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The migratory dynamics of cells in physiological processes, rang-
ing from wound healing to cancer metastasis, rely on contact-
mediated cell–cell interactions. These interactions play a key
role in shaping the stochastic trajectories of migrating cells.
While data-driven physical formalisms for the stochastic migra-
tion dynamics of single cells have been developed, such a
framework for the behavioral dynamics of interacting cells still
remains elusive. Here, we monitor stochastic cell trajectories in a
minimal experimental cell collider: a dumbbell-shaped micropat-
tern on which pairs of cells perform repeated cellular colli-
sions. We observe different characteristic behaviors, including
cells reversing, following, and sliding past each other upon col-
lision. Capitalizing on this large experimental dataset of cou-
pled cell trajectories, we infer an interacting stochastic equa-
tion of motion that accurately predicts the observed interaction
behaviors. Our approach reveals that interacting noncancerous
MCF10A cells can be described by repulsion and friction interac-
tions. In contrast, cancerous MDA-MB-231 cells exhibit attraction
and antifriction interactions, promoting the predominant rela-
tive sliding behavior observed for these cells. Based on these
experimentally inferred interactions, we show how this frame-
work may generalize to provide a unifying theoretical descrip-
tion of the diverse cellular interaction behaviors of distinct
cell types.

cell migration | cell–cell interactions | contact inhibition of
locomotion | stochastic inference

Collective cellular processes such as morphogenesis, wound
healing, and cancer invasion rely on cells moving and rear-

ranging in a coordinated manner. For example, in epithelial
wound healing, cells collectively migrate toward the injury and
assemble to close the wound (1–3). In contrast, in metastasizing
tumors, cancer cells migrate outward in a directed fashion and
invade surrounding tissue (4). At the heart of these emergent
collective behaviors lie contact-mediated cell–cell interactions
(3, 5–10), which are apparent in two-body collisions of cells
(10–13). These cellular interactions depend on complex molec-
ular mechanisms, including cadherin-dependent pathways and
receptor-mediated cell–cell recognition (5, 10, 11, 14–17). At the
cellular scale, this molecular machinery leads to coordinated,
functional behaviors of interacting cells (3, 5–10), which are
highly variable and may take distinct forms in different biological
contexts (10, 18–21).

Achieving a quantitative understanding of the stochastic
migratory dynamics of cells at the behavioral level could yield
key insights into both the underlying molecular mechanisms
(22, 23) and the biological functions (10) associated to these
behaviors. For noninteracting, single migrating cells, data-driven
approaches have revealed quantitative frameworks to describe
the behavior of free unconstrained migration (24–26) and con-
fined migration in structured environments (27–29). However, it
is still poorly understood how the migratory dynamics of cells are

affected by cell–cell interactions and a quantitative formalism for
the emergent behavioral dynamics of interacting cells is still lack-
ing (30). Indeed, it is unclear whether cellular collision behaviors
follow a simple set of interaction rules and, if so, how these rules
vary for different types of cells.

The study of interacting cell dynamics is complicated by
the complex settings in which they take place, confounding
contributions of single-cell behavior, interaction with the local
microenvironment, and cell–cell interactions. Thus, simplified
assays have been developed where cells are confined by one-
dimensional micropatterned patches (31, 32) or tracks (19, 20,
33, 34), microfluidics (35), and suspended fibers (36). In these
systems, cells exhibit characteristic behaviors upon pairwise col-
lisions, including reversal, sliding, and following events. Upon
contact, many cell types exhibit a tendency to retract, repolar-
ize, and migrate apart—termed contact inhibition of locomotion
(CIL) (10, 13, 37). Indeed, diverse cell types, including epithe-
lial and neural crest cells, predominantly reverse upon collision
(19, 33, 34). In contrast, the breakdown of CIL is commonly
associated with cancer progression (11, 18, 19, 38), and can-
cerous cells have been observed to move past each other more
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readily than noncancerous cells (19). However, it is unclear how
to describe these distinct collision behaviors in terms of physical
interactions.

Models for collective cell migration often assume repulsive
potentials or alignment terms (9, 30, 39–42), but the form of
these interactions is not derived directly from experimental data.
Such data-driven approaches have been developed for single-cell
migration (24–29), but have not yet been extended to interact-
ing systems. The search for unifying quantitative descriptions of
the dynamics of interacting cell trajectories is further compli-
cated by their intrinsic stochasticity, resulting in highly variable
migration and collision behavior (19, 33, 34, 36). Thus, develop-
ing a system-level understanding of cell–cell interactions requires
a quantitative data-driven approach to learn the full stochastic
dynamics of interacting migrating cells.

