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Abstract

Summary: We present the first tool of gene prediction, PlasGUN, for plasmid metagenomic short-read data. The tool,
developed based on deep learning algorithm of multiple input Convolutional Neural Network, demonstrates much
better performance when tested on a benchmark dataset of artificial short reads and presents more reliable results for
real plasmid metagenomic data than traditional gene prediction tools designed primarily for chromosome-derived
short reads.

Availability and implementation: The PlasGUN software is available at http://cqb.pku.edu.cn/ZhuLab/PlasGUN/ or
https://github.com/zhenchengfang/PlasGUN/.

Contact: hqzhu@pku.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Plasmids are among the most important components of mobile gen-
etic elements. Recently, experimental and computational approaches
(Fang et al., 2019; Jones and Marchesi, 2007; Krawczyk et al.,
2018; Zhou and Xu, 2010) have been developed to enrich plasmid
DNA from the metagenome, leading to the discovery of a large num-
ber of novel plasmids. Identifying genes, particularly novel genes, in
plasmid metagenomic data is a fundamental method for elucidating
the mechanisms by which plasmids regulate the microbial commu-
nity, especially the spread of resistance genes.

However, gene prediction in plasmid metagenomic data may be
much more difficult than that in untargeted metagenomic data, in
which chromosome-derived DNA is dominant. Generally, sequence
assembly facilitates gene prediction because fewer genes are cut off
in longer fragments. Unfortunately, sequence assembly for plasmid
metagenomic short reads is still a difficult task owing to the mobile
nature of plasmids, such as the presence of repetitive elements
(Rozov et al., 2017). Although some tools have been designed to ad-
dress the assembly challenge caused by repetitive regions (Ji et al.,
2017; Shi et al., 2017), other unique genomic patterns of plasmids,
like the existence of shared genes and the mosaic structure, may pre-
vent the usage of state-of-the-art assembly tools. Research has
shown that the sensitivity of finding resistance genes on assembled
contigs is lower than that on short reads directly, which may be
caused by misassembly (Clausen et al., 2016). Therefore, identifying
genes in metagenomic short reads may be a better choice for plasmid

studies than assembled contigs. Since a short read often contains at
least one functional domain of a gene, even if the gene is cut-off in
the fragment, this approach is widely used in metagenomic studies
(Sharpton, 2014). However, traditional gene prediction tools for
metagenomic short reads are primarily constructed using data from
bacterial chromosomes. It has been shown that plasmids often con-
tain different sequence signatures with chromosomes (Krawczyk
et al., 2018). Therefore, although traditional tools present good
results for bacterial chromosomes, they may not adapt to plasmid
metagenomic short reads.

In this work, we present PlasGUN, the first tool for gene prediction
in plasmid metagenomic short reads, which is constructed over a large-
scale plasmid dataset. Using deep learning, PlasGUN first extracts all
candidate ORFs (Open Reading Frame) from the input short reads and
then judges each ORF as a coding or non-coding ORF. The tool dem-
onstrates high performance when tested on both benchmark datasets
of artificial short reads and real plasmid metagenomic data.

2 Materials and methods

Because we lack experimental metagenomic data with precise gene
annotation, constructing a benchmark dataset of artificial short
reads is the primary approach for developing a gene prediction tool
(Liu et al., 2013). Herein we downloaded 4395 complete genomes
of prokaryotic plasmids from the RefSeq database (ftp://ftp.ncbi.
nlm.nih.gov/refseq/release/plasmid/). The accession list of the
genomes is provided in Supplementary Material S1. To test whether
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PlasGUN could identify genes in novel genomes, which is an import-
ant task for a metagenomic study, we used genomes released before
2013 to build the training set and the rest to build the test set. We
then extracted DNA fragments from all genomes to construct an
artificial short-read dataset. The lengths of the fragments were be-
tween 100 and 900 bp, which encompasses the lengths of different
shotgun sequencing technologies. All candidate ORFs (both com-
plete and partial) longer than 60 bp were extracted from the six
phases of each DNA fragment, and all ORFs were labelled as coding
or non-coding according to the RefSeq annotation.

Considering that the plasmid sequence often contains mixed pat-
terns from its wide range of hosts, we used the ‘one-hot’ encoding form
as a mathematical model to characterize an ORF. Unlike the global sta-
tistics used by previous tools, such encoding form provided a more de-
tail characterization for the sequence with mixed patterns. We further
designed miCNN (multiple input Convolutional Neural Network) to
detect the functional domain and sequence pattern from the ORF repre-
sented by the ‘one-hot’ encoding form through the convolution oper-
ation. For each input ORF, miCNN outputs a likelihood score (0–1)
reflecting whether the ORF is a coding ORF. We trained two miCNNs
for sequences between 100–400 bp (GroupS) and 401–900 bp (GoupL),
respectively. More details about the dataset construction and the struc-
ture of the miCNN are provided in Supplementary Material S2.

