mRNA data but also
miRNA and clinical data. The motivation for this study comes from the idea that such a
perspective with multi-omics and multi-modal schemes can provide a better understanding
of the prognosis of LGG patients. Given this additional information relating to miRNA, the
identified prognostic genes may be distinct from those identified when using GAENET and
may explain the relationship between mRNA and miRNA in terms of patient prognosis.
While there are several studies that take advantage of the high correlation between mRNA
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and miRNA [37,38], in this study, a multi-modal scheme [39] was additionally used with
the clinical data. Moreover, via gene attention layers that use miRNA data and clinical data
as inputs, it can be estimated which miRNA is most likely to be related to the prognosis
of LGG.

2. Background
2.1. Gene Attention Layer

Deep learning models commonly consist of multiple layers. Each layer comprises
an input, a weight matrix, and nonlinear activation functions. The layer receives input
from the last layer and multiplies the input and weight matrix [40]. The values made from
multiplying the input and output pass through the nonlinear activation function and are
transferred to the subsequent layer. This process is repeatedly conducted until it reaches
the output layer. This process can be represented by the following equation:

Ŷ = τN (WN ·τN−1 (WN−1 · · · τ2 (W2·τ1 (W1·X)))), (1)

where Ŷ is an estimation vector that is the output of the deep learning model; τk and Wk are
the nonlinear function and weight matrix in the kth layer, respectively; X is an input vector
of the deep learning model; and N is the total number of layers used in the model. Training
a deep learning model is identical to finding an appropriate Wk to estimate Ŷ properly for a
given X̂.

The attention mechanism is a method of multiplying the output vectors of τk by
specific values from zero to one. This method reduces the effects of features less related
to the target. Thus, a lower value, approximately zero, indicates that the corresponding
feature has a low probability of having a relationship with the target. This process can be
considered a filter to eliminate less related features. The mechanism can be represented by
the following equation:

Xk+1 = AT � τk (Wk·Xk), (2)

where Xk is the output of the (k− 1)th intermediate layer; A is an attention vector composed
of the attention values of all input features of Xk; and the � operator denotes component-
wise multiplication. The attention vector A is not a constant and is instead a deep learning
module that learns and changes its value in every epoch based on the backpropagation in
deep learning training.

The attention layer in GAENET uses a squeeze and excitation (SE) block composed
of two fully connected networks. Thus, the block has two weight matrices, and the first
weight matrix is multiplied by gene expression inputs; it reduces the dimension of the
gene expression, resulting in feature extraction. Therefore, the first weight matrix has a
dimension of q× p, where p is the number of genes and q� p. The next layer, accordingly,
has a dimension of p× q, producing an attention vector with p dimension. These processes
can be represented as follows:

A = σ(WA2·ReLU(WA1·X0)), (3)

X1 = AT � X0, (4)

where σ denotes the sigmoid activation function; WA1 and WA2 indicate the first and second
weight matrices of the attention layer, respectively; X0∈Rp is the gene expression input;
and X1∈Rp is the output of the attention layer. Consequently, X1 becomes the input of the
deep learning model following the attention layer.

Owing to the attention vector A with values between zero and one, the input gene
expression data are regulated before they are transferred to the subsequent deep learning
layers. The attention layer assigns values close to 1.0 to highly target-related genes, whereas
it assigns values close to 0.0 to the genes considered less related to the target. Two weight
matrices in the attention layer are trained during the training process simultaneously with
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the other deep learning layers. This process shows that the attention value is determined
via training on gene expression data and is not manual.

Therefore, the attention value of each gene tells us how important the gene is. Hence,
the target-related genes can be discovered. In other words, the prognostic genes can be
found by the attention layer when the prognosis is trained to be predicted by the model.
Similar to other attention mechanisms, this gene attention layer also regulates deep learning
models to avoid overfitting models, reducing overfitting problems caused by a lack of data.

