www.advancedscience.com

Electrosynthesis of Atomically Precise Au Nanoclusters

Jing Dong, Yawei Li, Yu Ding, Hai-Feng Su, Xiaoqin Cui, Yu-Xin Wang, and Huan Li*

Innovation in synthesis methodologies is crucial for advancing the discovery of new materials. This work reports the electrosynthesis of a [Au₁₃(4-^tBuPhC≡C)₂(Dppe)₅]Cl₃ nanocluster (Au₁₃ NC) protected by alkynyl and phosphine ligands. From simple precursor, HAuCl₄ and ligands, the whole synthesis is driven by a constant potential in single electrolytic cell. X-ray crystallography determines its total structure. Control experiments, cyclic voltammetry, Proton Nuclear Magnetic Resonance (1H NMR), gas chromatography, and other characterizations demonstrate that a critical tetranuclear Au(I) complex defines the electrochemical redox behavior of the reaction solution. The critical role of a base (e.g., triethylamine) is to suppress the hydrogen evolution reaction at the cathode, paving the way for the reduction of Au ions. To resolve the problem of over-reduction and deposition of Au on the cathode, pulsed electrolysis, which is specific to electrosynthesis is employed. It significantly improves the reaction rate and the isolated yield of Au₁₃. To extend the application scope, another four NCs protected by different ligands, $[Au_{13}(4-FPhC\equiv C)_2(Dppe)_5]Cl_3$, $[Au_8(2-CF_3PhC\equiv C)_2(Dppp)_4](PF_6)_2$, $[Au_{11}(Dppp)_5]Cl_3$, and $[Au_8(SC_2H_4Ph)_2(Dppp)_4]Cl_2$ are synthesized electrochemically, demonstrating the versatility of the strategy.

1. Introduction

Electrosynthesis uses electrical energy to drive chemical reactions, avoiding using some harsh oxidizing and reducing reagents.^[1,2] The magnitude and waveform of the electrical

J. Dong, X. Cui, Y.-X. Wang, H. Li Institute of Crystalline Materials Shanxi University Taiyuan, Shanxi 030006, China

E-mail: 59584340@sxu.edu.cn

Y. Li, Y. Ding

School of Chemistry and Chemical Engineering

Shanxi University

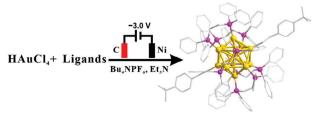
Taiyuan, Shanxi Ó30006, China

H.-F. Su

Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University

Xiamen 361005, P. R. China

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/advs.202414057


© 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202414057

potential can be precisely tuned to adjust the reaction rate and selectivity. The merges of electrochemistry with organocatalysis, flow technique, and biochemistry open an even broader application prospect. Thanks to the advantages, recent decades have witnessed an ongoing renaissance of the field. A wide range of organic compounds that would otherwise be difficult to obtain have been electrochemically synthesized.[3-14] For metal-based materials, electrosynthesis has also proved to be a reliable and versatile strategy. A plethora of metal nanoparticles (nanoclusters),[15-18] alloy structures.[19,20] metal oxides,[21,22] and semiconductors^[23,24] with various sizes and morphologies have been fabricated. Taking gold as example, the wafer-size foil,^[25] nanopore arrays,^[26] nanowire,^[27] and nanoparticles[28,29] can all be acquired by electrochemical method. Abundant results have convincingly demonstrated the capability of electrosynthesis in a controllable manner at the nanoscale. Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM),

Electrospray Ionization Mass Spectrometry (ESI-MS), and other techniques that have subnanometer to nanometer resolution are usually adequate for their morphology and composition characterization. [30] Electrochemical methods have been proven to be effective for metal nanoclusters synthesis. [31,32] Till now, however, single crystals of Au nanoclusters via electrosynthesis have not been isolated yet.

Au nanoclusters (NCs) keep attracting the community's attention owing to their unique physicochemical properties, such as multiple absorption bands, distinct photoluminescence, and well-defined catalytic sites.[33-38] To gain a fundamental insight into their structure-property relationship, ligand-protected Au NCs whose structures can be determined by single crystal X-ray diffraction are regarded as ideal research models, because their metal cores, peripheral ligands, and stacking modes can all be precisely mapped out. To synthesize them, chemists have mostly relied on solution phase synthesis using a reducing agent (typically, NaBH₄). The method has given birth to a wealth of Au NCs with different nuclearities and ligands. [39-48] The well-researched Au₂₅ NC, for example, was afforded by reducing HAuCl₄ with NaBH₄ under the protection of a 2-phenylethanethiol ligand.^[49] The discoveries of other brilliant methods, such as photochemical method, [50,51] solid-state synthesis, [52] etc., have not only provided alternative pathways toward NC, but also shed new light on the formation mechanism.[53-56]

Figure 1. Illustration of the electrosynthesis of [Au $_{13}$ (4-\$\frac{t}{B}UPhC≡C} $_{2}$ (Dppe) $_{5}$]Cl $_{3}$ (Au $_{13}$). Ligands: 4-\$tert\$-butylphenylacetylene (TBA) and 1,2-bis- (diphenylphosphino)ethane (Dppe). Anode: graphite. Cathode: Ni electrode. Color code: yellow, Au; pink, P; gray, C.