3 Results and discussion

Against the test set with gene annotation, PlasGUN was evaluated
and achieved AUCs (Area Under Curve) of 98.72% and 98.81% for
GroupS and GroupL, respectively, indicating that PlasGUN can pre-
sent high performance. We further compared the prediction of
PlasGUN with that of Prodigal (Hyatt et al., 2012), MetaGUN (Liu
et al., 2013), MetaGeneMark (Zhu et al., 2010), FragGeneScan
(Rho et al., 2010), MetaGeneAnnotator (Noguchi et al., 2008) and
Orphelia (Hoff et al., 2009). The evaluation criteria were defined as
sensitivity Sn¼TP/(TPþFN) and specificity Sp¼TP/(TPþFP). For
PlasGUN, an ORF with a score higher than a given threshold would
be regarded as coding ORF. To make the comparison convincing,
we adjusted the threshold to allow PlasGUN to achieve the same Sp
as that of the comparative tools. Under the same Sp, we compared
the Sn of the comparative tools (shown as SnC in Table 1) with the
Sn of PlasGUN (shown as SnP in Table 1). Notably, a large percent-
age of genes (41.09%) from the complete genomes of the dataset
were labelled ‘hypothetical’ or ‘putative’ or lacked exact product an-
notation, which were primarily annotated by the computational
pipeline, and had unknown functions. Although these genes are less
convincing to serve as benchmarks, gene annotation in complete
genomes is less challenging than that in metagenomic genomes and
is generally reliable because the metagenomic genomes contain too
many incomplete genes, leading to less information used for gene

prediction (Liu et al., 2013). Since identifying novel genes is an
important goal in metagenomic studies, it was necessary to determine
the performance of the gene prediction tools on sequences with genes
of uncertain function because these sequences might contain a large
number of novel genes. Thus, we compared sequences without genes
of uncertain function and sequences with genes of uncertain function
separately. The results are shown in Table 1. Under the same Sp,
PlasGUN consistently achieved a higher Sn than other gene prediction
tools, and this advantage was more remarkable in GroupS than in
GroupL. Considering that the short reads obtained from the most
widely used sequencing technologies, such as Illumina, often contain
only hundreds of bases, the improved performance of PlasGUN for
short fragments makes this tool highly powerful to analyse plasmid
metagenomic short reads. Additionally, we found that compared with
other prediction tools, PlasGUN had an obvious advantage when
tested on sequences with genes of uncertain function. Among the
comparative tools, Prodigal was the best performing software, and
the Sn of PlasGUN was 5.40% and 6.65% higher than that of
Prodigal on sequences without genes of uncertain function and
sequences with genes of uncertain function in GroupS, respectively.
This showed that PlasGUN was more competent in finding novel
genes. In the released version of the PlasGUN tool, users can adjust
the threshold according to their own requirements. In Supplementary
Material S2, we evaluated the performance of PlasGUN under differ-
ent thresholds. By default, the threshold with the highest harmonic
mean Hm=(2�Sn�Sp)/(SnþSp) will be selected.

In addition, we used real plasmid metagenomic short reads from a
wastewater treatment plant sample (Szczepanowski et al., 2008) to
evaluate the reliability of each tool. PlasGUN was run under default
settings. All predictions of each tool were searched both against the
RefSeq plasmid protein database using PSI-BLAST, a homology search
strategy that is more sensitive for novel genes with low similarity to
the database, and against the Conserved Domain Database using
DELTA-BLAST, a sensitive protein search strategy for novel genes.
PlasGUN achieved the highest proportion of predictions that con-
tained BLAST hits, indicating that the predictions of PlasGUN were
more reliable and might contain more novel genes than other predic-
tion tools. We also evaluated related tools using plasmid artificial
short reads with 5% contamination of chromosome-derived short
reads, and PlasGUN was still the best performing tool. See
Supplementary Material S2 for more details about the related analysis.
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Table 1. Performance comparison of PlasGUN and related tools

Group Tool Sequence without genes of uncertain function Sequence with genes of uncertain function

Sp (%) SnC (%) SnP (%) Sp (%) SnC (%) SnP (%)

GroupS PG versus PD 86.65 91.65 97.05 88.01 79.95 86.60

PG versus MG 90.06 89.51 95.80 90.42 72.52 84.38

PG versus MM 90.21 83.97 95.73 89.20 68.11 85.61

PG versus FG 82.45 91.10 97.85 84.13 80.16 88.89

PG versus MA 84.54 90.19 97.53 85.69 79.21 88.05

PG versus OP 82.79 81.47 97.80 85.36 68.75 88.21

GroupL PG versus PD 91.67 94.16 96.27 88.54 80.59 84.95

PG versus MG 93.48 91.74 95.17 91.45 72.99 81.21

PG versus MM 92.48 91.42 95.85 89.04 75.87 84.45

PG versus FG 84.28 92.84 97.93 79.64 82.21 89.90

PG versus MA 89.68 93.08 96.92 86.66 80.33 86.45

PG versus OP 92.74 90.50 95.71 90.13 75.08 83.02

Note: PG, PD, MG, MM, FG, MA and OP represent PlasGUN, Prodigal, MetaGUN, MetaGeneMark, FragGeneScan, MetaGeneAnnotator and Orphelia, respectively.
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