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Molecular characterization 
of metabolic subtypes 
of gastric cancer based 
on metabolism‑related lncRNA
Lingdi Li1 & Jianfei Ma2*

Increasing evidence has demonstrated that lncRNAs are critical regulators in diverse biological 
processes, but the function of lncRNA in metabolic regulation remains largely unexplored. In this 
study, we evaluated the association between lncRNA and metabolic pathways and identified 
metabolism‑related lncRNAs. Gastric cancer can be mainly subdivided into 2 clusters based on 
these metabolism‑related lncRNA regulators. Comparative analysis shows that these subtypes 
are found to be highly consistent with previously identified subtypes based on other omics data. 
Functional enrichment analysis shows that they are enriched in distinct biological processes. Mutation 
analysis shows that ABCA13 is a protective factor in subtype C1 but a risk factor in C2. Analysis of 
chemotherapeutic and immunotherapeutic sensitivity shows that these subtypes tend to display 
distinct sensitivity to the same chemical drugs. In conclusion, these findings demonstrated the 
significance of lncRNA in metabolic regulation. These metabolism‑related lncRNA regulators can 
improve our understanding of the underlying mechanism of lncRNAs and advance the research of 
immunotherapies in the clinical management of gastric cancer.

The human genome contains about 20,000 protein-coding genes, whereas most of the genome is transcribed 
into non-coding  RNA1,2. Long non-coding RNAs (lncRNA), defined as transcripts over 200 nucleotides, do not 
have protein-coding  potential3. They participate in the regulation of gene expression at different  levels4. In recent 
years, a growing number of researches have focused on the identification of the function of lncRNA. LncRNA is 
found to be significantly associated with diverse biological processes, such as cell differentiation, proliferation, 
and  apoptosis5–7. Moreover, human immunity is reported to be regulated by  lncRNA8. But most of the lncRNAs 
remain largely unexplored and the function of these lncRNAs is still unknown. Therefore, it’s of great significance 
to identify the function of lncRNA.

Growing researches have demonstrated the association between lncRNA and human cancer. LncRNA MEG3 
is found to inhibit proliferation and metastasis of gastric cancer via p53 signaling  pathway9. LncRNA MT1JP is 
reported to function as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric 
 cancer10. Additionally, lncRNA is found to be significantly associated with immune pathways of primary human 
 cancer11. But most of these analyses concentrated on a single lncRNA, functional characterization of lncRNA is 
still inadequate. It’s necessary to investigate the lncRNA that has not previously been studied.

Currently, an increasing number of studies demonstrated the significance of metabolism in human cancer. 
Initiation and progression of colorectal cancer are found to be regulated by metabolic  pathways12. Cancer metabo-
lism research revealed that metabolic profiles of individual tumors are highly  heterogenous13 and metabolic 
expression subtypes of human cancers are significantly associated with patient  survival14. But all of these studies 
concentrated on protein-coding genes. The regulation of lncRNA on metabolic pathways is unknown. Thus, it’s 
of great interest to study the underlying interactions between lncRNA and metabolic pathways. Deeply under-
standing the function of these metabolism-related lncRNAs can provide insights into the molecular mechanism 
of lncRNA.

In this work, we aim to identify the interactions between metabolism and lncRNA and analyze the clinical 
relevance of these metabolism-related lncRNAs. After evaluating the association between lncRNA and meta-
bolic pathways, we identified 1539 metabolism-related lncRNAs. Gastric cancer can be mainly classified into 
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2 subtypes based on these lncRNAs. Functional enrichment analysis shows that they are enriched in distinct 
biological processes. Genomic characterization shows that ABCA13 mutation is a protective factor in C1 but 
a risk factor in C2. Analysis of chemotherapeutic and immunotherapeutic sensitivity shows that different sub-
types tend to display distinct sensitivity to the same chemical drugs, suggesting the clinical significance of these 
metabolism-related lncRNAs.