Here, we develop a theoretical framework for the dynam-
ics of interacting cells migrating in confining environments,
inferred directly from experiments. Specifically, we confine pairs
of migrating cells into a minimal “cell collider”: a two-state
micropattern consisting of two square adhesive sites connected
by a thin bridge. Both noncancerous (MCF10A) and cancerous
(MDA-MB-231) human breast tissue cells frequently migrate
across the bridge, giving rise to repeated cellular collisions. In
line with prior observations (19), we find that while MCF10A
cells predominantly reverse upon collision, MDA-MB-231 cells
tend to interchange positions by sliding past each other. To
provide a quantitative dynamical framework for these distinct
interacting behaviors, we focus on a simplified, low-dimensional
representation of these collision dynamics by measuring the tra-
jectories of the cell nuclei. The cell collider experiments yield
large datasets of such interacting trajectories, allowing us to
infer the stochastic equation of motion governing the two-body
dynamics of interacting cells. Our data-driven approach reveals
the full structure of the cellular interactions in terms of the
relative position and velocity of the cells. Specifically, the dynam-
ics of MCF10A cells are captured by repulsion and friction
interactions. In contrast, MDA-MB-231 cells exhibit surprising
dynamics, combining attractive and “antifriction” interactions,
which have no equivalent in equilibrium systems. This inferred
model quantitatively captures the key experimental observa-
tions, including the distinct collision phenotypes of both cell
lines. Our framework can be generalized to provide a conceptual
classification scheme for the system-level dynamics of cell–cell
interactions and is able to capture various previously observed
types of cell–cell collision behaviors.

Two-State Micropatterns Provide Minimal Cell Collider
To investigate the two-body interaction dynamics of migrat-
ing cells, we designed a micropatterned system in which two
cells repeatedly collide. The micropattern confines the cells to
a fibronectin-coated adhesive region, consisting of a narrow
bridge separating two square islands. Outside this dumbbell-
shaped region the substrate is passivated with poly(L-lysine)-
graft-poly(ethylene glycol), to which the cells do not adhere.
We first confine single cells to these patterns, as described in
previous work (27). Here, we identify cells which undergo divi-
sion from which we obtain confined, isolated pairs of daughter
cells (Fig. 1A). We employ phase-contrast time-lapse microscopy
to study the homotypic interactions of pairs of noncancerous
(MCF10A) and cancerous (MDA-MB-231) human mammary
epithelial cells. The confining bridge between the two islands
leads to two well-defined configurations, with both cells either
on the same island or on opposite sides of the pattern, between
which the system repeatedly switches (Fig. 1 C and D and Movies
S1–S4). During these switching events, the cells interact with
each other. Therefore, our experimental setup offers a simple
platform to study the interactions of confined migrating cells in a
standardized manner: a minimal cell collider.

Within this cell collider, cells are highly motile and exhibit
actin-rich lamellipodia-like protrusions forming at the cell
periphery (Fig. 1B and Movie S5). As a simplified, low-
dimensional representation of the interaction dynamics, we
use the trajectories of the cell nuclei, which reflect the long-
timescale interacting behavior of the cells (Fig. 1C). These
coupled cell trajectories are highly stochastic. Using this assay,
we monitor the stochastic two-body dynamics of hundreds of
cells over long periods of time (up to 40 h per cell pair)
in standardized microenvironments, yielding an unprecedented
amount of statistics on cell–cell interactions (Fig. 1D). Impor-
tantly, we find that most of the interactive behavior is cap-
tured by the x position along the long axis of the pattern
(SI Appendix, section 3). Thus, our cell-collider experiments
provide a large dataset of low-dimensional trajectories of inter-
acting cells, allowing in-depth statistical analysis of the cellular
dynamics.

