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Dictyostelium amoebae adhere to extracellular material using similar mechanisms to
metazoan cells. Notably, the cellular anchorage loci in Amoebozoa and Metazoa are both
arranged in the form of discrete spots and incorporate a similar repertoire of intracellular
proteins assembled into multicomponent complexes located on the inner side of the
plasma membrane. Surprisingly, however, Dictyostelium lacks integrins, the canonical
transmembrane heterodimeric receptors that dominantly mediate adhesion of cells to the
extracellular matrix in multicellular animals. In this review article, we summarize the
current knowledge about the cell-substratum adhesion in Dictyostelium, present an
inventory of the involved proteins, and draw parallels with the situation in animal cells. The
emerging picture indicates that, while retaining the basic molecular architecture common
to their animal relatives, the adhesion complexes in free-living amoeboid cells have
evolved to enable less specific interactions with diverse materials encountered in their
natural habitat in the deciduous forest soil. Dissection of molecular mechanisms that
underlay short lifetime of the cell-substratum attachments and high turnover rate of the
adhesion complexes in Dictyostelium should provide insight into a similarly modified
adhesion phenotype that accompanies the mesenchymal-amoeboid transition in tumor
metastasis.
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INTRODUCTION

The mid-1980s, when integrins were being unraveled as the receptors that mediate cellular adhesion
to extracellular matrix in mammals and other animals (Hynes, 1987, 2004), also witnessed
prominent activity in the characterization of the adhesion of unicellular amoeba Dictyostelium
discoideum to external surfaces (Gingell and Vince, 1982; Owens et al., 1987, 1988). Dictyostelium as
model organism was on the forefront of the homotypic cell-cell adhesion research (Beug et al., 1973),
but its use as a model for the cell-substratum adhesion was hampered by the lack of a well-defined
extracellular matrix. The early work was therefore focused on the influence of the physico-chemical
characteristics of various glass coatings on cell adhesion. Briefly, it turned out thatDictyostelium cells
adhered strongly to hydrophobic and positively charged surfaces and weaker to hydrophilic surfaces
(Gingell and Vince, 1982; Owens et al., 1988). Of special importance was the introduction of
antiadhesive coatings based on entropic repulsion of long polyethylene glycol chains, a concept that
has been frequently used ever since to abrogate adhesion of cells to underlying surfaces (Owens et al.,
1987; Amiji and Park, 1992). This early body of work by Gingell and co-workers is also significant
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because of the extensive use of reflection interference contrast
microscopy (RICM) and the introduction of internal reflection
aqueous fluorescence microscopy for quantitative assessment of
adhesion zones (Gingell and Vince, 1982; Todd et al., 1988).

In the 1990s, it was discovered that aggregation-competent cells
canmigrate with surprisingly little interaction with the substratum,
forming discrete attachment spots with a footprint of less than 10%
of the cell surface (Wessels et al., 1994; Weber et al., 1995). These
attachment zones visible in RICMmust, however, be distinguished
from much smaller punctuate structures at the bottom cell
membrane such as the actin-rich podosomes (Fukui and Inoué,
1997) and the ventral adhesion foci (Patel et al., 2008) (Table 1). A
major step forward in the molecular characterization of the
adhesion apparatus arrived with the cloning of a Dictyostelium
talin homologue, talin A (Kreitmeier et al., 1995), which proved to
be vital for cell-substratum and EDTA-sensitive cell-cell adhesion
(Niewöhner et al., 1997). It was soon discovered that talin A and
other proteins such as myosin VII and paxillin B localized to the
ventral adhesion foci, the transient punctuate structures at the cell
membrane closely apposed to the underlying surface (Kreitmeier
et al., 1995; Bukharova et al., 2005; Patel et al., 2008). Their
composition, dot-like appearance and immobility relative to the
substratum resembled the focal adhesions well-known from
fibroblasts and other mammalian cells in culture, which are,

however, invariably coupled to transmembrane heterodimeric
receptors integrins (Legerstee and Houtsmuller, 2021). Although
putative adhesion receptors in Dictyostelium were
subsequently identified, only SibA showed a limited relatedness
to integrin beta subunit, primarily at its C-terminus (Cornillon
et al., 2006).