Result
Characterization of metabolism‑related lncRNA. We performed differential expression analysis 
between gastric cancer and the adjacent normal samples and identified 1570 upregulated lncRNAs and 655 
downregulated lncRNAs (Fig. 1a, b). Association analysis was then used to evaluate the interactions between 
these dysregulated lncRNAs and metabolic pathways which is implemented using R package  ImmLnc11. Among 
these upregulated lncRNAs, 1138 (72.5%) lncRNAs are associated with at least one metabolic pathway and iden-
tified as metabolism-related lncRNAs (Fig. 1c). For these downregulated lncRNAs, 401 (61.2%) lncRNAs are 
identified as metabolism-related lncRNAs (Fig. 1d). These significant lncRNA-metabolic pathway pairs are pre-
sented in Supplementary Table 1. In addition, we found that the number of lncRNAs is negatively associated with 
the number of their associated metabolic pathways (Fig. 1c, d). Most of the lncRNAs are associated with a few 
metabolic pathways. It suggests that only a small proportion of lncRNAs play significant roles in the regulation 
of metabolic pathways.

To explore the significant value of these lncRNAs in gastric cancer, we investigated these metabolism-related 
lncRNAs on the published literatures and found that some of them have been reported to be associated with 

Figure 1.  Characterization of metabolism-related lncRNA in gastric cancer. (a) Identification of differentially 
expressed lncRNAs between gastric cancer and the adjacent normal samples. Red and blue nodes represent 
the downregulated and upregulated lncRNAs respectively. (b) Barplot shows the number of upregulated and 
downregulated lncRNA respectively. (c, d) Summary of lncRNA based on the number of associated metabolism 
pathways. Chromosomal distribution of these upregulated (e) and downregulated (f) lncRNAs that are 
significantly associated with the metabolism pathway. (g) Top 5 metabolic pathways that are frequently regulated 
by lncRNA.
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tumorigenesis. For example, lncRNA H19, which is identified as the most variable gene in our analysis, is found to 
be associated with various cancer types. It is also found to regulate various metabolic pathways including energy 
metabolism and glucose  metabolism15,16. AFAP-AS1 is reported to regulate trastuzumab resistance of breast 
 cancer17. MAP3K20-AS1 is found to inhibit gastric cancer growth through epigenetically regulating miR-37518. 
Other lncRNA including ELFN1-AS1, CASC9, SLCO4A1-AS1, DSCR8 and so on are all found to be studied 
previously and associated with at least one cancer type, which demonstrates that these lncRNAs can indeed 
capture the oncogenic features of gastric cancer.

Regional analysis of these metabolism-related lncRNAs shows that both upregulated and downregulated lncR-
NAs are preferentially located on chromosomes 1 and 2 (Fig. 1e, f). Comparative analysis shows that upregulated 
lncRNAs are preferentially located on chromosomes 8 and 12, whereas downregulated lncRNAs are preferentially 
located on chromosomes 17 and 5. Furthermore, we ranked the metabolic pathways by the number of associated 
lncRNAs and investigated the pathways that are frequently regulated by lncRNA. Retinol metabolism, pyrimidine 
metabolism, purine metabolism, fatty acid metabolism, and arginine and proline metabolism are identified as 
the top 5 metabolic pathways (Fig. 1g). In conclusion, these results demonstrate that lncRNA is significant in 
the regulation of metabolic activities.

