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Abstract: The lack of standardized structure names in radiotherapy (RT) data limits interoperability,
data sharing, and the ability to perform big data analysis. To standardize radiotherapy structure
names, we developed an integrated natural language processing (NLP) and machine learning (ML)
based system that can map the physician-given structure names to American Association of Physicists
in Medicine (AAPM) Task Group 263 (TG-263) standard names. The dataset consist of 794 prostate
and 754 lung cancer patients across the 40 different radiation therapy centers managed by the Veterans
Health Administration (VA). Additionally, data from the Radiation Oncology department at Virginia
Commonwealth University (VCU) was collected to serve as a test set. Domain experts identified as
anatomically significant nine prostate and ten lung organs-at-risk (OAR) structures and manually
labeled them according to the TG-263 standards, and remaining structures were labeled as Non_OAR.
We experimented with six different classification algorithms and three feature vector methods, and the
final model was built with fastText algorithm. Multiple validation techniques are used to assess
the robustness of the proposed methodology. The macro-averaged F1 score was used as the main
evaluation metric. The model achieved an F1 score of 0.97 on prostate structures and 0.99 for lung
structures from the VA dataset. The model also performed well on the test (VCU) dataset, achieving an
F1 score of 0.93 for prostate structures and 0.95 on lung structures. In this work, we demonstrate that
NLP and ML based approaches can used to standardize the physician-given RT structure names with
high fidelity. This standardization can help with big data analytics in the radiation therapy domain
using population-derived datasets, including standardization of the treatment planning process,
clinical decision support systems, treatment quality improvement programs, and hypothesis-driven
clinical research.

Keywords: radiotherapy structure names; nomenclature standardization; quality assurance; machine
learning; natural language processing; text categorization; TG-263

1. Introduction

Radiation therapy is a type of cancer treatment that uses high intensity energy beams to kill
cancer cells and shrink the tumor. In order to treat cancer, the radiation oncologist delineates the
tumorous region or target volume on a computed tomography (CT) or magnetic resonance imaging
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(MRI) dataset. Additionally, the normal organs, known as organs-at-risk (OAR) volumes are delineated
to spare and estimate radiation doses and reduce possible side effects. These delineated volumes are
known as structures. Radiation oncology team members, such as radiation physicists and dosimetrists,
delineate other types of structures termed as “planning organs at risk volume” (PRV). These structures
are used strictly in the treatment planning process and take into account the mobility of the organs at
risk, and therefore, a surrounding margin is added to these structures to compensate for geometric
uncertainties. All delineated structures are given names that are usually written in free text as
identifiers, but the lack of standardized nomenclature has created inconsistencies in naming the
structures. Figure 1 shows a representative CT image overlaid with its defined structures. The left side
of the figure shows the physician-transcribed names of the structures delineated on the right side.

Figure 1. A representative CT image overlaid with its defined structures. The left side of
the figure shows the physician-transcribed names of the structures delineated on the right side.
The physician-transcribed names and structures delineated can be matched by the color.

The use of standard nomenclature is an essential step for the construction and use of
informatics-based tools to automatically extract pertinent data from electronic medical records
in support of clinical trials, data-pooling initiatives, and clinical practice improvement. It also
provides a foundation for the development of software tools to automate data extraction, analysis,
data submission, exchange, and quality assurance (QA) [1,2].

To address these issues, the American Association of Physicists in Medicine (AAPM) has released
a Task Group 263 (TG-263) report with the standardized nomenclature for structures names [3].
This report was developed in collaboration with stakeholders from both multi-institutional and
multi-vendor organizations. The American Society for Radiation Oncology (ASTRO) and AAPM have
identified the following as the main challenges in RT structure name standardization [3]:

• Vendor-based challenges that originate from the inter-vendor variation on software architecture.
Each vendor has a particular character set for naming the structures; limited allowable character
sets, however, hinder the interoperability.

• Multi-institutional-based challenges that may arise from the lack of participation, oversight,
and guidelines in creating a standardized nomenclature.
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• Single institutional challenges include data governance issues; costs; and difficulties of
implementing new nomenclatures, making them compatible with existing treatment modalities,
and training the institutional staff to follow the standards.