Cell Pairs Exhibit Mutual Exclusion
A key feature of the trajectories for both cell lines is the
apparent preference for the configuration in which the cells
are on opposite islands (Fig. 1D). Indeed, the positions of the
two cells are strongly correlated: The cross-correlation function
〈x1(t)x2(t ′)〉 exhibits a pronounced negative long-timescale cor-
relation for both cell lines (Fig. 2A). Correspondingly, the joint
probability distribution of positions p(x1, x2) exhibits promi-
nent peaks where cells occupy opposite sides and only faint
peaks where they are on the same side (Fig. 2B), suggest-
ing two distinct configurations. These configurations are con-
nected by “paths” in the probability density, along which tran-
sitions occur. We find that the cumulative probability S(t) that
a configuration switch has not occurred after time t decays
more slowly for opposite-side than same-side configurations
(Fig. 2C). Taken together, these results indicate that both
MCF10A and MDA-MB-231 cells exhibit a mutual exclusion
behavior.

MCF10A and MDA-MB-231 Cells Exhibit Distinct Collision
Behavior
While the cells mutually exclude each other, they are also highly
migratory and thus frequently transit the constricting bridge.
This results in repeated stochastic collision events, providing
statistics for how these cells interact during a collision. Following
a collision, we observe three distinct types of behaviors: reversal
events, where the cells turn around upon collision; sliding events,
where the cells interchange positions by sliding past each other;
and following events, where the cells remain in contact and per-
form a joint transition (Fig. 1 E and F and SI Appendix, section
3). These three behaviors have been previously used as observ-
ables of cell–cell interactions in one-dimensional and fibrillar
environments (19, 33, 34, 36, 43).

To quantify the interaction behavior of MCF10A and MDA-
MB-231 cells, we identify collision events and measure the
percentage that result in reversal, sliding, or following events
(Fig. 2D). Both cell lines exhibit only a small fraction of fol-
lowing events. Remarkably however, we find that collisions of
MCF10A cells predominantly result in reversals, while MDA-
MB-231 cells typically slide past each other upon collision, in
line with observations in other confining geometries (19). To
further explore the generality of this result, we perform addi-
tional experiments with MDA-MB-231 cells on micropatterned
tracks without constrictions, but the same overall dimensions of
the two-state micropatterns (Movies S6 and S7). We find that
sliding events similarly dominate for MDA-MB-231 cells on this
pattern, with similar overall event ratios (Fig. 2D). The different
responses to cell–cell contacts are also reflected by the velocity
cross-correlation of the two cells when occupying the same side
of the two-state micropatterns: 〈v1(t)v2(t ′)〉same: MCF10A cells
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Fig. 1. Stochastic switching dynamics of confined cell pairs. (A) Experimental design. Single cells are confined to two-state micropatterns (white outline).
We track cell pairs resulting from cell divisions. The stained nucleus is colored in blue. (B) Time series of two interacting MDA-MB-231 cells transfected
with LifeAct-GFP. Arrows highlight regions of pronounced actin activity, and the arrow color indicates the cell identity. (C) Brightfield image series
with overlaid nuclear trajectories (orange, violet). Images are taken at a time interval ∆t = 10 min. (D) Sample set of nuclear trajectories x1,2(t) as a
function of time, shown for 14 cell pairs. Axes limits are 0< t< 30 h and −60 µm< x< 60 µm, with x = 0 at the center of the bridge. In total, we
tracked 155 MCF10A cell pairs (corresponding to a total trajectory length of 3,200 h) and 90 MDA-MB-231 cell pairs (2,700 h). (E) Trajectories of individ-
ual cell pairs, with highlighted reversal (dotted lines) and sliding events (dashed lines). (F) Key stages of the reversal and sliding events, corresponding
to the sections highlighted in gray in E. Images are shown at 40-min time intervals for MCF10A and 30-min intervals for MDA-MB-231. Orange stars
and violet circles indicate the identities of the cells. In C–F, Left column corresponds to MCF10A cells and Right column to MDA-MB-231 cells. (All scale
bars, 25 µm.)
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Fig. 2. Statistics of the stochastic interaction dynamics. (A) Cross-correlation
function of cell positions 〈x1(t)x2(t′)〉. (B) Joint probability distributions
p(x1, x2) of cell positions, plotted logarithmically. Top triangle of the sym-
metric distribution shows the experimental result, and Bottom triangle
shows the model prediction (for full distributions and linear plots, see SI
Appendix, Figs. S12 and S13). (C) Probability distribution S(t) giving the
probability that a configuration switch has not occurred after time t, for
the opposite-side configuration (solid line) and the same-side configura-
tion (dotted line). (D) Percentages of each of the three types of collision
events observed, which are sketched below. For MDA-MB-231 cells, hatched
bars correspond to data from cells on micropatterned tracks, with the corre-
sponding model prediction obtained using a single-cell term inferred from
single cells on a track and interaction terms inferred from cell pairs on
two-state patterns. (E) Velocity cross-correlation function 〈v1(t)v2(t′)〉same,
calculated for times where the cells occupy the same island. In A and C,
experimental data are shown in blue, and model predictions (correspond-
ing to Eq. 1) are in red. Shaded regions and error bars denote bootstrap
errors (SI Appendix, section 3).