In this work, an Au NC with atomic precision is synthesized in an electrolytic cell for the first time. From a simple precursor, $HAuCl_4$ to a sophisticated $[Au_{13}(4-^tBuPhC\equiv C)_2(Dppe)_5]Cl_3$ (Au_{13}), the whole synthesis is driven by a constant potential. The electrochemical redox behavior study, the capture of a critical tetranuclear Au(I) intermediate and the elucidation of the role of amine help to clarify the formation mechanism of Au_{13} under electrochemical conditions. To resolve the problem of overreduction and deposition of Au on the cathode, pulsed electrolysis is employed, which significantly improves the reaction rate and the isolated yield. To expand the application scope of the strategy, another four Au NCs protected by different ligands including ($[Au_{13}(4-FPhC\equiv C)_2(Dppe)_5]Cl_3$, $[Au_8(SC_2H_4Ph)_2(Dppp)_4]Cl_2$, $[Au_{11}(Dppp)_5]Cl_3$, $[Au_8(2-CF_3PhC\equiv C)_2(Dppp)_4](PF_6)_2$ are also successfully synthesized.

2. Results and Discussion

2.1. Electrosynthesis of Au₁₃ Nanocluster

The electrosynthesis of Au₁₃ was conducted in a single electrolytic cell where a graphite electrode (ϕ 0.6 × 0.75 cm) served as anode (Figure 1). Various materials were evaluated for the cathode, including glassy carbon, Ni, Pt, and graphite electrodes, etc. Based on cost-effectiveness and practical results, Ni plate was employed in most cases. HAuCl₄, dimethyl sulfide (Me₂S) and the ligands (4-tert-butylphenylacetylene (TBA) and 1,2-bis- (diphenylphosphino)ethane (Dppe)) were successively dissolved in a mixture of dichloromethane and ethanol, followed by the addition of triethylamine (Et₂N). Me₂S was employed reduce Au³⁺ to Au⁺, which a common procedure in the synthesis of Au NCs.[41,47] Tetrabutylammonium hexafluorophosphate (Bu₄NPF₆, 0.1 м) was employed to increase the conductivity (Figure 1). After a constant potential of -3 V was applied, the color of the solution gradually changed from colorless to brown-red in a few hours (Figures S1 and S2, Supporting Information). The resulting dark transparent solution was centrifuged and concentrated for the following layering process, which yielded red block-shaped crystals in a week. The single crystal was then subjected to characterization by X-ray diffraction. Notably, further aging the as-prepared reaction solution did not result in deterioration, indicating the acceptable stability of Au₁₃ under reaction conditions (Figures S3 and S4, Supporting Information). Furthermore, the elemental analysis unveiled negligible Ni²⁺ ions in the resulting solution, likely due to the fact that the Ni electrode, operating as the cathode, exhibited a much reduced tendency to dissolve.

The crystal structure of Au_{13} is shown in Figure 2a. It has a centered icosahedron core composed of thirteen Au atoms (Figure 2b). Two alkynyl ligands are σ -coordinated with Au of the two diagonal apexes of the icosahedron (Figure 2a). Five Dppe form a donut-like belt covering the rest of the surface of the icosahedron (Figure 2c). The ESI mass spectrum of Au₁₃ gives a set of signals at around m/z 1622.37, agreeing with the calculated isotope pattern (Figure 2d). The presence of Cl⁻ counterions in the structure was also confirmed by ion chromatography (Figure S5, Supporting Information). According to the superatom theory, Au_{13} has 8 free valence electrons $(13_{Au}-2_{alkyne}-3_{Cl}-2_{alkyne})$ = 8e), the same with the previously reported Au₁₃ NCs mediated by NaBH₄ (Figure S6, Supporting Information).^[57] On the other side, the weakening of the stretching mode of $v(\equiv C-H)$ at 3300 ${\rm cm}^{-1}$ in the infrared spectrum (IR) of ${\rm Au}_{13}$ indicates the bonding of TBA with Au (Figure S7, Supporting Information). The UV-vis spectrum of Au₁₃ shows absorptions at 314, 446, and 545 nm (Figure 2e).[57] The optical bandgap is calculated to be 1.49 eV (Figure S8, Supporting Information).^[58] The solution of Au13 was also analyzed by square wave voltammetry (SWV, Figure S9, Supporting Information), from which the Highest Occupied Molecular Orbital - Lowest Unoccupied Molecular Orbital gap (HOMO-LUMO gap) was estimated to be 1.38 eV.[59,60] Both results are in agreement.