A hallmark of the metastatic spread of tumor cells, the
mesenchymal-amoeboid transition, is accompanied by a
profound loss of cell adhesion to the extracellular matrix and
the disappearance of canonical focal adhesions (Liu et al., 2015).
Amoeboid mode of migration inDictyostelium amoeba presents a
good model for the migration of metastatic cells in humans,
especially since the two organisms share the basic biophysical and
regulatory mechanisms responsible for the actin-driven
locomotion (Artemenko et al., 2014; Filić et al., 2021). It may
seem surprising that much more is known about the structure,
assembly, regulation and function of the focal adhesion
complexes in mammals than about their apparently much
simpler counterparts in Dictyostelium. However, the
Dictyostelium punctuate adhesion contacts are small, fragile
and short-lived, and as such still elude more comprehensive
characterization. In the following, we provide an inventory of
proteins involved in the cell-substratum adhesion in
Dictyostelium (Table 2).

TABLE 1 | Reported observations and composition of punctuate structures at the cell-substratum interface in Dictyostelium cells in chronological order. Abbreviations:
IF—immunofluorescence; DIC—differential interference contrast; TEM—transmission electron microscopy; GFP—green fluorescent protein; TIRF—total internal
reflection of fluorescence; RICM—reflection interference contrast microscopy; TalA—talin A; TalB—talin B; MyoIB—myosin IB; ABP120—actin binding protein; Arp3—actin-
related protein three; PaxB—paxillin B; RasGEF—Ras guanine nucleotide-exchange factor; RapGAP1—Rap GTPase-activating protein one; VinA—vinculin A;
CtxI—cortexillin I.

Observation Protein localization References

First report on dot-like structures in Dictyostelium, ultrastructural
evidence for outgrowing actin filaments (actin dots/eupodia)

F-actin (rhodamine-phalloidin) Yumura and
Kitanishi-Yumura, (1990)

Punctuate attachments to the substratum are localized at the filopod tips
and underneath cell bodies (ventral foci)

TalA (IF) Kreitmeier et al. (1995)

Eupodia imaged by DIC microscopy and IF, TalA is not enriched in
F-actin-enriched dots (eupodia)

F-actin (IF, rhodamine-phalloidin), TalA (IF), α-actinin (IF), MyoB
(IF); the latter two proteins localize to eupodia

Fukui and Inoué, (1997)

Localization of actin-binding proteins and ultrastructure of eupodia (TEM) F-actin (rhodamine-phalloidin), coronin (IF), fimbrin (IF) and
ABP120 (IF) localize to eupodia

Fukui et al. (1999)

Actin dots are sites of close contact to the substratum (RICM) and the
anchorage points of the traction force transmission

GFP-actin, average lifetime is 20 s Uchida and Yumura, (2004)

Actin dots have an average lifetime of 15–20 s Actin (GFP) and Arp3 (GFP), TIRF Bretschneider et al. (2004)
Ventral foci are stationary relative to the substratum during cell migration TalA (GFP) and F-actin (rhodamine-phalloidin) only partially co-

localize in the ventral foci
Hibi et al. (2004)

Speckled patterns of staining in regions near the cell membrane closely
apposed to the substratum

TalB (IF) Tsujioka et al. (2004)

Unusually strong accumulation of actin in the dots in phg2- cells Phg2-GFP is not localized to the actin-rich puncta Gebbie et al. (2004)
PaxB localizes to long lived stationary foci at the cell/substratum interface PaxB (GFP) is localized to ventral foci distinct from the actin-rich

contact dots (ABD-mRFPmars)
Bukharova et al. (2005)

Number of actin dots is increased in RasGEF GbpD-overexpressing cells
compared to GbpD- cells

F-actin (LimEΔcoil-GFP) Bosgraaf et al. (2005)

GFP-RapGAP1 localizes to dots stained with TRITC-phalloidin RapGAP1 (GFP) Jeon et al. (2007a)
At least two populations of small stationary spots located at the interface
of the cells with the substratum

TalA and PaxB are sequentially recruited to discrete ventral foci
visible in TIRF

Patel et al. (2008)

Abberant localization and turnover of ventral foci in frmA- cells PaxB (GFP), TalA (GFP) Patel et al. (2008)
PaxB-containing ventral foci do not form in talA-/talB- cells, but actin-
containing dots do form

PaxB (GFP) and actin (GFP) Tsujioka et al. (2008)