exhibit a positive velocity correlation while MDA-MB-231 cells
exhibit a negative velocity correlation (Fig. 2E). Taken together,
these findings show that while both cell lines exhibit similar
mutual exclusion behavior, there are clear differences in their

collision dynamics. This raises a key question: Is there an overar-
ching dynamical description which captures both the similarities
and differences of these interaction behaviors?

Contact Acceleration Maps Reveal Dynamics of Cell–Cell
Interactions
Here, we aim to describe the underlying interaction dynam-
ics that capture the full stochastic long-timescale behavior of
repeatedly colliding cell pairs. The dynamics of single migrating
cells are well described by an equation of motion that is second
order in time (24–29), making accelerations the natural quan-
tity to describe cell motility. Specifically, we previously showed
that the migration dynamics of single cells in confinement can
be described by the average acceleration as a function of cell
position x and velocity v = dx/dt , given by the conditional aver-
age F (x , v) = 〈v̇ |x , v〉, where v̇ = dv/dt (27–29). To uncover the
general structure of the cell–cell interactions in our experiments,
we therefore first focus on the observed cellular accelerations
upon contact as a function of the distance and relative velocity
of the cells. We anticipate contributions from cell–cell interac-
tions to depend on the relative position ∆x and relative velocity
∆v of the cell pair. Under certain assumptions, which we test in
the next section, we can estimate the interactive contribution to
cellular accelerations by first subtracting the single-cell contribu-
tion F (x , v) and then determining the remaining acceleration as
a function of ∆x and ∆v : G(∆x , ∆v) = 〈v̇ −F (x , v)|∆x , ∆v〉
(Materials and Methods and SI Appendix, section 3). To further
illustrate this approach, we verify that it accurately recovers the
functional dependence of simple interactions from simulated
trajectories (SI Appendix, section 3). Thus, we interpret this “con-
tact acceleration map” as the average acceleration due to the
interactions of a cell pair.

Strikingly, we find that MCF10A and MDA-MB-231 cells
exhibit qualitatively different contact acceleration maps (Fig. 3
A and D). Indeed, for MCF10A cells, the contact accelera-
tion exhibits a clear dependence on the relative position, while
MDA-MB-231 cells exhibit accelerations that mainly depend
on the relative velocity. We investigate these differences by
measuring the one-dimensional (1D) dependence of the con-
tact accelerations as a function of just ∆x or ∆v . These plots
reveal that MCF10A cells exhibit a combination of repulsive
accelerations (Fig. 3B) and a weak friction-like component
(Fig. 3C). By contrast, MDA-MB-231 cells exhibit contact accel-
erations with opposite sign, suggesting an attractive component
(Fig. 3E) and an effective linear antifriction (Fig. 3F). Inter-
estingly, we find that the contact accelerations on micropat-
terned tracks are qualitatively and quantitatively similar,
suggesting that these findings are not very sensitive to the con-
finement geometry (Fig. 3 D, Inset). These findings suggest that
the contact accelerations of these cells exhibit features that could
be described as combinations of cohesive (repulsion/attraction)
and frictional terms. This raises the question: Are the sim-
ple physical interactions suggested by these maps sufficient to
describe the complex interaction dynamics of these cell pairs?

Interacting Equation of Motion Captures Experimental
Statistics
To investigate whether the interacting dynamics of MDA-MB-
231 and MCF10A cells can be described by the physical inter-
actions implied by the contact acceleration maps, we consider
a simple model for cell–cell interactions in confining environ-
ments. Motivated by the structure of the contact accelerations,
we postulate that the dynamics of the cells can be described by a
stochastic equation of motion of the form

dv

dt
=F (x , v) + f (|∆x |)∆x + γ(|∆x |)∆v +ση(t). [1]
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Here, we assume that the interactions between each cell and
the confinement can be described by a term F (x , v), simi-
lar to single-cell experiments (27). Furthermore, we assume
that the interactions between the two cells can be separately
described by two interaction terms: a cohesive term f (|∆x |)∆x ,
which captures repulsion and attraction, and an effective fric-
tion term γ(|∆x |)∆v that may depend on the distance between
the cells. The intrinsic stochasticity of the migration dynam-
ics is accounted for by a Gaussian white noise η(t), with
〈η(t)〉= 0 and 〈η(t)η(t ′)〉= δ(t − t ′). Note that this equation of
motion captures the effective dynamics that describe the cellular
accelerations, rather than mechanical forces acting on the cell.