Molecular classification of gastric cancer based on metabolism‑related lncRNA. These metabo-
lism-related lncRNAs are used to classify gastric cancer into different subtypes. R package  ConsensusClusterPlus19 
is used for the molecular classification of gastric cancer. To determine the optimal number of clusters of gas-
tric cancer, we start a cluster survey from 2 to 8. After comprehensively evaluating the cumulative distribution 
function curve and consensus matrix, k = 6 is identified as the optimal number of clusters. Due to the small 
number of samples in cluster C3–C6, we removed these clusters and yielded 2 clusters C1 and C2. To evaluate 
the reliability of molecular subtypes of gastric cancer, an independent approach called non-negative matrix fac-
torization (NMF)20 yielded 6 clusters of gastric cancer (N1–N6). Comparative analysis between these subtypes 
shows that the molecular subtypes derived from these two approaches achieve high consistency. Cluster N2 is 
highly enriched in cluster C2 (Fig. 2a). Survival analysis between different subtypes shows that subtype N1 has a 
favorable prognosis compared with subtype N2 and N6 (Fig. 2c). But no survival difference is observed between 
ConsensusClusterPlus subtypes (Fig. 2b).

To check whether there is a similarity between our lncRNA subtypes and the subtypes derived from other 
omics data, we investigated these lncRNA based metabolic subtypes with previously identified subtypes based 

Figure 2.  Molecular classification of gastric cancer based on these metabolism-related lncRNAs. (a) Heatmap 
shows the molecular subtypes of gastric cancer using two independent methods consensusclusterplus and non-
negative matrix factorization based on the top 100 variable lncRNAs. (b, c) Survival analysis of gastric cancer 
between different subtypes. The difference of survival curve is evaluated using log-rank test. (d, e) Comparative 
analysis of different gastric cancer subtypes. The association between our metabolism subtypes and the 
previously identified subtypes is evaluated using chisquare test.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21491  | https://doi.org/10.1038/s41598-021-00410-7

www.nature.com/scientificreports/

on mRNA expression, miRNA expression, methylation, and copy number variation and found that they achieve 
high  consistency21. Some subtypes derived from different omics data overlapped highly with each other (Fig. 2d, 
e). For example, ConsensuscluaterPlus-based subtype C1 is highly overlapped with EBV and MSI subtypes; C1 is 
found to be overlapped with CNV low group, methylation C1, C2, and C3 groups, mRNA C1, C2, and C4 groups 
(Supplementary Fig. 1). Furthermore, the association of NMF-based subtypes is also explored. Subtype N1 is 
highly overlapped with CIN subtype, mRNA subtype C3, and CNV high group; N2 is preferentially overlapped 
with CIN subtype, mRNA subtype C3, and CNV high group. N3 is found more likely to be overlapped with CIN 
and GS subtypes, mRNA subtype C4. N6 is found to be overlapped with GS subtype, mRNA C1 group, miRNA 
C4 group, methylation C4 group and CNV low group. The overlapped interactions between lncRNA based 
metabolic subtypes with classification derived from other omics data is presented in Supplementary Figure.

Some previously identified subtypes are characterized with specific alterations that may have clinical impli-
cation for oncology. For example, MSI subtype is characterized with hypermutated genome. Previous research 
suggests that mutation burden is significantly associated with immunotherapeutic sensitivity of  oncology22. Here, 
subtype N4 and N5 are highly overlapped with MSI subtype, suggesting that they are more likely to respond to 
immunotherapy which is confirmed in Fig. 5. EBV subtype, presented here by N5, is characterized with high 
expression of PD1 and PD-L1, suggesting a more sensitive phenotype to immunotherapy that is also confirmed 
in the following part of immunotherapeutic sensitivity analysis that N5 is significantly associated with responder 
group to immunotherapy, making it consistent with prediction derived from other EBV subtype. CNV is previ-
ously found to be anticorrelated with immune  levels23, suggesting negative regulatory in oncology. In this study, 
C2 is presented with CNV high group, suggesting a more inhibited immunity of C2 which is consistent with the 
observation in Fig. 3a.