• Clinical staff challenges may encompass the lack of guidelines or a detailed schema to follow.

Strict adherence to a standardized nomenclature will help to achieve future standardization,
but it cannot address retrospective data standardization. Manually relabeling inconsistent names
with the corresponding standardized TG-263 names is one way to correct retrospective data; however,
generating such mappings for multi-center data is slow, time consuming, inefficient, hard to generalize,
and challenging to scale. This sets the stage for machine-learning-based methods that may be able
to overcome some of these limitations. To address each of the issues mentioned above, we propose a
methodology to retrospectively standardize the radiotherapy structure names using a combination of
machine learning and natural language processing techniques.

The main contributions of this paper are:

• Proposing a novel automated machine learning approach to standardize the physician-given
structure names to the domain wide utilized TG-263 standard names.

• Demonstrating that a relatively small amount of data from each center is enough to build a
generalizable machine learning model, which a simple text mapping cannot achieve.

• Establishing that the approach is disease site agnostic; it can be used on multiple disease sites.
• Demonstrating that physician-given names hold enough information about the structures that

can be utilized to predict the standard name.
• Creating a scalable approach that requires little to no preprocessing.

2. Related Work

The existing techniques for structure name standardization can be broadly classified into three
categories: expert-based, ontology-based, and machine-learning-based.

Previous works in the RT community to retrospectively standardize structure names mostly
use the physician provided names (free-text labels) or geometric information such as volume, area,
and location of the structures. The recently published works to standardize structure names using
physician-given names are illustrated as below.

A research team in Australia recently proposed an expert-based approach to standardize
radiotherapy structure names as per the TG-263 standard recommendations [4]. In this study, a panel
of experts developed a mapping and structure synonym set for 36 structures from their clinical
database. With their method, they were able to map 99% of the relevant structures and relabel the
names correctly. However, the major limitation of this approach are scalability and generalizability;
data used in this project were from a single academically focused institution that could enforce the
local standards, and the mappings were dependent on inputs provided by experts. This method is also
center specific; mappings from one institute may not be useful to the other institute.

A different team in the Netherlands has proposed an ontology-based RESTful web service to
standardize the structure names [5]. However, this approach was more focused on building a linked
data than a technique for structure name standardization. The authors used the mappings provided
by the institutions to generate centralized mappings, thereby creating a common terminology for
linked data.

There are few papers that have proposed machine-learning-based approaches to structure name
standardization. Unlike expert-based and ontology-based methods, machine-learning-based methods
use either free text labels or geometric information to build learning models for standardization.
One such work made use of multiple string similarity measures to generate feature vectors, and these
feature vectors were used as input for the classification algorithm to predict the labels [6]. This paper
used neural-network-based methods but lacked the pertinent details for reproducibility of the
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results. Two other papers proposed methods using geometrical information for structure name
standardization [7,8]. Both of these papers have used a machine learning approach with neural
networks to standardize the structure names of the head and neck region. Even though they both
showed a high accuracy for identifying the standard names, the major limitation of these works
was that they considered only limited OAR structures to build the ML model and Non_OARs were
discarded. Removing Non_OAR structures makes it difficult to apply these two approaches in the
real-world datasets because real-world datasets will contain both OARs and Non_OARs.

Expert-based methods have high accuracy but require manual effort from experienced clinicians,
which makes scalability and generalizability challenging to achieve. Although ontology-based
techniques can help in automating the labeling task, there is a paucity of domain-specific
comprehensive ontologies in the radiation oncology. Machine-learning-based methods are
well suited for retrospective structure name relabeling but are seldom used in this domain.
Additionally, the TG-263 standardization was only completed in 2018 [3], and hence applications of
machine-learning-based methods for structure name prediction are still in their infancy.