To investigate this model, we first require a systematic
approach to infer the systems’ stochastic dynamics and delin-
eate single-cell (one-body) and interactive (two-body) contribu-
tions to the dynamics. Thus, we employ a rigorous inference
method, underdamped Langevin inference (ULI) (44), to infer
the terms of this equation of motion from the experimentally
measured trajectories. In this approach, the inferred terms are
completely constrained by the short-timescale information in the
measured trajectory, i.e., the velocities and accelerations of the
cells (Materials and Methods and SI Appendix, section 4).

Importantly, there is no a priori reason why Eq. 1 should
provide a reasonable ansatz to correctly capture cell–cell inter-
actions, which could require a more complex description. Thus,
we investigate the predictive power of our model by testing
whether it correctly captures experimental statistics that were
not used to constrain the terms in Eq. 1. Specifically, while the
model is learned on the experimental short-timescale dynamics,
we aim to make predictions for long-timescale statistics such as
correlation functions. To this end, we simulate stochastic tra-
jectories of interacting cell pairs based on our model (Fig. 4
D and H) to make a side-by-side comparison with the exper-
iments. Remarkably, we find that the model performs well in
predicting key experimental statistics for both cell lines, includ-
ing the joint probability distributions (Fig. 2B); the distributions
of switching times (Fig. 2C); and the cross-correlations of posi-
tions and velocity (Fig. 2 A and E); as well as the relative fractions
of reversal, sliding, and following events (Fig. 2D). In contrast,
performing the same inference procedure with simpler mod-
els than Eq. 1, e.g., with only cohesive or friction interactions,
shows that simulated trajectories of these models do not cap-
ture the observed statistics (SI Appendix, section 4). To further
challenge our approach, we test whether we can use the inter-
actions learned from experiments on two-state micropatterns to
predict the collision behavior in a different confinement geome-
try. Specifically, we use the single-cell term F (x , v) inferred from
single-cell data of MDA-MB-231 cells migrating on micropat-
terned tracks, together with the interactions inferred from cell
pair experiments on two-state micropatterns, to predict the col-
lision ratios of cell pairs on tracks. We find that this model
accurately predicts the observed event ratios (Fig. 2D), showing
that the inferred interactions have predictive power also beyond
the dataset on which they are learned.

Remarkably, our inference approach reveals that the inferred
single-cell contributions F (x , v) on two-state micropatterns are
qualitatively and quantitatively similar to the equivalent term
inferred from experiments with single cells for both cell lines (27)
(Fig. 4 A and E and SI Appendix, section 4). Also, the inferred
noise amplitudes are similar to those inferred from single-cell
experiments for both cell lines, σ≈ 50 µm/h3/2. This suggests
that the presence of another cell does not significantly alter
the confinement dynamics experienced by one of the cells and
instead manifests in the interaction terms of the equation of
motion. Our inference yields the spatial dependence of the cohe-
sion term (Fig. 4 B and F) and the effective friction term (Fig. 4 C
and G). Importantly, the functional dependence of the inferred
terms is in accord with our interpretation of the contact acceler-

A B

D

C

E

F

Fig. 3. Contact acceleration maps. (A and D) Contact acceleration maps
G(∆x, ∆v), measured in units of µm/h2. (D, Inset) Map for MDA-MB-231
cells on micropatterned tracks. (B and E) Contact accelerations as a func-
tion of the cell separation ∆x: G(∆x) = 〈v̇− F(x, v)|∆x〉. (C and F) Contact
accelerations as a function of the relative velocity of the cells ∆v: G(∆v) =

〈v̇− F(x, v)|∆v〉. Lines indicate linear fits. Error bars show bootstrap errors.
A–C show data for MCF10A cells, and D–F show data for MDA-MB-231 cells.
In E and F, open green symbols correspond to data from experiments on
micropatterned tracks.