Figure 3.  Immune microenvironment characterization and functional enrichment analysis. (a, b) The immune 
score, stromal score and tumor purity of different gastric cancer subtypes. (c) Boxplot shows the immune 
microenvironment-related composition of different subtypes. GO (c) and KEGG (d) enrichment analysis of 
differentially expressed genes between subtype C1 and C2. GSEA result shows top 5 pathways that are enriched 
in C1 (g) and C2 (f) respectively.
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Immune infiltration and functional enrichment analysis of different gastric cancer sub‑
types. Immune cell infiltration is analyzed to characterize the immune landscape of gastric cancer. We used 
 xCell24 to quantify the proportion of 64 immune cells and stromal cells. Tumor purity is evaluated using R pack-
age estimate. Comparison between different subtypes shows that subtype C1 has a higher immune score and 
stromal score than subtype C2 (Fig. 3a). But subtype C1 has lower tumor purity than C2 (Fig. 3b). Furthermore, 
different immune cell infiltration is analyzed between subtypes C1 and C2. We found that subtype C1 had higher 
enrichment of B cells, CD8 + T cells, dendritic cells, macrophages, and mast cells than C2 (Fig. 3c). But no obvi-
ous difference is observed of CD4 + T cells and NK cells.

To check whether these subtypes are enriched in different biological processes and states. We performed dif-
ferential expression analysis between C1 and C2 and identified 2117 differentially expressed genes. Gene ontol-
ogy (GO) enrichment analysis shows that these differentially expressed genes are enriched in various metabolic 
processes including hormone metabolic process, retinoid metabolic process, and diterpenoid metabolic process 
(Fig. 3d). In addition to these metabolic processes, digestion, drug transport, and neurotransmitter transport are 
also represented by these differentially expressed genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis shows that these differentially expressed genes are enriched in pancreatic secretion, bile 
secretion, insulin secretion, retinol metabolism, and protein digestion and absorption (Fig. 3e).

In addition, an independent method called gene set enrichment analysis (GSEA)25 was used to analyze the 
functional difference between different subtypes. We collected 50 hallmark gene sets representing well-defined 
biological states or processes to check whether they are enriched in different pathways. We found that interferon-
gamma response, interferon-alpha response, and inflammatory response are enriched in subtype C1. Pancreas 
beta cells and bile acid metabolism are enriched in subtype C2. The top 5 enriched pathways are presented in 
Fig. 3f and g.

Association of different subtypes with genomic alteration. Tumor mutation burden (TMB) is 
found to affect the immunotherapeutic sensitivity of  cancer22. To check whether there is a difference in muta-
tional frequency between gastric cancer subtypes, We calculated TMB for each sample. Comparative analysis 
shows that there is no obvious difference in TMB between subtypes C1 and C2 (Fig. 4a). In addition, differen-
tially mutated genes are also explored in our analysis to check whether some genes are preferentially mutated in 
a specific subtype. Five genes are found to be differentially mutated between subtypes C1 and C2 in our analysis. 
ARID1A, AHNAK2, PIK3CA, and ZBTB20 are preferentially mutated in C1, and TP53 is preferentially mutated 
in C2 (Fig. 4b).

Genetic alterations are often grouped into different combinations to drive the development of  cancer26. 
These specific genomic events are more or less likely to be co-selected during the initiation and progression of 
cancer. To study the mutational dependency of different subtypes, we used the SELECT algorithm to identify 
mutual exclusivity and co-occurrence events of genomic  alterations27. Genomic analysis of subtype C1 shows 
that KMT2D mutation is co-occurred with ARID1A, PCLO, OBSCN, AFHX4, PLEC, RYR1, SACS, SYNE2, 
and RNF213 mutation (Fig. 4c). GO enrichment analysis of these co-occurred mutations shows that they are 
enriched in muscle cell differentiation, muscle cell development, and heart morphogenesis (Fig. 4e). In addition 
to KMT2D, TTN mutation is found to be co-occurred with PLEC, SACS, SYNE2, and RNF213 mutation. But 
no mutual exclusivity of genomic mutation is found in C1. Genomic analysis of subtype C2 shows that SPTA1 
mutation is mutually exclusive with PCDH15 mutation and MUC16 mutation is mutually exclusive with FLG 
mutation (Fig. 4d). But no co-occurred mutation is found in this subtype.