2.2. Residual Learning

The vanishing gradient problem is a common problem for deep learning models that
use many layers. The cause of the vanishing gradient problem is multiplied gradients in the
chain rule. The backpropagation algorithm used to train deep learning models calculates
the gradients of the initial layers via the chain rule, which involves multiplying multiple
gradients. If the gradients are between zero and one, the multiplication of the gradients
makes the gradients of the initial layers converge upon zero. Since the conventional training
algorithm for deep learning models depends on the gradients, significantly low gradient
values in the initial layers cause a training failure in the layers.

Residual learning with a residual network is a method to alleviate the vanishing
gradient problem. Residual networks consist of a series of layers with a skip connection
between the input of the first layer and the output of the last layer [31]. In this connection,
the input is added to the output, resulting in a capability to simplify the multiplication in
the chain rule. Since the vanishing gradient problem is caused by a series of multiplications
in the chain rule, such a simplification can reduce the problem. Therefore, residual learning
enables us to stack more layers compared to conventional deep learning models. Residual
networks with two layers can be represented as follows:

Xk+2 = Xk + τk+1 (Wk+1·τk (Wk·Xk)), (5)

where Xk is the output of the previous layer.

2.3. Ensemble Learning

Ensemble learning is a method to prevent deep learning models from overfitting by
using multiple models on the same target [32,41]. Due to the fact that it has more parameters
than samples in general, deep learning can result in overfitting issues. Such deep learning
models with overfitting issues make accurate predictions from the training set, while the
test set accuracy declines. In order to find a solution to the overfitting issue, the method of
ensemble learning is utilized. In ensemble learning, each of a number of modules acquires
new knowledge from the data. Then, the next step is to select the most effective modules to
demonstrate the entire model or to use the result that represents a weighted sum of all of
the modules as the final result. The model can also be protected from outliers, which can
be removed by averaging the results of multiple learning. Moreover, ensemble learning
can address problems caused by the random selection of inputs for mini-batch sampling. If
outliers are included in the training set for a mini-batch, a single model has a probability
of diverging or learning inappropriate features. However, ensemble learning methods
effectively circumvent the aforementioned difficulties with the effect of multiple modules.

In this study, a deep learning ensemble model with multiple modules is presented.
Each module in the ensemble deep learning model employs the same structure. Due to the
random initialization of weight parameters and mini-batch sampling, even when the same
structure is employed, these modules generate distinct results. These diverse results can
counteract the randomness of conventional deep learning training, in which the results
vary. As the results of multiple modules are averaged in the ensemble deep learning model,
this issue can be mitigated. The final prediction derived from the ensemble deep learning
model is computed as follows:

Ŷ =
1
n ∑

i∈
fi(X) (6)
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where n is the number of modules in the ensemble deep learning and fi represents a module
with an equivalent structure.

2.4. Layer Normalization

Layer normalization is a regularization method to maintain the output distributions
of the layers [42]. During the training process of deep learning, the output distributions
consistently fluctuate. This property of training can hinder the convergence of training
since it can be interpreted that each layer learns different sample spaces in terms of the
input of the layer. Thus, the optimal convergence point also fluctuates, resulting in the
possibility of failure in training. To address this limitation, layer normalization is adopted
in the proposed model. In the residual learning modules, layer normalization is employed
before activation functions, which is the conventional way to use layer normalization.

2.5. The Gene Attention Ensemble Network

The GAENET, which is one of the baselines of the proposed model, employs mRNA
to predict the prognosis of LGG patients. To handle mRNA data and extract the features
regarding the prognosis, the attention layers are used as the first layer. Then, two residual
modules are trained in the ensemble structure. In these modules, layer normalization
and dropout are used. As a result of the prognosis estimation, the average outcome of
these modules is computed. However, in GAENET, mRNA data are employed, which
can be one of the limitations since deep learning training with different data types can
consider different aspects of the prognosis of LGG. This limitation motivated us to explore
a novel method of using multi-omics and multi-modal schemes integrated with a deep
learning model.