2.2. Synthesis Mechanism Study

Since conventional synthesis of Au₁₃ NC required a reducing reagent, it was speculated Au₁₃ may form at the cathode which reduced the Au precursor by supplying electrons. In a control experiment, the same reactants were charged into both compartments of a divided cell separated by fiberglass membrane. Au species was reduced only in the cathodic compartment, as expected (Figure 3a, inset). Then, the redox behavior at different feeding stages was studied by cyclic voltammetry (CV). As shown in Figure 3b, the solution of HAuCl₄ shows two reduction peaks at -0.15 and -1.16 V (vs SCE), corresponding to Au(III) \rightarrow Au(I) and $Au(I) \rightarrow Au(0)$ conversions. [61,62] The addition of Me₂S and TBA did not result in significant change. The situation was completely altered when Dppe was introduced. Neither of the above peaks was observed. A more negative reduction peak at -2.1 V emerged. Such a negative shift may arise from the coordination of Dppe with Au. To verify this, only Dppe was used as ligand. The resulting CV in Figure 3c shows obvious resemblance in terms of both potential and shape of the peak.

Next, to capture the potential Au–Dppe complex that may be responsible for such dramatic change, the reaction solution (before electrolysis) was treated by layering. Colorless single crystals were collected in high yield (Figure S10, Supporting Information). X-ray crystallography determined the crystal structure of this tetranuclear Au(I) complex to be $\mathrm{Au_4}(\mathrm{Dppe})_2\mathrm{Cl_4}$ (Figure 3d). It has two Au atoms being bridged by one Dppe and each Au atom is coordinated with a Cl atom to form $\mathrm{Au_2}(\mathrm{Dppe})\mathrm{Cl_2}$. And $\mathrm{Au_4}(\mathrm{Dppe})_2\mathrm{Cl_4}$ is composed of two $\mathrm{Au_2}(\mathrm{Dppe})\mathrm{Cl_2}$ parts, forming a centrosymmetric dimer through aurophilic interaction. [63] The same solution that afforded $\mathrm{Au_4}(\mathrm{Dppe})_2\mathrm{Cl_4}$ was also dried and subjected to powder XRD analysis (Figure 3e). The resulting pattern fits the simulation result from the crystal structure

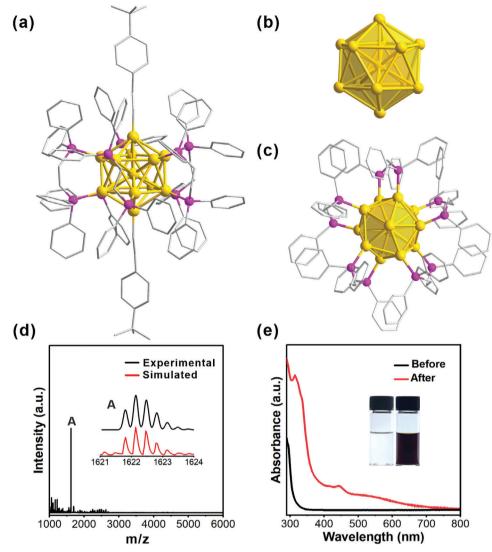


Figure 2. Total structure a) and core structure b) of Au_{13} . c) Distribution and coordination patterns of phosphine ligands. d) Mass spectrum of Au_{13} . Inset: experimental (black trace) and simulated (red trace) isotopic patterns of the molecular ion peak for $[Au_{13} (4^{-t}BuPhC \equiv CR)_2 (Dppe)_5]Cl_3$. e) UV—vis absorption spectra of the Au_{13} solution before (black line) and after 12 h electrolysis (red line). The inset is photographs of the vessel before (left) and after (right) electrolysis.

of $Au_4(Dppe)_2Cl_4$. This means that $Au_4(Dppe)_2Cl_4$ is likely the dominant Au related species in solution, which dictates its redox behavior. Because the peak potential was -2.1 V. To ensure that the cathodic reduction occurred, a more negative potential was required. Although the reaction proceeded at -2.5 V, the progress was sluggish. In practice, a potential of -3 V was applied effectively (Figures S11 and S12, Supporting Information).

During the course of electrosynthesis, the reaction solution was subjected to CV analysis at intervals. The combined results in Figure S13 (Supporting Information) show that the reduction peak current (i_p) gradually decreased, indicating $Au_4(Dppe)_2Cl_4$ was slowly consumed as the reaction went on. Eventually, the peak at -2.1 V disappeared, and the solution turned brown red. The CV curve, however, shows no corresponding oxidation peak in anodic scan, implying an irreversible electrode reaction (Figure 3c). To confirm that, CV scans at varying rates

were conducted (30–250 mV s⁻¹, Figure S14, Supporting Information). The results showed a linear relationship between peak potential E_p and $\log v$ (v is scan rate), meeting the Laviron equation (Figure S15, Supporting Information).^[64] Additionally, the reduction peak current I_p plotted against $v^{1/2}$ followed the Randles–Sevcik equation, ^[65,66] indicating diffusion-limited kinetics (Figure S16, Supporting Information).