The prognostic value of these significantly mutated genes is also under investigation in our analysis. To check 
whether these significantly mutated genes contribute to the survival of gastric cancer, we analyzed the top 50 
mutated genes for different subtypes. GLI3, LAMA1, and LRRK2 are found to be significantly associated with the 
survival of gastric cancer in subtype C1. Mutation of these genes tends to be a protective factor. Gastric cancer 
in subtype C1 carrying the mutant of these genes displayed a favorable survival. Survival analysis of subtype 
C2 shows that ABCA13, VPS13D, and CUBN affect the survival of gastric cancer. Patients carrying the mutant 
of these genes displayed a poor survival compared with the wild type. Interestingly, we found that ABCA13 
displayed a distinct prognostic value between C1 and C2. Survival analysis of ABCA13 shows that patients in 
subtype C1 carrying this mutation have better survival than the wild type (Fig. 4f). But we get a distinct result in 
subtype C2. ABCA13 mutant displayed a poor survival compared with the wild type in C2 (Fig. 4g), suggesting 
that ABCA13 can be epigenetically regulated by these lncRNAs.

To determine the interactions between ABCA13 and lncRNA based classification. We investigated the asso-
ciation between ABCA13 and these 100 lncRNAs used for classification and found that some lncRNAs tend 
to be correlated with ABCA13 mutant. For example, gastric cancer patients carrying ABCA13 mutant in C2 
group is found to have an upregulated expression of LINC2826, AC25575.2, and AFAP-AS1 than the wild type 
(Supplementary Fig. 2), but no difference of AC25575.2 and AFAP-AS1 expression is observed in the C1 group, 
suggesting that ABCA13 is epigenetically regulated by these lncRNAs which collectively affects the survival of 
gastric cancer.

Chemotherapeutic and immunotherapeutic sensitivity of different subtypes. To check whether 
a specific subtype of gastric cancer could benefit from chemotherapies, we choose four representative chemical 
drugs (bleomycin, doxorubicin, cisplatin, and gemcitabine) to analyze the chemotherapeutic sensitivity of gas-
tric cancer. We constructed a prediction model based on the Genomics of Drug Sensitivity in Cancer (GDSC) 
dataset and predicted drug sensitivity (IC50) for each sample of these four chemical drugs. We found that sub-
type C1 was more sensitive to gemcitabine than C2 (Fig. 5b). For the analysis of cisplatin, bleomycin, and doxo-
rubicin, no obvious difference was observed between subtypes. Additionally, we analyzed other 134 chemical 
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drugs between different subtypes. Among these chemical drugs, twenty-three drugs have distinct sensitivity 
between subtypes C1 and C2. Subtype C2 is more sensitive to PF.4708671, NSC.87877, BIRB.0796, OSI.906, 
and JNK.inhibitor.VIII (Fig. 5a). Comparing with subtype C2, C1 is more sensitive to Roscovitine, CGP.60474, 
WZ.1.84, AZ628, and Nutlin.3a.

To investigate whether our gastric cancer subtypes could benefit from immunotherapies, we collected three 
datasets of melanoma patients who received atezolizumab, nivolumab, and MAGE-A3.  Submap28 is used to 
compare gene expression profiles of gastric cancer subtypes and the melanoma patients and calculate the simi-
larity of subclasses across different cohorts and platforms. Submap analysis of Imvigor210 cohort shows that 
subtype C2 is significantly correlated with partial response group, whereas C1 is associated with stable disease 
group (Fig. 5c). After combining complete response and partial response into responder group, stable disease 
and progressive disease into non-responder group, we got a similar result. Subtype C2 is significantly associated 
with the responder group (Fig. 5d), suggesting that C2 is more sensitive to atezolizumab. Submap analysis of 
GSE91061 cohort shows that C1 is significantly associated with the responder group, whereas C2 is associated 
with the progressive disease group (Fig. 5e). Submap analysis of GSE35640 cohort shows that C1 is significantly 
associated with the responder group but C2 is correlated with the non-responder group (Fig. 5f), suggesting 
that C1 might respond to MAGE-A3.