ation maps (Fig. 3): MCF10A cells exhibit a repulsive cohesive
interaction and a regular effective friction, which reflects that
cells slow down as they move past each other. In contrast,
MDA-MB-231 cells interact through a predominantly attrac-
tive cohesion term, becoming weakly repulsive at long distances,
and exhibit effective antifriction. We infer a similar antifriction
interaction from MDA-MB-231 cell pairs migrating on micropat-
terned tracks, suggesting that this result is not sensitive to the
presence of the constriction (Fig. 4 F and G). This antifriction
generates sliding behavior, where cells on average accelerate
as they move past each other with increasing relative speed.
These results are robust with respect to the details of the infer-
ence procedure (SI Appendix, section 4). Taken together, these
findings demonstrate that the dynamics of interacting MCF10A
and MDA-MB-231 cells on confining micropatterns are well
described by our model (Eq. 1) with distinct types of interactions
for the two cell lines.

Interaction Behavior Space: A Theoretical Framework for
Cell–Cell Interactions
To conceptualize the distinct interactions of MCF10A and
MDA-MB-231 cells, we propose an interaction behavior space,
spanned by the amplitudes of the cohesive and frictional con-
tributions (Fig. 5). Based on our inference, the two cell lines
occupy diagonally opposed quadrants in this space. To inves-
tigate whether our model (Eq. 1) is able to capture cellular
interaction behaviors more broadly, we predict trajectories for
various locations within this interaction map. For interactions
consisting of repulsion and friction, we find that collisions pre-
dominantly result in reversal events, as we have observed for
MCF10A cells. In contrast, for positive friction coefficients,
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corresponding to effective antifriction, we find that sliding events
dominate for all parameter values. This regime thus corresponds
to the dynamics we have observed for MDA-MB-231 cells.
Finally, attractive interactions with regular friction result in a
dominance of following events. The interaction behavior space
thus provides an insightful connection between the inferred
interaction terms governing the instantaneous dynamics of the
system and the emergent macroscopic, long-timescale collision
behavior.

Discussion
In this study, we introduced a conceptual framework for the
stochastic behavioral dynamics of interacting cells. To this end,
we designed a micropatterned cell collider in which pairs of
cells repeatedly collide with each other, providing large amounts
of statistics on the long-timescale interactions of migrating cell

pairs. A key advantage of this setup is that it yields a large
number of collisions under controllable conditions. Moreover,
the dynamics of single cells migrating in this confinement are
well understood (27), providing a benchmark for the dynam-
ics inferred for interacting cells. We compare the homotypic
interaction behavior of the nonmalignant MCF10A and the
metastatic MDA-MB-231 mammary epithelial cell lines. While
phenomenological bottom–up models have been developed to
describe cell–cell interactions (30, 32, 43, 45–47), we propose an
alternative, top–down approach to learn the interacting stochas-
tic equations of motion governing cell migration from the experi-
mentally observed trajectories. Such an effective model captures
the emergent dynamics at the cellular scale which are driven
by underlying mechanisms, including the intracellular polarity
machinery. Our inferred models for interacting cells quantita-
tively capture the distinct behaviors of the two cell lines. This
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Fig. 4. Equation of motion for interacting cells. (A and E) Single-cell contribution F(x, v) to the interacting dynamics, measured in units of µm/h2. White
lines indicate the flow field given by (ẋ, v̇) = (v, F(x, v)). (A and E, Insets) Corresponding term inferred from experiments with single cells (27). (B and F)
Cohesive interaction term f(|∆x|)∆x. Positive values indicate repulsive interactions, while negative values correspond to attraction. (C and G) Effective
frictional interaction term γ(|∆x|). Here, positive values indicate an effective antifriction and negative values an effective frictional interaction. (D and H)
Trajectories obtained from model simulations. Axes limits are 0< t< 30 h and −60 µm< x< 60 µm. A–D show data for MCF10A cells, and E–H show data
for MDA-MB-231 cells. For MDA-MB-231 cells, green lines show the interactions inferred from cell pairs interacting on micropatterned tracks.
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inference reveals that the dynamics can be decomposed into
a one-body motility component, which qualitatively matches
that observed in single-cell experiments (27), and a two-body
interaction term.