When ligands were not present, Au ions still got reduced, but the products were black precipitate (Au nanoparticles). When only alkyne was used as ligand, no stable NC colloidal solution was formed and cathode deposition of Au was evident. The reaction progress was sluggish when using only Dppe as ligand (Figure 4a). No single crystal of Au NC was collected after work-up in both cases. To explore the difference between the traditional and electrosynthesis, NaBH₄ was employed using the same recipe without applying electric potential. The colors of the

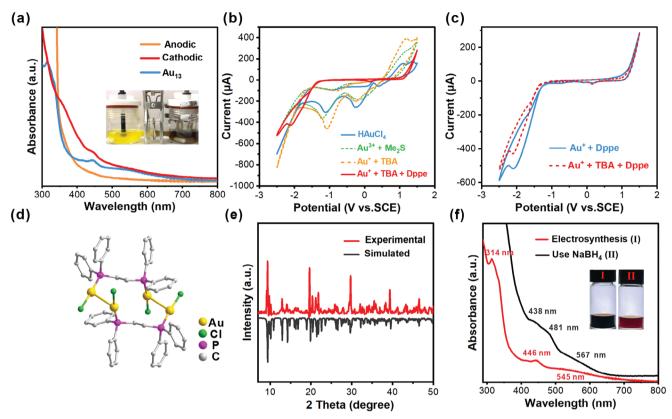


Figure 3. a) UV-vis spectra of the solutions from divided cell. The spectrum of Au_{13} is included for comparison. Insert: the photograph of the reaction vessel after 12 h electrosynthesis. The right part of the vessel is the cathodic compartment. b) Cyclic voltammograms (CV) of the solution at different feeding stages (scan rate = 100 mV s^{-1}). Me_2S is dimethyl sulfide, TBA is 4-tert-butylphenylacetylene and Dppe is 1,2-bis- (diphenylphosphino)ethane). c) The CV comparison of the solutions containing different components. They show evident resemblance. d) The crystal structure of $Au_4(Dppe)_2Cl_4$. e) The powder XRD patterns of the dried reaction solution (before electrolysis, red line) and the one simulated from the single crystal of $Au_4(Dppe)_2Cl_4$ (black line). f) UV-vis absorption spectra of Au nanoclusters synthesized by electrosynthesis (red line) and by $NaBH_4$ (black line).

resulting solutions and the UV-vis absorption spectra showed obvious differences. The one using NaBH, showed peaks at 438, 481, and 567 nm, quite different from that by electrosynthesis (Figure 3f). This may indicate different product structures. Through our observation, the reaction solution immediately turned from colorless to brown upon the introduction of NaBH₄, while for electrosynthesis, the color transition was slow (typically hours before an obvious color change can be observed). The difference in reduction kinetics could be responsible for this, although the precise mechanism requires future thorough investigation. Curiously, without Et₃N, the reaction did not proceed, either (Figure \$17a, Supporting Information). To figure it out, different characterizations were performed. ¹H NMR spectrum of the resulting solution shows the same H count and multiplicity as that of Et₃N, although the signals shift to downfield (Figure 4b). This was empirically attributed to protonation of Et₃N (Et₃NH⁺). It was then confirmed by the mass spectroscopy by showing a signal at m/z 102.128 (calc. m/z 102.199, Figure 4c). The function of Et₃N was to capture the protons which were likely from HAuCl₄, 4-tert-butylphenylacetylene or protons produced by oxidation of solvents.

The ensuing question is why a relatively acidic environment suppressed the formation of \mathbf{Au}_{13} . Our speculation was that \mathbf{H}^+ reduction (hydrogen evolution reaction, HER) at the cathode may

be a highly competitive reaction, since the reduction potential of Au(I) species was more negative than the reduction of H⁺. As shown in the linear sweep voltammetry (LSV, Figure 4d), in the absence of Et₃N, the current of HER became evident at about -0.5 V, significantly more positive than that required for the synthesis of Au₁₃. On the other hand, adding Et₃N greatly suppressed the HER. For example, at -1.5 V, the current density was −8.64 mA cm⁻² without Et₃N. When Et₃N was increased from 30 to 100 μ L, the current density decreased markedly to -3.77and -0.99 mA cm⁻², respectively. The gas phase of the reaction vessel was also analyzed by gas chromatography equipped with thermal conductivity detector (TCD, Figure 4e). The sharp peak at retention time of 0.33 min was assigned to H₂. In the absence of Et₃N, H₂ concentration was12244 ppm. The values dropped to 4567 and 1332 ppm when 30 and 100 µL Et₃N were fed, respectively (Figure 4e). HER was effectively inhibited by Et₃N, paving the way for the reduction of Au species. Furthermore, the more amine was used, the faster the reaction went, which is illustrated in Figure S17 (Supporting Information). With this information, we assumed that another base may also be effective. When NaOH was used instead of Et₃N, the same Au₁₃ was produced (Figure 4f, inset). Powder XRD of the resulting dried solution showed NaCl was the product, indicating that NaOH was neutralized (Figure 4f). In a separate experiment, when HCl