In addition, immunotherapeutic sensitivity of NMF subtype is also investigated. Analysis of imvigor210 
cohort shows that N2 is significantly associated with the partial response group, N4 and N5 are significantly 
associated with complete response group, N6 is associated with the stable disease group (Fig. 5g). N2, N4, and 
N5 are all found to be significantly correlated with the atezolizumab-responder group (Fig. 5h). Analysis of 
nivolumab shows that N5 and N6 are significantly associated with the responder group (Fig. 5i). For the analysis 
of MAGE-A3, we find that N5 is significantly associated with responder group, whereas N2 and N6 are associ-
ated with non-responder group (Fig. 5j). These findings collectively demonstrate that gastric cancer subtypes 
are distinct for chemotherapeutic and immunotherapeutic sensitivity.

Figure 4.  Genomic characterization of different gastric cancer subtypes. (a) Boxplot shows tumor mutation 
burden of different subtypes. (b) Differentially mutated genes between subtype C1 and C2. (c) Heatmap shows 
mutational cooccurrence in subtype C1. (d) Heatmap shows the mutually exclusive mutations in subtype C2. 
(e) GO enrichment analysis of these co-occurred mutation. Survival analysis between ABCA13 mutant and wild 
type in subtype C1 (f) and C2 (g).
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Discussion
In this study, we identified metabolism-related lncRNA. Gastric cancer can be subdivided into different subtypes 
based on these lncRNAs. Subtype N1 is found to have the best survival than other subtypes. Comparative analysis 
with the previously identified subtypes shows that our gastric cancer subtype is significantly associated with 
mRNA, miRNA, copy number, and methylation-based subtypes. Functional enrichment analysis shows that they 
are enriched in distinct biological processes and states. Analysis of chemotherapeutic and immunotherapeutic 
sensitivity shows that different subtypes are distinct responding to the same chemical drugs.

Gastric cancer is a highly heterogenous disease. Molecular subtype of gastric cancer has been studied in 
some papers. It can be histologically classified into intestinal and diffuse subtypes based on Lauren classification. 
Furthermore, gastric cancer can be molecularly divided into EB virus-positive tumors, microsatellite unstable 
tumors, genomically stable tumors, and tumors with chromosomal  instability21. These subtypes of gastric cancer 
are classified based on mRNA expression, miRNA expression, copy number, methylation, and genomic alteration. 
But lncRNA-based classification of gastric cancer is lacking. In this study, we conducted molecular classification 
of gastric cancer based on metabolism-related lncRNA. LncRNA-based subtypes of gastric cancer are found to 
be highly consistent with the subtypes derived from mRNA expression, miRNA expression, copy number, and 
methylation, suggesting the interconnection of subtypes across different platforms. But the difference between 
these subtypes suggests that some features are unique in their subtypes. Thus, an integrated molecular clas-
sification of gastric cancer combining lncRNA and other omics data is necessary for the future to elucidate the 
underlying molecular interactions.

Metabolism of gastric cancer has been widely studied in recent years. Low vitamin B is found to be associ-
ated with an increased risk of gastric  cancer29. metabolism-related genes are reported to affect the prognosis of 
gastric  cancer30. Furthermore, PHTF2 is found to regulates lipids metabolism in gastric  cancer31. But most of 
these studies concentrate on protein-coding genes, the metabolism-related non-coding RNA remains largely 
unexplored. In this study, we identified metabolism-related lncRNA. A large number of lncRNAs are found to 
be associated with at least one metabolic pathway, suggesting the universal regulation of lncRNA in metabolic 