The interaction terms we inferred from experiments take qual-
itatively different forms for the two cell lines: While MCF10A
cells exhibit repulsion and effective friction, MDA-MB-231 cells
exhibit attraction and a surprising effective antifriction interac-
tion. At the single-cell level, MDA-MB-231 cells are known to
be more invasive than MCF10A cells (48, 49) and express lower
levels of the cell–cell adhesion protein E-cadherin (19, 50), pos-
sibly underlying the different friction-like interactions we found
for these cell lines. These two cell lines also display remark-
ably different collective behaviors (51–53): MCF10A cells in
two-dimensional (2D) epithelial sheets exhibit aligned, directed
motion and form compact spheroids in three-dimensional (3D)
culture, with few invasive branches. In contrast, MDA-MB-231
cells in 2D epithelial sheets exhibit nonaligned, random motion
and form invasive, noncontiguous clusters in 3D culture, with sig-
nificant single-cell dispersion from the cluster. These differences
in collective behavior may relate to the distinct types of inter-
actions we have inferred from the two-body dynamics of these
cell lines.

Based on the inferred equation of motion, we predict an
interaction behavior space to link the interaction terms, which
govern the instantaneous stochastic dynamics, to the emer-
gent collision behaviors. The three distinct regimes emerging in
our model correspond to specific behaviors observed in exper-
iments for various cell types: Predominant reversal behavior
on 1D lines has been termed contact inhibition of locomo-
tion (33, 34), a common type of cell–cell interaction (5, 8,
10, 13). By inhibiting intracellular Rho signaling in neural
crest cells, this reversal-dominated behavior could be tuned
to following-dominated behavior (34). Such following behav-

ior has also been identified as an important mechanism in
collective migration (12, 20, 21, 54) and was termed contact
following locomotion (20). Finally, previous work has shown
that reducing the expression levels of E-cadherin enables oth-
erwise reversing cells to mainly slide past each other (19). For
this regime of predominant sliding interactions, we propose
the term contact sliding locomotion. Based on our interaction
behavior space, we find that the antifriction interactions we iden-
tified for MDA-MB-231 cells promote such sliding behavior.
The interaction behavior space could thus provide a quanti-
tative classification of distinct modes of interaction that may
be achieved through molecular perturbations in experiments
(19, 34). On the other end of the scale, the antifriction inter-
action type we find here could play a role in collective sys-
tems such as the fluidization of tissue in tumor invasion (53,
55, 56). The form of the interaction terms we inferred from
experiments may thus inform models for collective cell migra-
tion (9, 30, 39–42). Furthermore, the inference framework we
have developed for the dynamics of interacting cell pairs can
be extended to infer the dynamics of more complex collective
systems, such as small clusters of cells (32, 41, 57), epithelial
sheets (42, 58), or 3D organoids (55, 56). In summary, our
model, which we rigorously derive directly from experimen-
tal data, could potentially describe the diversity of previously
observed cell–cell interaction behaviors in a unifying quantitative
framework.

Materials and Methods
Sample Preparation and Cell Culture. Fibronectin micropatterns are made by
microscale plasma-initiated protein patterning as described previously (27).

MCF10A cells (American Type Culture Collection) are cultured at 37 ◦C
in an atmosphere containing 5% CO2. The culturing medium DMEM/F-
12 including Glutamax (Gibco) is supplemented with 5% horse serum
(Thermo Fisher), 20 ng/mL hEGF (Sigma), 500 ng/mL hydrocortisone (Sigma),

Fig. 5. Interaction behavior space. We construct an interaction space by varying the amplitude of the cohesive and friction interactions, f0 and γ0, respec-
tively. Contact acceleration maps for purely attractive, repulsive, frictional, and antifrictional interactions are indicated on the axes. Based on the inferred
short-range interactions, we place MDA-MB-231 and MCF10A cells into diagonally opposed quadrants. Predicted behaviors in the interaction space are
obtained by varying the cohesion and friction interactions in our model. Specifically, we simulate a model including the inferred MDA-MB-231 single-cell term
F(x, v) together with a cohesive term f(|∆x|) = f0gc(|∆x|) and an effective friction term γ(|∆x|) = γ0gf(|∆x|), for varying f0 and γ0. The distance-dependent
functions gc,f are positive and monotonically decreasing. These results do not sensitively depend on the specific choice of F(x, v) or gc,f (gc,f = exp[(−|∆x|/R0)]
is used here) (SI Appendix, section 5). For each parameter combination, reversal, sliding, and following events were identified. At each point, the dominant
behavior is indicated by the color scheme, and white regions correspond to states where no single behavior contributes more than 50% of events. Numbered
Insets show sample trajectories from different parts of the interaction map and the corresponding percentages of reversal (red), sliding (blue), and following
events (green).
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100 ng/mL cholera toxin (Sigma), and 10 µg/mL insulin (Sigma). When
passaging cells, the supernatant is aspirated and centrifuged at 300 rel-
ative centrifugal force (rcf) for 8 min. The adherent cells are washed
once with phosphate-buffered saline (PBS) before being detached by a
12-min incubation with Accutase at 37 ◦C. Then the cell solution is resus-
pended with culture medium and subsequently centrifuged at 500 rcf
for 6 min. Both cell pellets are resuspended in medium and a fraction
is used for further cultivation. For experiments, a drop containing 10,000
cells is added to an ibidi µ-dish (ibidi GmbH) and left to adhere for at
least 4 h. After that, the medium is exchanged to culture medium with-
out phenol red. A total of 15 nM Hoechst 33342 is added for nuclear
staining. Cells are kept in a 5% CO2 atmosphere and at 37 ◦C during
experiments.