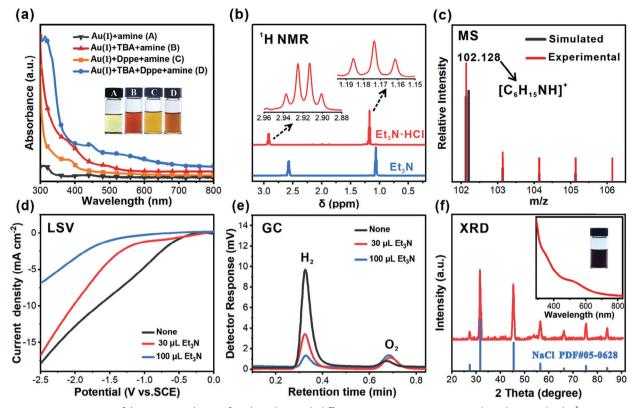


Figure 4. a) UV-vis spectra of the reaction solution after electrolysis with different reactants. Inset: corresponding photographs. b) 1 H NMR spectra of reaction solution after electrosynthesis using HAuCl₄ and Et₃N (red line) and the spectrum of Et₃N (blue line). c) High-resolution mass spectrum of the reaction solution the same as that in (b). d) Linear sweep voltammetry (LSV) curves of reaction solution in the presence of different amounts of Et₃N. Scan rate, v = 5 mV s⁻¹. Working electrode: Ni plate; counter electrode: graphite; reference electrode: saturated calomel electrode. e) Gas chromatography (GC) analysis: the signal response of H₂ during electrosynthesis with different amount of Et₃N. f) XRD pattern of the dried reaction solution using NaOH as a base. Inset: UV-vis spectrum and the photograph of vessel after reaction.

solution was deliberately charged into the vessel during the electrosynthesis of Au_{13} , the formation of Au_{13} ceased. And introducing NaOH restarted the progress (Figure S18, Supporting Information), further confirming our speculation.

2.3. Pulsed Potential Synthesis

Unfortunately, black deposit on the Ni electrode was always seen after electrosynthesis under constant potential. The isolated yield of Au₁₃ was relatively low (less than 13%, Figure 5a, (I)). Xray diffraction pattern of the used Ni electrode showed an X-ray diffraction peak at 38.2°, resulting from the face-centered cubic Au (111) plane. A portion of Au(I) was reduced to Au nanoparticles (Figure 5d, (I)). Also, after rinsing the used Ni- electrode with CH₂Cl₂, the collected solution showed similar characteristic absorptions with that of Au₁₃ (Figure 5e, (I)). These results indicated under constant potential, Au(I) species tended to be over reduced and deposited on the electrode. To alleviate the problem, we resorted to pulsed potential electrolysis, which occasionally showed dramatic effect in organic electrosynthesis.^[67,68] To our delight, this technique turned out to be very effective. When the pulse width was set to 60 s, (on for 60 s, off for 60 s), the reaction proceeded obviously faster (Figure S19, Supporting Information), and the isolated yield of Au_{13} increased to an average of 28%

(Figure 5b, (II)). Shortening the pulse width to 10 s further accelerated the reaction. Even more Au_{13} crystals were collected after workup (isolated yield up to 36%, Figure 5c, (III)). Further shortening of the pulse interval did not result in significant changes. Both the XRD patterns and spectral features showed no sign of over-reduction or NC deposition (Figures 5d,e.) It is deduced that the Au(0) species deposited on the cathode may inhibit the continuous reduction of Au(I) species under constant potential. The pulsed potential allows the reduced species to leave the cathodic region to avoid over-reduction. Although the underlying mechanism is yet to be fully verified, simply adjusting the potential waveform can increase the yield of Au NCs, demonstrating the technical advantage of electrosynthesis that is difficult to achieve through conventional synthesis methods.

2.4. Application Scope of Electrosynthesis

If electrolytic cell is to be qualified as a new platform for exploiting novel NCs with atomic precision, a good range of applicability is a critical criterion. For that, different ligands were screened (Figures S20 and S21, Supporting Information). Replacing TBA with 4-fluorophenylacetylene while keeping the other conditions the same yielded a $[Au_{13}(4-FPhC\equiv C)_2(Dppe)_5]Cl_3$ NC (Au₁₃-2) (Figure 6a). Despite the difference in alkynyl ligand,

www.advancedsciencenews.com

ADVANCED SCIENCE

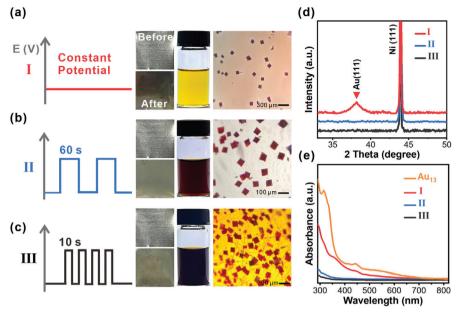


Figure 5. a) (I) represents the results obtained under constant potential. The photo on the left is the Ni electrode before and after electrosynthesis. The one in the middle is the reaction vessel after 4 h of electrosynthesis. The one on the right is the single crystal of Au_{13} . (b) and (c) are corresponding results under pulsed potentials. Pulse width is 60 s for (II) and 10 seconds for (III). d) XRD patterns of the used Ni electrodes. e) UV–vis spectra of the solutions formed by rinsing the used Ni electrodes with CH_2CI_2