Dots enriched in F-actin are the anchorage points of traction forces F-actin (GFP-ABD120k) Iwadate and Yumura, (2008)
VinA and PaxB localize to the ventral foci VinA (GFP), PaxB (GFP) Nagasaki et al. (2009)
Spot-like localization of SadA observed by TIRF SadA (GFP) Kamprad et al. (2018)
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MOLECULAR INVENTORY: ADHESION
RECEPTORS AND THEIR BINDING
PARTNERS
After the identification of a crucial role played by a Dictyostelium
talin orthologue in cell-substratum adhesion (Niewöhner et al.,
1997), it appeared plausible that this process relied on a variant of
integrin-mediated adhesive complexes (IACs), similar to those
found in Metazoa (Kang et al., 2021). A quest to identify
candidate adhesion receptors began by a screen of randomly
generated mutants for defects in phagocytosis (Cornillon et al.,
2000). The screen exposed Phg1A, a protein belonging to the
transmembrane nine family (TM9) with the typical large
extracellular domain and nine hydrophobic C-terminal
transmembrane domains (Froquet et al., 2008), soon followed
by the discovery of related TM9 proteins Phg1B and Phg1C
(Benghezal et al., 2003). Characterization of single and double
knock-outs of Phg1A and Phg1B revealed a severe defect in
adhesion of phg1A- cells to hydrophilic particles and suggested a
synergistic effects of the two proteins in controlling the adhesion
(Cornillon et al., 2000; Benghezal et al., 2003). Concomitantly to

TM9 proteins, yet another protein with nine putative
transmembrane domains, SadA, was shown to be important
for adhesion in Dictyostelium. sadA- cells were unable to
attach to plastic dishes and to spread, and their phagocytosis
was strongly impaired (Fey et al., 2002; Froquet et al., 2012). Since
SadA contains three conserved extracellular EGF-like repeats that
are also present in integrins and tenascins, it was suggested that it
represents a genuine adhesion receptor (Fey et al., 2002). It was
later shown that the cytoplasmic tail of SadA interacts with the
talin A/myosin VII complex (Tuxworth et al., 2005; Cornillon
et al., 2006), and with cortexillin I (Kowal and Chisholm, 2011),
indicating a link to the actin cytoskeleton.

The most likely candidate for the main adhesion receptor in
Dictyostelium, however, was identified in another random
mutagenesis screen and named SibA (similar to integrin beta
A) (Cornillon et al., 2006). As indicated by its name, SibA is a type
I transmembrane protein with features similar to metazoan
integrin β-chains, e.g. an extracellular Von Willebrandt A
domain and a single glycine-rich transmembrane domain, but
also with significant structural differences in comparison to
integrin β (Cornillon et al., 2006). There are four close

TABLE 2 | Knock-out phenotypes and relevant interactors of core proteins involved in the regulation of the cell-substratum adhesion in Dictyostelium. The list does not
include a number of proteins that were found to influence the adhesion but were not characterized in detail. The phenotype of knock-out strains was described only in the
context of the cell-substratum adhesion. The interactions were mostly identified using pull-down and co-immunoprecipitation assays. Additionaly, some binding partners
were detected by GDI (guanine nucleotide dissociation inhibitor) and GAP (GTPase-activating protein) assays, RapA activation assay and yeast-two-hybrid assay.
Abbreviations: HL5—HL5 nutrient medium; PB—phosphate buffer; MFA—microfluidic assay; CtxI—cortexillin I; TalA—talin A; TalB—talin B; MyoVII—myosin VII;
PldB—phospholipase D. An asterisk (*) indicates conflicting reports.

Protein Knock-out Phenotype Interactors References

Phg1A reduced attachment to glass in HL5; SibA mRNA and total
protein levels low, SibA surface levels low

Cornillon et al. (2000), Benghezal et al. (2003), Gebbie et al.
(2004), Froquet et al. (2012)

Phg1B reduced attachment to glass in HL5 (thermosensitive defect);
double phg1A-/phg1B−

—reduced attachment to glass in HL5,
slightly reduced in PB

Benghezal et al. (2003)

SadA abolished attachment to plastic in HL5; reduced attachment to
glass in PB (MFA); SibA protein surface levels low, total level of
SibA low

CtxI Fey et al. (2002), Kowal and Chisholm (2011), Froquet et al.
(2012), Tarantola et al. (2014)

SibA reduced attachment to glass in PB (MFA) TalA Cornillon et al. (2006), Tarantola et al. (2014)
Phg2 reduced attachment to plastic in HL5; reduced attachment to

glass in HL5; increased attachment in PB on filters
RapA Gebbie et al. (2004), Kortholt et al. (2006), Jeon et al. (2007b)