Figure 5.  Chemotherapeutic and immunotherapeutic sensitivity of different subtypes. (a) Heatmap 
shows the chemotherapeutic sensitivity (IC50) of gastric cancer subtypes to different chemical drugs. (b) 
Chemotherapeutic sensitivity of four representative chemical drugs between different subtypes. (c–j) SubMap 
analysis shows the similarity of gene expression profiles between gastric cancer subtypes and melanoma patients 
who treated with atezolizumab, nivolumab, and MAGE-A3 specific immunotherapies. CR: complete response. 
PR: partial response. PD: progressive disease. SD: stable disease. R: responder. NR: non-responder.
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activity. However, only a few lncRNAs are associated with multiple metabolic pathways, suggesting that these 
lncRNAs are significant regulators for the metabolic pathways. Therefore, these metabolism-related master 
lncRNA regulators are of great significance to be explored in the future to study the underlying interactions 
between lncRNA and metabolic activity.

Note that ABCA13 is not a hypermutated gene and there are only 9 samples carrying ABCA13 mutation in C2 
group which may leads to an unreliable result statistically due to the limited cases. Thus, further analysis should 
concentrate on the collection of large-scale nucleotide polymorphism data to validate the prognostic value of 
ABCA13 in gastric cancer and the underlying regulatory interactions with lncRNA LINC2826, AC25575.2, and 
AFAP-AS1. Growing number of researches suggest that lncRNA AFAP-AS1 is associated with multiple cancer 
types by epigenetically regulating various molecules and pathways. For example, AFAP-AS1 is found to promote 
proliferation and migration of gastric cancer by epigenetically regulating  KLF232. Various targets including 
AUF1, ROCK1 signaling pathway, miR-145 and so on are all reported to be regulated by AFAP-AS1 to promote 
tumorigenesis. Therefore, the investigation of underlying regulation between AFAP-AS1 and ABCA13 is neces-
sary and urgently needed to be implemented in the future.

Increasing evidence shows that metabolic property is significantly associated with the survival of cancer and 
affects the therapeutic sensitivity of  treatment14. In this work, different subtypes of gastric cancer are found to 
display distinct sensitivity to the same chemical drugs. Identification of the significant lncRNAs that most con-
tribute to therapeutic response is necessary for further analysis. Furthermore, a large-scale investigation of drug 
sensitivity should be performed for these subtypes. Currently, some signatures are discovered to be significantly 
associated with the immunotherapeutic sensitivity of gastric cancer. This classification can identify the potential 
patients precisely who may respond to the immunotherapies when used in combination with other signatures 
and improve our understanding of lncRNA-mediated metabolic pathway regulation of gastric cancer.

In summary, lncRNA represents a potential regulator of metabolic activity. Deeply understanding the biologi-
cal function and clinical relevance of these metabolism-related lncRNAs can provide insights into the underly-
ing mechanism of initiation and progression of gastric cancer. These findings can improve our knowledge of 
metabolic regulation and advance the research of immunotherapy in the clinical management of gastric cancer.

Method
Data collection. Multi-omics data including transcriptome data, clinical information, and genomic muta-
tion data of gastric cancer are collected from The Cancer Genome Atlas (TCGA). For the transcriptome data, we 
downloaded raw count data and Fragments Per Kilobase Million (FPKM) data. FPKM is then transformed to 
Transcripts Per Kilobase Million (TPM) for the representation of expression. LncRNA and mRNA are annotated 
using GENCODE tool. The information of previously identified molecular subtypes of gastric cancer is down-
loaded using R package  TCGAbiolinks33.

For the identification of metabolism-related lncRNA, we collected metabolic pathways from The Molecular 
Signatures Database (MSigDB)34. A total of 38 metabolic pathways are collected in this work. For analysis of 
GSEA between different subtypes, a total of 50 hallmark gene sets representing well-defined biological processes 
and states are also downloaded from MSigDB. For the analysis of immunotherapeutic sensitivity of gastric can-
cer, advanced melanoma treated with immune checkpoint blockade (GSE91061)35, metastatic urothelial cancer 
treated with an anti-PD-L1 agent (imvigor210)36, and metastatic melanoma treated with MAGE-A3 antigen 
(GSE35640)37 are collected in our analysis.