Scope of Electrosynthesis of Au Nanoclusters

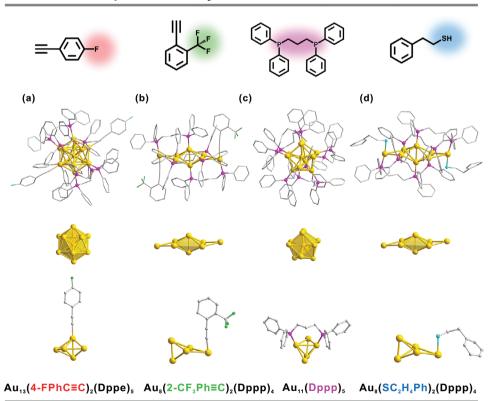


Figure 6. Scope of application. The structure anatomy of $[Au_{13}(4-FPhC\equiv C)_2(Dppe)_5]Cl_3$ (Au₁₃-2) a). $[Au_8(2-CF_3PhC\equiv C)_2(Dppp)_4](PF_6)_2$ (Au₈-1) b). $[Au_{11}(Dppp)_5]Cl_3$ (Au₁₁) (c) and $[Au_8(SC_2H_4Ph)_2(Dppp)_4]Cl_2$ (Au₈-2) d). Color code: yellow, Au; pink, P; gray, C; green, F; blue, S. All hydrogen atoms are omitted for clarity.

its overall structure was similar with that of Au₁₃. ESI mass analysis shows an intense peak at m/z 1596.76, which is assigned to the $[Au_{13}(4-FPhC\equiv C)_2(Dppe)_5]^{3+}$ NC (Figure S22a, Supporting Information). The unity spacing of the isotopes indicates that the $[Au_{13}(4-FPhC\equiv C)_2(Dppe)_5]^{3+}$ NC ion bears three charges. A combination of 1,3-bis(diphenylphosphino)propane (Dppp) and 2-(trifluoromethyl)phenylacetylene gave birth to a $[Au_8(2-CF_3PhC\equiv C)_2(Dppp)_4](PF_6)_2$ NC (Au_8-1) (Figures 6b; and S23, Supporting Information). The core of Au₈ consists of an Au₆ octahedral core and two extended gold atoms, each of which accommodates one phosphine and one alkynyl group (Figure 6b). [69] By reducing the amount of alkynyl ligands, an all-phosphine-protected [Au₁₁(Dppp)₅]Cl₃ NC (Au₁₁) was synthesized (Figure 6c). Au₁₁ core can be described as a central gold atom surrounded by an icosahedron in which one triangle was replaced by a Au atom.^[70] Furthermore, thiolate has been more widely used than alkynyl for Au NCs. To test whether electrosynthesis is suitable for thiolate ligand, 2-phenylethanethiol was used in place of alkynyl. A [Au₈(SC₂H₄Ph)₂(Dppp)₄]Cl₂ NC (Au₈-2) NC was acquired (Figure 6d). The difference between Au₈-2 and Au₈-1 is that the extended Au atom of Au₈-2 coordinates with a thiolate ligand other than alkynyl ligand.^[71] The mass peaks of $[Au_8(2-CF_3PhC\equiv C)_2(Dppp)_4]^{2+}$, $[Au_{11}(Dppp)_5]^{3+}$, and $[Au_8(SC_2H_4Ph)_2(Dppp)_4]^{2+}$ are observed at m/z 1781.72, 1409.48, and 1749.83, respectively (theoretical values: 1781.67, 1409.46, and 1749.72), as shown in Figures S22b and S22c (Supporting Information). They agree with the calculated isotopic patterns.

3. Conclusion

An electrochemical platform for synthesizing Au nanoclusters with atomic precision is established. The technical features, underlying mechanism, and scope of application are investigated. A tetranuclear intermediate Au(I) complex defines the redox behavior of the reaction solution. The critical role of base is to suppress the hydrogen evolution reaction at the cathode. By employing pulsed potential, the reaction rate and the yield of Au nanoclusters are significantly improved. The study aims to pushing the electrosynthesis to atom-precision and inspiring future synthesis of various metal nanoclusters by this strategy.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21972080 and 21503123), Natural Science Research Foundation of Shanxi Province (No. 202303021221060).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the Supporting Information of this article.

Keywords

Au nanoclusters, electrosynthesis, pulsed electrolysis

Received: November 14, 2024 Revised: February 15, 2025 Published online: March 13, 2025