Talin A reduced attachment to plastic in HL5*; normal attachment to
plastic in HL5*; reduced attachment to glass in HL5; reduced
attachment to glass in PB (also in MFA); reduced attachment to
albumin-coated glass

MyoVII; Sib family proteins
(SibA-SibE)

Niewöhner et al. (1997)*; Simson et al. (1998), Gebbie et al.
(2004), Tuxworth et al. (2005), Cornillon et al. (2006), Ibarra
et al. (2006), Kortholt et al. (2006)*, Tarantola et al. (2014),
Plak et al. (2016)*

Talin B normal attachment to plastic in HL5; double talA-/talB-

—abolished attachment to substratum in HL5
RapA Patel et al. (2008), Plak et al. (2016)

Paxillin B reduced attachment to plastic in HL5; reduced attachment to
glass in PB; expression of PldB restores wild-type adhesion
levels

PldB Bukharova et al. (2005), Patel et al. (2008), Nagasaki et al.
(2009), Pribic et al. (2011)

Myosin VII reduced attachment to plastic in HL5; strongly reduced
attachment to glass in HL5; TalA levels reduced

TalA Titus (1999), Tuxworth et al. (2001), Tuxworth et al. (2005),
Gebbie et al. (2004), Ibarra et al. (2006), Kortholt et al. (2006),
Galdeen et al. (2007)

FrmA increased attachment to plastic in HL5; mislocalization and
altered turnover of TalA and PaxB in adhesion foci

Patel et al. (2008)

RapA lethal; knock-down via antisense RNA—decreased growth and
viability

PI3K; Phg2; GbpD;
RapGAP1; RapGAPB; TalB

Kang et al. (2002), Gebbie et al. (2004), Kortholt et al. (2006),
Kortholt et al. (2010), Jeon et al. (2007a), Jeon et al. (2007b),
Parkinson et al. (2009), Plak et al. (2016)

GbpD reduced attachment to plastic in PB RapA Bosgraaf et al. (2005), Kortholt et al. (2006)
RapGAP1 increased attachment in PB on filters RapA Jeon et al. (2007a)
RapGAPB increased attachment to plastic in HL5 RapA Parkinson et al. (2009)
RapC increased attachment in PB on filters Park et al. (2018a), Jeon et al. (2021), Kim et al. (2021)
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homologs of SibA (SibB to SibE) in Dictyostelium and all of them
bind talin A via their cytosolic domain (Cornillon et al., 2006).
Only SibA and SibC are expressed abundantly in vegetative cells
and their individual genetic inactivation caused a partial loss of
adhesion to various substrata and particles, but generation of a
double sibA-/sibC- knockout strain failed, suggesting possible
lethality (Cornillon et al., 2008). Taken together, the present
state of knowledge about the transmembrane proteins involved in
the regulation of adhesion to external surfaces suggests that Sib
proteins are the primary receptors, whereas SadA and Phg1
proteins play an auxiliary and regulatory role. The expression
level, stability and targeting of SibA to the cell surface are
influenced by Phg1A and SadA (Froquet et al., 2012).
Compared to wild-type, SibA, SadA and Phg1 deficient cells
exhibit comparable defects in phagocytosis and the adhesion
to underlying surfaces (Fey et al., 2002; Benghezal et al., 2003;
Froquet et al., 2012; Tarantola et al., 2014).

The phosphorylation of functional motifs in the cytoplasmic
integrin tails leads to conformational changes that enable the
recruitment of downstream proteins such as 14-3-3, talin, and
kindlin (Gahmberg and Grönholm, 2022). Most integrin β-tails
contain conserved NPXY motifs that belong to a recognition
sequence for phosphotyrosine-binding (PTB) domains
(Calderwood et al., 2003). Besides PTBs, Src homology 2
(SH2) domains also bind phosphorylated tyrosine and are
important in integrin signaling (Gahmberg and Grönholm,
2022). Instead by canonical tyrosine kinases, tyrosine
phosphorylation in Dictyostelium is mediated by tyrosine
kinase-like (TLK) proteins (Goldberg et al., 2006). While some
TLKs are known to phosphorylate tyrosines exclusively, e.g. ZakA
and Dpyk2-4, the others are dual-specificity kinases, e.g. SplA and
Shk1 (Goldberg et al., 2006). The prime adhesion receptor in
Dictyostelium, SibA, contains two NPXY motifs (Cornillon et al.,
2006). It was shown that the membrane-proximal NPXY motif is
essential for binding of SibA to talin A similar to situation in
metazoa, thus suggesting that SibA might be regulated in a
manner analogous to integrins (Cornillon et al., 2006; Anthis
et al., 2009).