2.6. Baselines

Four conventional machine learning models to estimate survival times are employed as
baselines: ridge regression, survival support vector machine (SurvivalSVM) [43], random
survival forest (RSF) [44], and Coxnet [45]. Ridge regression is a method that can be
utilized to analyze data that have multicollinearity or to estimate a prediction vector. This
method exploits L2 regularization and can handle the problem in conventional linear
regression wherein the prediction vectors in multiple regression are not orthogonal, so
parameter estimation based on the minimum sum of squares is likely to be poor. Coxnet is
a regularized Cox proportional hazard with L1, L2, and both L1 and L2. A random forest
is a probabilistic predictor that uses a mean to improve prediction accuracy and drops
over-fitting when fitting several decision tree classifiers. A support vector machine is one
of the supervised machine learning models. Support vector machines are commonly used
in classification tasks to reduce the dimensions of the dataset.

3. Methods
3.1. Multi-Omics and Multi-Modal Ensemble Deep Learning

Numerous functions of RNAs have been discovered and studied as a result of techno-
logical advances in genome sequencing. It has been widely accepted that mRNA is highly
correlated with miRNA, which regulates the function of mRNA and exerts a significant
influence on diseases. Consequently, the model proposed in this paper, the Multi-Prognosis
Estimation Network (Multi-PEN), utilizes multi-omics data consisting of mRNA and
miRNA [46,47]. Two attention layers are utilized for multi-omics data, each of which
identifies the prognostic genes and assigns a high attention value to significant genes. As
was mentioned in the previous section, the learning of attention values is also performed
by the backpropagation algorithm of deep learning, which can be interpreted as learning
from data.

Additionally, clinical data, such as age at diagnosis and sex, are known to be associated
with the prognosis of LGG, as many studies have aimed to predict the prognosis using such
variables. In Multi-PEN, the clinical data are employed as one of the multi-modal inputs of
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the model. Since there are several categorical variables in the clinical data, they are encoded
as one-hot vectors; since the computer machine is incapable of perceiving human language,
clinical categorical variables must be encoded into vectors consisting of zero and one, of
which an index of one indicates the status of the corresponding category, such as sex or
features of tumors comprising clinical data. Then, all clinical variables are concatenated
to a single vector. This clinical vector is also trained with an attention layer, the same as
mRNA and miRNA datatypes.

Figure 1 depicts the structure of Multi-PEN. Three different datatypes with multi-
omics and multi-modal schemes are employed as the inputs. These inputs are transferred
to the attention layers and multiplied by the attention values that are learned with each
data type. The attention values range from zero to one, where higher values indicate
greater association with the target, i.e., the prognosis of LGG. Then, ten sub-models for
deep ensemble learning take the inputs and predict the prognosis of LGG patients. While
each prediction value is distinct among the sub-modules, the averaged values of these
predictions can generalize the prediction and stabilize the random effects of deep learning.
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Figure 1. The deep learning architecture of Multi-PEN. The second layers with colors indicate the
gene attention layers. The data multiplied by the attention values are transferred to sub-models. The
estimation is the average value of each model.

Each sub-model consists of residual networks, as is shown in Figure 2A. Two residual
blocks are used in the sub-models, each of which is composed of two fully connected layers,
as is shown in Figure 2B. Layer normalization and the dropout technique are utilized
between the layers to reduce the overfitting problem. The predictions of each sub-model
are calculated with the hyperbolic tangent activation function, where the value ranges from
−1.0 to 1.0. A higher value indicates a high likelihood of survival, similar to GAENET
(because the same loss function is used).
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3.2. Clinical Data

Multi-modal is used to refer to a framework that utilizes various datatypes and
contexts. Multi-PEN employs a multi-modal framework with gene expression data and
clinical data in order to enhance the estimation performance and to discover prognostic
mRNA and miRNA while considering clinical data. Clinical variables used in the model
are the age at diagnosis, sex, race, ethnicity, tumor grade, and the number of mutations.
Isocitrate dehydrogenase (IDH) codel subtypes are also included in the variables since it
has been posited that IDH1 and 2 are significant prognostic and therapeutic biomarkers for
glioma. Furthermore, 1p19q codeletion is also used for the same reason [48]. These clinical
data are preprocessed to be used in Multi-PEN. The preprocessing methods are described
in Section 3.1.