3. Methods and Materials

3.1. Data

Across the United States, the Veterans Health Administration (VA) has 40 centers treating veterans
with in-house radiation therapy services. The VA has put together the Radiation Oncology Quality
Surveillance Program (VA-ROQS), and as part of this program the treatment quality is assessed
from all VA centers [9]. As part of the initial pilot study, data from all 40 centers were manually
abstracted from clinical charts, imaging databases, and radiation oncology specific systems, such as
treatment planning systems and treatment management systems. Data from up to 20 prostate and 20
lung cancer patients were manually abstracted from each center, resulting in a total of 794 and 754
patients respectively. The collected data included the DICOM (Digital Imaging and Communication
in Medicine) structure set files representing anatomical structures of interest and the corresponding
DICOM CT image datasets for each patient. For this project, ten lung and nine prostate OAR structures
were identified. These structures were manually labeled to their TG-263 standard names, and all other
structures, including target and PRVs, were labeled as Non_OAR. The dataset will be further referred
to as the VA-ROQS dataset.

We also collected data from the Department of Radiation Oncology at Virginia Commonwealth
University (VCU) as an external test dataset, which included DICOM structure set data from 50
randomly selected patients with prostate cancer and another 50 patients with lung cancer. The same
procedure that was used in the VA-ROQS data preparation was also used to label the structures in this
dataset, which will be referred to as the VCU dataset. The following prostate and lung OAR structures
considered in this work are:

Prostate organs-at-risk structures: Bladder, Rectum, LargeBowel, SmallBowel, Femur_L, Femur_R,
SeminalVesicles, PenileBulb, and External.

Lung organs-at-risk structures: Heart, Esophagus, Lungs, Lung_R, Lung_L, SpincalCord,
BrachialPlexus, BrachialPlexus_L, BrachialPlexus_R, and External.

Table 1 shows the distributions of lung structures for the VA-ROQS and VCU datasets,
while Table 2 shows the distributions of the prostate structures in these two datasets. In both
cases, the Non_OAR structures present an overwhelming majority; these Non_OARs include all the
structures contoured as a part of treatment planning and delivery and the dose evaluation structures.
We also observed similar class imbalances across all VA-ROQS centers’ data (see Figures S1 and S2
in the Supplementary Material). Table 3 shows the examples of physician-given names compared to
the standard OAR structures, which highlights the variability in the physician-given names. Table 1
also shows the number of unique names found in each Lung structure in the VA-ROQS and VCU
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datasets, and Table 2 shows physician-given unique names for the prostate structures in VA-ROQS
and VCU datasets.

Table 1. Lung structure type distribution in VA-ROQS and VCU datasets.

VA-ROQS VCU
Non Standard Name Non Standard Name

Standard Name Total Count Unique Count Total Count Unique Count

Brachial_Plexus 44 11 0 0
Brachial_Plexus_L 59 14 4 5
Brachial_Plexus_R 69 23 5 3
Carina 497 7 33 2
Esophagus 636 28 46 4
Heart 693 21 47 2
Lung_L 553 46 28 10
Lung_R 563 46 27 10
Lungs 439 39 41 10
Non_OAR 8800 3701 577 259
SpinalCord 689 37 50 7

Total 13,044 3973 858 309

Table 2. Prostate structure type distribution in VA-ROQS and VCU datasets.

VA-ROQS VCU
Non Standard Name Non Standard Name

Standard Name Total Count Unique Count Total Count Unique Count

SmallBowel 250 40 47 7
LargeBowel 341 33 6 2
Femur_R 717 62 31 14
Femur_L 711 59 32 16
Rectum 742 14 50 3
Bladder 738 10 50 3
External 597 5 50 1
SeminalVesicles 510 50 28 8
PenileBulb 590 33 47 12
Non_OAR 9869 2886 813 425

Total 15,065 3195 1154 491

Table 3. Examples of physician-given names of structures from 40 VHA-ROQS centers. These are some
examples from all the names given by physicians.