FERM (the four-point-one, ezrin, radixin andmoesin) domain
proteins encompass, together with paxillin and vinculin, the core
members of IAC in metazoans (Calderwood et al., 2013), and
seven have been identified inDictyostelium: talin A and B, myosin
VII, myosin G, and FrmA-C (Patel et al., 2008; Breshears et al.,
2010). The importance for the cell-substratum adhesion of the
first characterized member, talin A, lived up to expectations: talA-

cells showed varying degrees of weakened adhesion to multiple
substrata (Niewöhner et al., 1997; Simson et al., 1998; Gebbie
et al., 2004; Tarantola et al., 2014), and defective uptake of various
particles (Niewöhner et al., 1997; Gebbie et al., 2004). Talin A is
the first protein to show up in the nascent ventral adhesion foci
and at the distal ends of attached filopodia (Kreitmeier et al., 1995;
Patel et al., 2008), but is also present at the trailing regions of
locomoting cells (Hibi et al., 2004; Tuxworth et al., 2005; Tsujioka
et al., 2012). Cells lacking another talin paralog in Dictyostelium,
talin B, show only slightly impaired adhesion to the substratum,
but when both talins are inactivated, the double KO cells are
unable to attach at all when cultivated in the HL5 nutrient

medium (Tsujioka et al., 2008; Plak et al., 2016). Paxillin B is
a close homolog of mammalian paxillin, contains four highly
conserved LIM domains and four paxillin LD domains, and is
recruited to the tips of filopodia and the ventral adhesion foci
sequentially after talin A (Bukharova et al., 2005; Patel et al., 2008;
Nagasaki et al., 2009). Cells lacking paxillin B are defective in
adhesion to substrata, but, interestingly, its overexpression was
also reported to impair adhesion (Bukharova et al., 2005; Duran
et al., 2009; Nagasaki et al., 2009). A class VII myosin is also
enriched in the ventral adhesion foci and the filopodia tips
(Tuxworth et al., 2001; Petersen et al., 2016), whereas the
myoVII- cells show reduced attachment areas and diminished
binding to particles (Tuxworth et al., 2001; Gebbie et al., 2004).
Dictyostelium vinculins A and B possess regions with binding
sites for α-actinin, talin, paxillin and actin, similar to human
vinculin (Nagasaki et al., 2009; Huber and O’Day, 2012). Vinculin
A appears to localize to the ventral adhesion foci, but its
importance for the cell-substratum adhesion in general has not
been investigated, apart from its requirement for cytokinesis in
cells devoid of a functional myosin II (Nagasaki et al., 2009).

Similar localizations and mutant phenotypes indicated that
talin A, paxillin B and myosin VII belong to the same complex,
probably related to metazoan IACs. Indeed, it was shown that
talin A is stabilized against degradation via its interaction with the
myosin VII tail (Gebbie et al., 2004; Tuxworth et al., 2005;
Galdeen et al., 2007). Although the two proteins do not
depend on each other for localization (Tuxworth et al., 2005),
formation of the complex prolongs the residence of myosin VII
on the plasma membrane (Galdeen et al., 2007). FrmA is required
for the proper cell-substratum adhesion by promoting the
turnover of the ventral adhesion structures (Patel et al., 2008).
In frmA− cells, the ventral adhesion foci containing paxillin B
localize aberrantly around the circumference of the cell-
substratum contact area and the persistence of these foci
increases greatly, which is probably responsible for an
increased adhesion of the mutant cells to the substratum
(Patel et al., 2008). On the other hand, frmB− cells have a
significantly reduced adhesion (Kim et al., 2017). Multiple
evidence about functional analogies and interactions between
the FERM and the transmembrane proteins strengthens the
notion that they assemble into transient structures of the IAC
type. For instance, the talin A/myosin VII complex interacts with
the conserved cytosolic domain of Sib family proteins (Tuxworth
et al., 2005; Cornillon et al., 2006). Also, adhesion defects of talA-