3.3. TCGA Data—Low-Grade Glioma

To evaluate Multi-PEN, The Cancer Genome Atlas for Low-Grade Glioma (TCGA-
LGG) dataset was used in this study. In this experiment, 125 uncensored samples are
employed to perform five-fold cross-validation; among the samples, 100 samples are
randomly selected to train the model, and the other samples become test sets in each cross-
validation. This five-fold cross-validation is performed 20 times; therefore, 100 experiments
with different training and test sets are conducted [49]. For the preprocessing process, if
the zero value of a gene exceeds half of the samples, the gene is omitted from the dataset.
Additionally, if the samples have a missing value, the corresponding genes are excluded.
The gene expression data are preprocessed by log normalization.

3.4. K-Fold Cross-Validation

K-fold cross-validation is used in various domains, including the medical domain,
in order to make a dataset similar to the conditions in clinical tests [49–51]. K-fold cross-
validation is a principled method for dividing a dataset into a training dataset and a
validation dataset. Then, a machine learning model trains only with the training dataset,
without any information in the validation set, including the number of samples and
value distributions of each variable. In K-fold cross-validation, the dataset is equally and
randomly divided into K sub-datasets to give the same number of samples. In this division
process, the sub-datasets do not share any information, which gives identical conditions
to clinical tests; therefore, the normalization process and preprocessing of the data are
conducted only with the training set after the division; the validation set is preprocessed
with the information of the training set. Then, K− 1 sub-datasets are used as the training
set, and the other dataset is used as the validation set. This trial is repeated K times with
different validation sets in each trial. Such processes of K-fold cross-validation enable a
similar condition to K repetitions of clinical tests with different test sets.

3.5. Hyperparameter

In the experiment, Multi-PEN employs a total of ten sub-models. In the residual
block, the number of nodes in the first and second fully connected layers is 16 and 8,
respectively. Having such a small number of nodes in the fully connected layers is a result
of the overfitting issue, where the number of samples is extremely small compared to the
number of genes. The number of the attention layer nodes is set to 10 for each of the three
attention layers. An optimization algorithm known as Adam is used, with the learning rate
set to 0.0001. In this study, 20 epochs are used to train the model, and five mini-batches are
organized in each epoch. For the performance comparison, the C-Index [52] is measured
with the proposed model and other baseline models.

4. Results

A comparison of the performance measured by the C-Index of Multi-PEN, ridge re-
gression, SurvivalSVM, RSF, and Coxnet is shown in Figure 3. With 20 times five-fold cross-
validation, the C-Indices were evaluated 100 times. The C-Index of Multi-PEN was 0.7018.
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While RSF exhibited effectiveness in terms of performance, Multi-PEN outperformed ridge
and Coxnet, for which the performance was 0.6886 and 0.6771, respectively. In summary,
Multi-PEN demonstrated competitive performance with other conventional methods.
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As shown in Figure 3, the performance differences between the models were marginal,
where the best model and the worst model exhibited a 4.0% difference in terms of the
C-Index. Although Multi-PEN did not display outstanding performance compared to the
conventional models, the performance difference between the best model and Multi-PEN
was 0.3%, which can be interpreted as a competitive performance. Since deep learning mod-
els generally demonstrate better performances as the number of training samples increases,
it is expected that this limitation can be handled in future studies with expanded samples.