TG-263 Standard Name Examples of Physician-Given Names

Colon_Sigmoid, BOWEL LARGE, Bowel, sigmoid colon,
Bowel_LG, SIGMOID_COLON, colon, Sigmoid OAR,

LargeBowel Bowel NOS, large bowl, Sigmoid AZ, large bowel,
Lg bowel, LG BOWEL, COLON_partial, LargeBowel,
Sigmoid-AZ, Bowel Large, Rectosigmoid, Sigmoid Colon,
LARGE BOWEL, SIGMOID08JUN16

FEMORAL LT, Femur_L, LFH, Femur_LT,
Femoral Head Lt, Femoral Head_Lt,Lt Fem Head,
FEMUR_L, left_femhead, Femur L,
L_FEM HEAD, Lt Femur, Femur_Head_L,

Femur_L Hip Left, Femur-Lt, Lt Femoral Head,
Fem hd neck Lt, Lt Hip, lt fem head,
Femoral Lt, Femoral Head L, FEM HEAD LT,
L Fem Hd, Femur Left, Femur l.,
lt femoral hd, Left Femoral head JPC
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3.2. Data Preprocessing

Structure names are short and have a limited character set to use, and the available character set
is vendor dependent. As shown in Table 3, even though there is high variability in physician-given
structure names for most of the structure type, the character set used is limited. Preprocessing methods
need to be selected to ensure that critical information is retained; losing the information might
negatively affect the ability to standardize the structure names with high fidelity. Hence, we decided to
keep the preprocessing of physician-given names to a minimum by just converting them to lower case.

3.3. Model Selection

After preprocessing the data, the next step is to select the appropriate machine learning method.
We experimented with different types of methods to map the physician-given structure names to the
TG-263 standardized names. The datasets presented have some unique characteristics that impacted
the choices and performances of our algorithms. Structure names are very short in size (varying
between 4 and 20 characters), which limits the use of complex machine learning algorithms [10].
For better applicability of the machine learning algorithms, we identified the features from the
structure names to build the feature vectors, which are necessary for any machine learning algorithm.

Since machine learning algorithms work on numerical data, we converted the text data into
numerical features. Numericalization of text data involves two steps [11]: (1) tokenization or feature
set generation and (2) vectorizing the features with feature weight calculation techniques. We tried
multiple feature generation and feature weight calculation methods, as discussed next.

We tested the following list of techniques for feature set generation.

1. Bag-of-words (BoW): In this model, text (such as a sentence or a document) is represented
as the bag (multiset) of its words, disregarding grammar and even word order but keeping
multiplicity [12]. The bag-of-words model has also been used extensively in the natural language
processing domain. For example, bag-of-words features for the physician-given name “femoral
head left” are “femoral”, “head”, and “left”.

2. Word n-grams: An n-gram is a contiguous sequence of n terms from a given sequence of text.
Given a sentence, we can construct a list of n-grams from it by finding pairs of words that occur
next to each other. For example, with a physician-given name, “femoral head left”, we can
construct bigrams (n-grams of length 2) by finding consecutive pairs of words; “femoral head”
and “head left” are bi-grams.

3. Character n-gram: In this model, instead of considering a full token or a term, a set of continuously
occurring characters is used to build the feature set. These character sets are considered to form
n-gram features. For example: with the physician-given name “bladder”, character three-gram
features are “bla”, “lad”, “add”, “dde”, “der”.

Assigning appropriate weights to individual features as per their relevance in a given dataset
is known as feature weighting. It is generally thought of as a generalization of feature selection,
where the presence of a feature serves as the criterion for its extraction. We used various feature
weighting methods to build the feature vectors, as shown below.

1. Term presence (tp): In this method the presence or absence of a term in the given document is
encoded as 1 or 0.

2. Term count (tc): This method is an extension of the tp method. Here, term occurrence is considered
as the weight; it denotes the number of times a given term appears in a document.