andmyoVII- cells are more pronounced on hydrophilic substrata,
similar to those of phg1- and phg2- cells, suggesting an
involvement in the same process (Gebbie et al., 2004). Small
GTPase Rap1 is considered to be one of the key regulators of cell
adhesion in Metazoa via its direct and indirect interactions with
talin (Calderwood et al., 2013; Zhang et al., 2014; Zhu et al., 2017).
In Dictyostelium too, RapA interacts directly with the RA domain
of talin B, and regulates talin B signaling by local allosteric
activation rather than by its recruitment (Plak et al., 2016).
Since the deletion of RapA is likely lethal (Kang et al., 2002;
Jeon et al., 2007b), data about the role of RapA in cell adhesion are
based on overexpressor strains and genetic deletion of its
regulators. Overexpression of active RapA in wild-type cells
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strongly increases adhesion (Rebstein et al., 1993; Jeon et al.,
2007b, 2021), in single talA- or talB- the effect is modest, while in
double mutants there is no effect, suggesting that RapA regulates
cell-substratum adhesion also via an indirect activation of Talin A
(Plak et al., 2016), similar to the activation of Talin1 by RIAM
proteins in mammalian cells (Lagarrigue et al., 2016). Consistent
with these results, cells lacking the RapGEF GbpD are more
loosely attached to the substratum compared to wild-type cells,
while activation of RapA by GbpD leads to a stronger attachment
(Bosgraaf et al., 2005; Kortholt et al., 2006). Further corroboration
of a positive role played by RapA in promoting cell-substratum
adhesion comes from the studies of RapGAP proteins. So, the lack
of RapGAP1, as well as of RapGAPB, leads to an increase in cell
attachment, whereas RapGAP1-overexpressing cells are weakly
attached to the substratum (Jeon et al., 2007a; Parkinson et al.,
2009).

OTHER LIAISONS

Attachment of cells to external surfaces, especially during
locomotion, depends also on other processes within the actin
cytoskeleton in addition to adhesion. A classic example is the
myosin II-driven contractility that supports detachment of the
rear end of migrating cells (Jay et al., 1995). It has thus been
proposed that RapA, in addition to its talin-mediated role,
negatively controls myosin II assembly through the activation
of the serine/threonine kinase Phg2 specifically at the leading
edges of migrating and dividing cells (Kortholt et al., 2006; Jeon
et al., 2007a). Indeed, phg2- cells are strongly impaired in cell-
substratum adhesion and form exceedingly large assemblies of
F-actin at the ventral cell surface, suggesting an additional actin
depolymerization activity of Phg2 (Gebbie et al., 2004), possibly
related to the established role of mammalian serine/threonine
kinases in the regulation of integrin-mediated adhesion
(Bachmann et al., 2019). Another evidence that the spatial
balance in actin polymerization influences cell adhesion comes
from the cells lacking a functional SCAR/WAVE complex, which
show reduced cell–substratum interactions in migration,
although they still possess actin pseudopods (Veltman et al.,
2012). This finding thus indicates a specific role of SCAR/WAVE
in regulating the strength of the cellular traction stresses
(Bastounis et al., 2011). Cells lacking a component of the
SCAR/WAVE complex NapA have an even more pronounced
adhesion defect, suggesting additional involvement of NapA in a
SCAR/WAVE-independent pathway (Ibarra et al., 2006).

A number of other proteins were connected to the regulation of
the cell-substratum adhesion inDictyostelium, but the mechanisms
of their action have not been clarified. For example, RapC is a close
homolog of RapA with antagonistic functions in cell adhesion and
migration, since rapC- cells show an increased substratum
adhesion (Park et al., 2018a; Kim et al., 2021). Interestingly,
mammalian Rap2 was found to promote integrin-dependent
adhesion similar to Rap1 (McLeod et al., 2004). Increased cell-
substratum adhesion has also been detected in Dictyostelium cells
lacking AmpA and Sma (Kelsey and Blumberg, 2013), SepA
(Müller-Taubenberger et al., 2009), coronin 7 (Shina et al.,