- [1] M. C. Leech, K. Lam, Nat. Rev. Chem. 2022, 6, 275.
- [2] C. Kingston, M. D. Palkowitz, Y. Takahira, J. C. Vantourout, B. K. Peters, Y. Kawamata, P. S. Baran, Acc. Chem. Res. 2020, 53, 72.
- [3] M. Rafiee, D. J. Abrams, L. Cardinale, Z. Goss, A. Romero-Arenas, S. S. Stahl, Chem. Soc. Rev. 2024, 5, 566.
- [4] L. F. T. Novaes, J. Liu, Y. Shen, L. Lu, J. M. Meinhardt, S. Lin, Chem. Soc. Rev. 2021, 50, 7941.
- [5] Y. Wang, S. Dana, H. Long, Y. Xu, Y. Li, N. Kaplaneris, L. Ackermann, Chem. Rev. 2023, 123, 11269.
- [6] Y. H. Budnikova, E. L. Dolengovski, M. V. Tarasov, T. V. Gryaznova, J. Solid State Electrochem. 2023, 28, 659.
- [7] C. Zhu, N. W. J. Ang, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Cent. Sci. 2021, 7, 415.
- [8] Y. Hioki, M. Costantini, J. Griffin, K. C. Harper, M. P. Merini, B. Nissl, Y. Kawamata, P. S. Baran, *Science* 2023, 380, 81.
- [9] D. Lehnherr, L. Chen, Org. Process Res. Dev. 2024, 28, 338.
- [10] T. H. Meyer, I. Choi, C. Tian, L. Ackermann, Chem 2020, 6, 2484.
- [11] L. Zeng, Q. Yang, J. Wang, X. Wang, P. Wang, S. Wang, S. Lv, S. Muhammad, Y. Liu, H. Yi, A. Lei, Science 2024, 38, 216.
- [12] Y. Yuan, J. Yang, A. Lei, Chem. Soc. Rev. 2021, 50, 10058.
- [13] M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230.
- [14] N. Wang, S. Ma, P. Zuo, J. Duan, B. Hou, Adv. Sci. 2021, 8, 2100076.
- [15] I. Saldan, O. Dobrovetska, L. Sus, O. Makota, O. Pereviznyk, O. Kuntyi, O. Reshetnyak, J. Solid State Electrochem. 2018, 22, 637.
- [16] J. Hong, X. Su, J. Am. Chem. Soc. 2024, 146, 18586.
- [17] N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732.
- [18] L. Zhao, Y. Wang, S. Jin, N. An, M. Yan, X. Zhang, Z. Hong, S. Yang, Nat. Synth. 2024, 3, 867.
- [19] M. W. Glasscott, A. D. Pendergast, S. Goines, A. R. Bishop, A. T. Hoang, C. Renault, J. E. Dick, Nat. Commun. 2019, 10, 2650.
- [20] S. Butcha, S. Assavapanumat, S. Ittisanronnachai, V. Lapeyre, C. Wattanakit, A. Kuhn, *Nat. Commun.* 2021, 12, 1314.
- [21] D. Ramimoghadam, S. Bagheri, S. B. A. Hamid, J. Magn. Mater. 2014, 368, 207.
- [22] N. An, T. Chen, J. Zhang, G. Wang, M. Yan, S. Yang, Small Methods 2024, 8, 2300910.
- [23] S. Cestellos-Blanco, H. Zhang, J. M. Kim, Y. Shen, P. Yang, Nat. Catal. 2020, 3, 245.
- [24] K. Rajeshwar, A. Vali, A. Rawat, N. Myung, Acc. Chem. Res. 2023, 56, 994.
- [25] N. K. Mahenderkar, Q. Chen, Y.-C. Liu, A. R. Duchild, S. Hofheins, E. Chason, J. A. Switzer, *Science* 2017, 35, 1203.
- [26] H. Masuda, K. Fukuda, Science 1995, 268, 1466.
- [27] H. Yao, J. Duan, D. Mo, H. Yusuf Günel, Y. Chen, J. Liu, T. Schäpers, J. Appl. Phys. 2011, 11, 094301.
- [28] M. A. Saucedo-Espinosa, M. Breitfeld, P. S. Dittrich, Angew. Chem., Int. Ed. 2023, 6, e202212459.