MDA-MB-231 cells (DSMZ) are cultured in minimum essential medium
(MEM, c.c. pro), containing 10% FBS (Gibco) and 2 mM L-glutamine (c.c.
pro). Cells are grown in a 5% CO2 atmosphere at 37 ◦C. For passaging and
experiments, cells are washed once with PBS and trypsinized for 3 min. This
cell solution is centrifuged at 1,000 rcf for 3 min. The cell pellet is resus-
pended in MEM and 10,000 cells are added per µ-dish and left to adhere in
the incubator for 4 h. The medium is then exchanged to L-15 medium con-
taining L-glutamine (Gibco; supplemented with 10% fetal calf serum) and
25 nM Hoechst 33342 (Invitrogen) for staining cell nuclei. Experiments are
performed at 37 ◦C without CO2.

Microscopy and Cell Tracking. All measurements are performed in time-lapse
mode for up to 50 h on an IMIC digital microscope (TILL Photonics) or
on a Nikon Eclipse Ti microscope using a 10× objective. The samples are
kept in a heated chamber (ibidi GmbH or Okolab) at 37 ◦C throughout the
measurements. Images (brightfield and DAPI) are acquired every 10 min.
Trajectories of cell pairs are obtained by selecting cells that undergo division
during the experiment. Following division and subsequent reattachment to
the micropattern, we track the trajectories of the cell nuclei. A band-pass
filter is applied to the images of the nuclei, and then images are bina-
rized. The cell trajectories are determined by tracking the binarized images
using a Matlab tracking algorithm (59). For further details, see SI Appendix,
section 2.

Contact Acceleration Maps. To gain insight in the general structure of the
accelerations due to cell–cell interaction, we introduce contact acceleration
maps. We estimate the single-cell component of the dynamics from the
accelerations observed at time points where the cells are far apart, F(x, v) =〈
v̇i|xi , vi ; |∆xij|>`

〉
, where we take the threshold distance `= 25 µm. To

obtain the accelerations due to cell–cell contacts, we take the time points
where cells are close together and calculate the average acceleration as
a function of relative position ∆xij = xi − xj and velocity ∆vij = vi − vj of
cell i and cell j: G(∆x, ∆v)≈

〈
v̇i − F(xi , vi)|∆xij , ∆vij ; |∆xij|<`

〉
. We show

that for simple simulated examples, this approach accurately recovers the
structure of the interaction terms. For more details, see SI Appendix,
section 3.

Underdamped Langevin Inference. From the short-timescale dynamics of the
measured cell trajectories x(t), we infer the second-order stochastic differ-
ential equation that governs the motion (26, 27, 44, 60). Specifically, to
infer the terms of our model (Eq. 1), we employ underdamped Langevin
inference (44), a method which is robust with respect to the effects of the
discrete sampling of x(t) and the presence of measurement errors. Briefly,
we fit the experimentally measured accelerations using a linear combina-
tion of basis functions {b(xi , vi), u(|∆xij|)∆xij , u(|∆xij|)∆xij} using rigorous
stochastic estimators (44). For the single-cell terms b(xi , vi), we use a combi-
nation of polynomials and Fourier modes, while for the interaction kernels
u(|∆xij|) we use exponential functions. The inference results do not sen-
sitively depend on the choice of basis functions. For more details, see SI
Appendix, section 4.

Data Availability. All study data are included in this article and/or SI
Appendix.
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