The prognostic ranks of mRNA and miRNA can be found in the gene data using
Multi-PEN, which is one of the main advantages of the model. This can lead us to the
discovery of prognostic mRNA and miRNA. The values of the attention layer, which are
shown in Figure 4, are where the prognostic genes of mRNA are located. Figure 5 also
displays the fifty miRNA genes that may be used to predict outcomes. MYBL1 was shown
to be the mRNA with the highest attention value, followed by CARHSP1, C9orf50, ABCC3,
and HAX1. In addition, the prognostic miRNAs that were discovered by Multi-PEN are as
follows: hsa-mir-421, hsa-mir-885, hsa-mir-495, hsa-mir-194-2, and hsa-mir-30d.
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5. Discussion

The proposed deep learning model, Multi-PEN, was used to estimate prognosis and
search for prognostic genes in LGG patients. Other studies have utilized conventional
and straightforward deep learning models, such as MLP, without considering current
developments in deep learning [21,22]. Conversely, to find the prognostic genes, including
miRNA, Multi-PEN exploits recent developments, i.e., residual networks and gene attention
mechanisms. The prognostic mRNA and miRNA were estimated using the gene attention
mechanism. The prognosis prediction performance of Multi-PEN was competitive with
other models, which suggests that the estimated prognostic mRNA and miRNA are reliable.

This study proposed a novel way of investigating prognostic mRNA and miRNA from
a nonlinear perspective, while other studies have focused on linear perspectives with the
Cox proportional-hazards model and t-test. The estimation of the prognostic genes can be
conducted by a deep-learning-based attention algorithm embedded in Multi-PEN. Because
prognostic genes are evaluated with combinational effects and polynomial correlations,
gene attention can be considered to find genes from a nonlinear perspective. In contrast, the
Cox proportional-hazards model and Kaplan–Meier estimation, which are commonly used
in a variety of studies, are focused on the linear relationship between genes and outcomes.

MYBL1 was estimated to be the most significant mRNA with a gene attention value
of approximately 0.88. This indicates that MYBL1 has a probability of possessing a direct
relationship with the prognosis of LGG. Such an estimation of Multi-PEN is in accordance
with several existing studies that have suggested that MYBL1 regulates cell survival,
proliferation, and differentiation [53], which are highly associated with tumorigenesis.

Additionally, CARHSP1 was identified as a significant prognostic mRNA with the
second-highest attention value. This result is also related to a recent study [54] that
investigated whether CARHSP1 is radiotherapy protective in glioblastoma by signaling
via the CARHSP1/TNF-α pathway. In addition, patients with high levels of CARHSP1
who are treated with radiotherapy have a poor prognosis. It was reported that ABCC3,
one of the other prognostic mRNAs estimated by Multi-PEN, has a connection with a poor
prognosis and resistance to treatment in cancer [55]. Additionally, according to the study,
the intracellular concentration and efficacy of drugs are decreased by the exporter that
releases the drugs from within the cells; thus, overexpressed ABCC3 creates resistance to
multiple drugs for cancers, which may affect the prognosis of LGG. Another estimated
prognostic mRNA, HAX1, has been reported to be related to lung cancers; HAX1 was
overexpressed in non-small cell lung cancer; however, it was found that HAX1 was not
overexpressed in normal cells [56]. Additionally, the high concentration of HAX1 gene
expression was related to the TNM stage, lymphatic metastasis, and tumor size. While
HAX1 has been previously reported as being related to lung cancers, the estimation of
Multi-PEN implies that the gene also has a probability of being associated with LGG.
Conversely, among the top five prognostic mRNAs estimated by Multi-PEN, C9orf50 has
not been extensively studied regarding its relationship with LGG or other cancers. Further
studies should be conducted on the relationship between C9orf50 and LGG, since the gene
has a high attention value according to Multi-PEN.