Identification of metabolism‑related lncRNA. To identify metabolism-related lncRNA, metabolic 
pathways are collected from MSigDB. LncRNA and mRNA expression profiles are prepared to analyze the asso-
ciation between lncRNA and metabolic pathways. Metabolism-related lncRNAs are identified based on a two-
step framework. We first identified differentially expressed lncRNAs between gastric cancer and the adjacent 
normal samples based on pvalue and absolute fold change. A lncRNA is identified as differentially expressed if 
BH-adjusted P value < 0.05 and absolute fold change > 2. Differential expression analysis of lncRNA is conducted 
using R package  edgeR38. The association between these differentially expressed lncRNAs and metabolic path-
ways is then evaluated using a previously proposed tool  ImmLnc11. It calculates an association score for each 
pair of lncRNA and metabolic pathway. After setting a threshold for the association, the pairs surpassing the 
threshold are identified as significantly associated.

Identification of molecular subtypes based on metabolism‑related lncRNA. Metabolism-
related lncRNAs are used to identify molecular subtypes of gastric cancer. We choose the top 100 variable lncR-
NAs based on standard deviation as features (Supplementary Table 2). R package ConsensusClusterPlus is used 
to classify gastric cancer into different subtypes. The optimal number of subtypes is determined based on the 
cumulative distribution function curve and consensus matrix between 2 and 8 subtypes. To check whether the 
molecular classification of gastric cancer is reliable or not, an independent approach NMF is used to classify gas-
tric cancer. Similarly, cophenetic scores, silhouette width, and residual sum of squares are evaluated to identify 
the optimal number of clusters. NMF clustering is conducted using R package NMF.

Functional enrichment analysis. To analyze the different biological processes between subtypes, we 
identified differentially expressed genes between subtypes C1 and C2. Raw count data of mRNA is downloaded 
as input for differential expression analysis. A gene is identified as differentially expressed if BH-adjusted P 
value < 0.05 and absolute fold change > 2. KEGG and GO enrichment analysis are used to analyze the functional 
enrichment of these differentially expressed genes. Enrichment analysis is conducted using R package cluster-
Profiler. Additionally, GSEA is also used to analyze the functional enrichment between subtypes. We rank the 
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genes based on the fold change. These genes are inputted into GSEA. A total of 50 hallmark gene sets represent-
ing well-defined biological processes and states are also inputted into GSEA to analyze whether these genes are 
enriched in these biological processes. GSEA is conducted using R package enrichplot.

Mutational analysis of gastric cancer subtypes. For mutation analysis, differentially mutated genes 
are identified by comparing the mutational frequency between different subtypes. TMB is measured as non-
silent mutations per Mb. Identification of survival-related mutation is based on the cox regression model. All of 
these analyses are conducted using R package  maftools39. Cooccurrence and mutual exclusivity events of muta-
tion are identified using a previously proposed approach SELECT.

Analysis of chemotherapeutic and immunotherapeutic sensitivity. For the analysis of chemo-
therapeutic sensitivity of gastric cancer, we constructed a prediction model based on the GDSC cell line dataset 
using ridge regression. The sensitivity (IC50) for each sample is evaluated using this prediction model for a 
specific chemical drug. We calculated the sensitivity of gastric cancer for a total of 138 chemical drugs. These 
analyses are conducted using R package  pRRophetic40.

For the analysis of immunotherapeutic sensitivity of gastric cancer, submap is used to compare gene expres-
sion profiles between different subtypes. We compared our lncRNA subtypes with melanoma patients who 
received immunotherapies to check whether a specific subtype is significantly associated with the responder 
group.

Data availability
All data used in this study are collected from online database.
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