www.advancedsciencenews.com

www.advancedscience.com

- [29] L. Zhang, R. Hao, D. Zhang, H. You, Y. Dai, W. Liu, J. Fang, Anal. Chem. 2020, 92, 9838.
- [30] M. M. Modena, B. Rühle, T. P. Burg, S. Wuttke, Adv. Mater. 2019, 31, 1901556.
- [31] B. S. González, M. J. Rodríguez, C. Blanco, J. Rivas, M. A. López-Quintela, J. M. Gaspar Martinho, Nano Lett. 2010, 10, 4217.
- [32] B. S. González, M. C. Blanco, M. A. López-Quintela, Nanoscale 2012, 4, 7632.
- [33] J. Kong, W. Zhang, Y. Wu, M. Zhou, Aggregate 2022, 3, e207.
- [34] J. Olesiak-Banska, M. Waszkielewicz, P. Obstarczyk, M. Samoc, Chem. Soc. Rev. 2019, 48, 4087.
- [35] Z. Liu, L. Luo, R. Jin, Adv. Mater. 2024, 36, 2309073.
- [36] X. Cai, G. Li, W. Hu, Y. Zhu, ACS Catal. 2022, 12, 10638.
- [37] Z. Guan, J. Li, F. Hu, Q. Wang, Angew. Chem., Int. Ed. 2022, 61, e202209725.
- [38] R. H. Adnan, J. M. L. Madridejos, A. S. Alotabi, G. F. Metha, G. G. Andersson, Adv. Sci. 2022, 9, 2105692.
- [39] F. Gao, Q. Yuan, P. Cai, L. Gao, L. Zhao, M. Liu, Y. Yao, Z. Chai, X. Gao, Adv. Sci. 2019, 6, 1801671.
- [40] H. Zhao, C. Zhang, B. Han, Z. Wang, Y. Liu, Q. Xue, C.-H. Tung, D. Sun, Nat. Synth. 2024, 3, 517.
- [41] X. Kang, H. Chong, M. Zhu, Nanoscale 2018, 10, 10758.
- [42] S. Kenzler, A. Schnepf, Chem. Sci. 2021, 1, 3116.
- [43] N. Xia, Z. Wu, Chem. Sci. 2021, 12, 2368.
- [44] C. Zeng, Y. Chen, K. Kirschbaum, K. Appavoo, M. Y. Sfeir, R. Jin, *Sci. Adv.* **2015**, *1*, e1500045.
- [45] B. Santiago-Gonzalez, A. Monguzzi, J. M. Azpiroz, M. Prato, S. Erratico, M. Campione, R. Lorenzi, J. Pedrini, C. Santambrogio, Y. Torrente, F. De Angelis, F. Meinardi, S. Brovelli, *Science* 2016, 353, 571
- [46] C. Sun, B. K. Teo, C. Deng, J. Lin, G.-G. Luo, C.-H. Tung, D. Sun, Coord. Chem. Rev. 2021, 427, 213576.
- [47] B. Zhang, J. Chen, Y. Cao, O. J. H. Chai, J. Xie, Small 2021, 17, 2004381.
- [48] L. Wang, J. Du, J. Wu, Z. A. Nan, S. Li, X. Tang, Z. Xie, Q. Xu, X. Gong, J. He, R. Chen, H. Shen, Adv. Sci. 2024, 12, 2410796.
- [49] M. Zhu, E. Lanni, N. Garg, M. E. Bier, R. Jin, J. Am. Chem. Soc. 2008, 130, 1138.

- [50] Y.-X. Wang, J. Zhang, H.-F. Su, X. Cui, C.-Y. Wei, H. Li, X.-M. Zhang, ACS Nano 2023, 17, 11607.
- [51] Z.-M. Zhu, Y. Zhao, H. Zhao, C. Liu, Y. Zhang, W. Fei, H. Bi, M.-B. Li, Nano Lett. 2023, 23, 7508.
- [52] T. U. B. Rao, B. Nataraju, T. Pradeep, J. Am. Chem. Soc. 2010, 132, 16304.
- [53] T. Udayabhaskararao, T. Pradeep, J. Phys. Chem. Lett. 2013, 4, 1553.
- [54] H. Xu, K. S. Suslick, ACS Nano 2010, 4, 3209.
- [55] I. Chakraborty, T. Udayabhaskararao, G. K. Deepesh, T. Pradeep, J. Mater. Chem. B 2013, 1, 4059.
- [56] S. Antonello, T. Dainese, F. Pan, K. Rissanen, F. Maran, J. Am. Chem. Soc. 2017, 139, 4168.
- [57] M. Sugiuchi, Y. Shichibu, T. Nakanishi, Y. Hasegawa, K. Konishi, Chem. Commun. 2015, 51, 13519.
- [58] K. Kwak, V. D. Thanthirige, K. Pyo, D. Lee, G. Ramakrishna, J. Phys. Chem. Lett. 2017, 8, 4898.
- [59] M. Kim, Q. Tang, A. V. Narendra Kumar, K. Kwak, W. Choi, D. Jiang, D. Lee, J. Phys. Chem. Lett. 2018, 9, 982.
- [60] K. Kwak, D. Lee, Acc. Chem. Res. 2019, 52, 12.
- [61] U. Koelle, A. Laguna, Inorg. Chim. Acta 1999, 290, 44.
- [62] M. B. Hariri, Anal. Methods 2021, 13, 2688.
- [63] S. Eggleston, F. Chodosh, R. Girard, D. T. Hill, *Inorg. Chim. Acta* 1985, 108, 221.
- [64] M. Rezaei, S. H. Tabaian, D. F. Haghshenas, J. Electroanal. Chem. 2012, 687, 95.
- [65] C. Su, M. An, P. Yang, H. Gu, X. Guo, Appl. Surf. Sci. 2010, 256, 4888.
- [66] X. Li, H. Su, R. Zhou, S. Feng, Y. Tan, X. Wang, J. Jia, M. Kurmoo, D. Sun, L. Zheng, Chem.—Eur. J. 2016, 22, 3019.
- [67] T. Liu, J. Wang, X. Yang, M. Gong, J. Energy Chem. 2021, 59, 69.
- [68] G. González-Rubio, A. Guerrero-Martínez, L. M. Liz-Marzán, Acc. Chem. Res. 2016, 49, 678.
- [69] N. Kobayashi, Y. Kamei, Y. Shichibu, K. Konishi, J. Am. Chem. Soc. 2013, 135, 16078.
- [70] J. M. M. Smits, J. J. Bour, F. A. Vollenbroek, P. T. Beurskens, J. Crystallogr. Spectrosc. Res. 1983, 13, 355.
- [71] M. Iwasaki, N. Kobayashi, Y. Shichibu, K. Konishi, Phys. Chem. Chem. Phys. 2016, 18, 19433.