Furthermore, prognostic miRNAs were also identified by Multi-PEN, which consid-
ered the relationship with mRNAs and other miRNAs, resulting from the gene attention
layers in Multi-PEN. As a result, hsa-mir-421 was estimated to be the most significant
miRNA with an attention value of 0.60; other estimated prognostic miRNAs were hsa-
mir-885, hsa-mir-495, hsa-mir-194-2, and hsa-mir-30d. These results accord with those of
existing studies demonstrating the overexpression of hsa-mir-421 in a variety of cancers,
including gastric cancer [57,58], neuroblastoma [59], lung adenocarcinoma [60], breast
cancer [61], and osteosarcoma [62]. Additionally, a study showed that has-mir-421 was
highly expressed in lung cancer cells [63]. Furthermore, it has been demonstrated that the
overexpression of has-mir-421 is a prognostic biomarker for non-small cell lung cancer
and encourages tumor growth [64]. Considering these findings from existing studies, the
estimation results by Multi-PEN are supported.
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Additionally, another prognostic miRNA estimated by Multi-PEN, hsa-mir-885-5p,
was reported to be upregulated in colorectal cancer cells [65]. Accordingly, the suppression
of has-mir-885 restrains tumor cells from proliferating or migrating. Furthermore, it is
known that abnormal expression of has-mir-885-5p has a possibility of reconstructing
hepatocellular carcinoma metabolism and progression [66]. The direct relationship between
hsa-mir-885 and LGG has not yet been investigated; however, it can be considered that hsa-
mir-885 is associated with LGG based on these existing studies on hsa-mir-885 expression
in cancer cells. Another estimated miRNA, hsa-mir-495, has been known as a tumor-
suppressor [67]. Additionally, it was found that has-mir-495 is an oncogene [68]. Another
miRNA, hsa-mir-194, has been linked to tumor metastasis and medication resistance in
non-small cell lung cancer (NSCLC); hsa-mir-194 levels declined in NSCLC samples when
compared to non-cancerous lung tissues, and a low hsa-mir-194 expression was associated
with a poor prognosis [69]. For hsa-mir-30d, high expression contributed to invasion,
proliferation, and tumor growth, resulting in poor survival of prostate cancer patients [70].
In addition, hsa-mir-30d overexpression inhibits the activation of cyclin D1, cMyc, and
catenin, three essential components of the Wnt/beta-catenin signaling pathway, thereby
inhibiting the development of colorectal cancer [71]. In contrast, in pancreatic cancer, hsa-
mir-30d was significantly downregulated compared to non-tumor tissues and cells [72].
The capability of Multi-PEN to identify prognostic genes is supported by these existing
studies. In addition, potential prognostic genes for LGG have been identified in this study
and can be investigated further in future research.

6. Conclusions

Multi-PEN, a deep learning model with multi-omics and multi-modal schemes, was
proposed in this paper to estimate the prognosis of LGG and prognostic genes. The general
structure of Multi-PEN is similar to that of GAENET; however, the attention layers for
miRNA expression and clinical data were additionally employed in Multi-PEN. Owing
to the advantage of the gene attention mechanism, it can be used to identify prognostic
mRNA and miRNA.

As a result, several mRNAs were estimated as prognostic mRNAs, including MYBL1,
CARHSP1, C9orf50, ABCC3, and HAX1. Existing studies support these findings, as
associations between these mRNAs and LGG and other cancers have been reported. In
terms of prognostic miRNAs, hsa-mir-421, has-mir-885, has-mir-495, hsa-mir-194-2, and hsa-
mir-30d were identified as the most significant. These miRNAs also accord with existing
studies that have reported associations between these miRNAs and tumors. Using the
proposed Multi-PEN, it is expected that the estimation of both prognosis and prognostic
genes can be performed. Furthermore, it is anticipated that future studies can expand the
use of Multi-PEN to other cancer types.

However, there was a limitation in this study in that the validation dataset was not
composed of fresh samples with independent datasets; instead, K-fold cross-validation
was employed for the evaluation. While it is expected that this experimental setting with
a single dataset using K-fold cross-validation properly evaluates the performance of the
models, the validation with independent datasets can elaborate the experiments in a more
precise manner. Additionally, the randomness of the weight parameter initialization in
deep learning models produces moderately different results for each experimental test.
Although this limitation was partially addressed by 100 repetitions of experiments and
examining average performance, other deep learning techniques may be required to handle
this problem fundamentally.
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