2010b), dynamin B (Rai et al., 2011), copine A (Buccilli et al.,
2019), KrsB (Artemenko et al., 2012), SpdA (Dias et al., 2016),
LrrkA (Bodinier et al., 2021), and in mutants identified in a screen
for increased cell attachment, e.g. PTEN, HtmA, AraA, DspA, and
AbnC (Lampert et al., 2017). In mammals, coronin 1 is important
for integrin β2 translocation to the platelet surface (Riley et al.,
2020), dynamin 2 was shown to control Rap1 activation via FAK/
Pyk2 and RapGEF leading to integrin clustering in T lymphocytes
(Eppler et al., 2017), whereas PTEN reduces tyrosine
phosphorylation by FAK and thereby negatively regulates the
formation of focal adhesions and spreading in fibroblasts
(Tamura et al., 1998). Conversely, diminished adhesion of
Dictyostelium cells has been reported after the knock-out of
genes coding for Gp130 (Chia et al., 2005), Ate1 (Batsios et al.,
2019), Cbp7 (Park et al., 2018b), ForH (Schirenbeck et al., 2005),
Ino1 (Frej et al., 2016), LrrA (Liu et al., 2005), and SecG (Shina
et al., 2010a). Cytohesin 1, a mammalian homolog of SecG, was
shown to bind β2 integrin chain in T lymphocytes (Kolanus et al.,
1996). Mutant Dictyostelium cells devoid of IBARa have been
described as lacking the dynamic spreading behavior characteristic
for wild-type cells (Linkner et al., 2014).

CONCLUDING REMARKS

Among over 200 human adhesome proteins, fewer than 50 are
found in Dictyostelium (Zaidel-Bar, 2009). Although the adhesive
properties of Dictyostelium cells are remarkably similar to those
of animals, most Dictyostelium adhesion molecules have little
sequence similarity to animal proteins (Abedin and King, 2010).
However, over the past decade, integrins and other components
of the IAC (or adhesome) were identified outside of Metazoa,
leading to the suggestion that the IAC and associated proteins
have a more ancient evolutionary origin than previously
anticipated (Abedin and King, 2010; Sebé-Pedrós et al., 2010;
Kang et al., 2021), similar to proteins involved in other cell
adhesion systems (Harwood and Coates, 2004; Murray and
Zaidel-Bar, 2014). Based on the sequenced genomes of
Dictyostelium discoideum and Acanthamoeba castellanii, it was
thought until recently that integrins α and β were not represented
in Amoebozoa (Cavalier-Smith, 2017). However, a recent
examination of 113 genomes and transcriptomes identified
integrin α homologs in 23 and integrin β homologs in 19
amoebozoan taxa (Kang et al., 2021). Peculiarly, no evidence
of integrins was found in the few lineages of Amoebozoa that
aggregate to form tissue-like assemblies, such as Dictyostelida,
although they produce an elaborate ECM during multicellular
development (Huber and O’Day, 2017). It is probable that this is
due to a secondary loss of integrins and other IAC components in
majority of amoebozoan taxa, similar to the situation in the
closest relative of animals, Choanoflagellata, which also lack
integrins. One should also not completely dismiss a tantalizing
possibility that some IAC components, including integrins, were
lost during axenic selection of common laboratory strains such as
the AX4 whose genome was sequenced (Eichinger et al., 2005;
Bloomfield et al., 2008). Since integrin repeats were identified in
two phyla of Asgard archaea (Liu et al., 2021), it is highly likely
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that integrins were present in the common ancestor of
Amoebozoa and Metazoa. Very little is known about the
function of amoebozoan integrins, but they are probably
involved in the adhesion to external surfaces as in unicellular
holozoans (Custodio et al., 1995; Parra-Acero et al., 2020).
Interestingly, many amoebozoan species contain either
integrins α or β, and yet possess all the signaling components
of the IAC (Kang et al., 2021). It would therefore be interesting to
examine the functional consequences of a possible integrin
homodimerization in these organisms.

It would be of immediate interest to invest more work into the
characterization of Dictyostelium adhesome/IAC. One obvious
strategy would be to use the powerful tools of proteomics that
were utilized to establish a consensus core adhesome of 60
proteins in mammals (Horton et al., 2015). A complementary,
ultrastructural approach should be used to obtain a three-
dimensional reconstruction of ventral focal adhesion
complexes using cryo-electron tomography (Patla et al., 2010).
It has been proposed that the focal adhesions mediate the cell
attachment by suppressing the repulsive thermal undulations of
the cell plasma membrane (Zidovska and Sackmann, 2006;
Huang et al., 2012; Fenz et al., 2017). The use of discrete,
punctuate adhesive contacts between the cell and its
substratum appears to be a universal strategy to accomplish a
contact between the two surfaces with a minimal investment of

multiprotein assemblies. The emerging Dictyostelium adhesome
and a relative ease in manipulating the adhesive conditions in this
organism might provide a fruitful independent testing ground of
this concept (Loomis et al., 2012).
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