3. Term frequency (tf): In this method, the term occurrence is usually normalized to prevent a
bias towards longer documents (which may have a higher term count regardless of the actual
importance of that term in the document) from giving a measure of the importance of the term t
within the particular document d. Thus we have the term frequency, defined as follows [13,14].

tft,d = 1 + log tft,d (1)
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4. Term frequency-inverse document frequency (tf-idf): tf-idf is a numerical statistic that reflects
how important a word is to a document in a collection or corpus [15]. It involves two parts:
First is tf, which is defined as in Equation (1). Second is inverse document frequency (idf)),
which is a measure of the general importance of the term (obtained by dividing the total number
of documents by the number of documents containing the term, and then taking the logarithm of
that quotient).

idft = log
N
dft

(2)

tf-idft,d = tft,d · idft (3)

In Equations (1)–(3), tf is term frequency, df is document frequency, t is term, d is document,
d f t is number of documents a term (t) appears in, and N is the total number of documents.

5. Word embeddings: Words or phrases from the vocabulary are mapped to vectors of real numbers.
Conceptually, it involves a mathematical embedding from a space with many dimensions per
word to a continuous vector space with a much lower dimension; word2vec [16], Glove [17],
and fastText [18] are some of the well known word embedding techniques.

Feature Weighting Example

Here we show the examples of each of these weighting methods. Consider four physician-given
names: (1) large bowel, (2) sigmoid colon, (3) bowel, and (4) bowel lg . If we consider the bag-of-words
model for feature set generation, our feature set will consist of unique tokens from the above mentioned
four names, which are { large, bowel, sigmoid, colon, lg }. The total number of documents is four
(N = 4) (physician-given names). Below are feature vectors with each of the weighting methods for
physician-given name "large bowel" as below.

f eature_Set =
[

large bowel sigmoid colon lg
]

tp =
[

1 1 0 0 0
]

tc =
[

1 1 0 0 0
]

t f =
[

0.5 0.5 0 0 0
]

t f − id f =
[

1.301 0.087 0 0 0
]

We used six different classification algorithms—SVM-linear [19], SVM-RBF [20],
k-nearest neighbors (KNN) [21], logistic regression [22], random forest [23], and fastText [18]—for
initial model selection. All models were built by using scikit-learn machine learning library in
python [24]. The best model was selected based on their performance on the VA-ROQS dataset.
Tables S1 and S2 show the performances of these models for the different feature vector methods.
One of the objectives of this work was to understand the impact of feature weighting techniques
on model performance. A thorough comparison of feature weighting techniques and their effects
on structure name standardization is beyond the scope of this study. Nevertheless, we report the
observations we made during the initial model selection as below.

Tables S1 and S2 show the machine learning model performance with different feature weighting
methods. We observed that the tp, tc, and tf with all combinations of ML algorithms produced the
same results. We believe these three feature weighting techniques produce the same feature vectors,
where tp and tc produce the same vector, and tf is a normalized version of the tc. We believe this
is because of the unique characteristics of our dataset. Instances (physician-given names) are short,
and words within the names are not repeated. The examples shown above indicate the same. As we
know from Equation (3), the tf-idf feature weighting technique takes the global picture of words
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into account in the calculations, which changes the weights of the features when compared to other
methods. Interestingly, tf-idf did not perform well when compared to the other weighting methods for
both prostate and lung disease datasets. In comparison with all weighting methods, the word vector
based fastText algorithm consistently outperformed all other algorithms; hence we selected it to build
our final model.

3.4. Model Evaluation

An essential part of building a machine learning system is to demonstrate its quantifiable
generalizability. For example, the critical goal of a machine learning classification algorithm is to create
a learning model that accurately predicts the class labels of unseen data samples. Hence the machine
learning model should work well for classifying future data.

Model validation is an important step in the machine learning process. Evaluation of a model on
the training dataset would result in a biased score. Therefore the model is evaluated on the held-out
set to give an unbiased estimate of model performance. Just a hold-out set validation is not enough
to test the robustness and finalize the model. It is recommended to validate the model on the entire
dataset [25,26]. One such technique is k-fold cross-validation. To that effect, we validated our models
in three different ways on the VA-ROQS dataset and tested it on the VCU dataset (external dataset).

Model Validation

1. 70:30: The VA-ROQS dataset was divided into a 70:30 ratio as the training and validation sets.
The split was stratified by TG-263 standard names, which ensured that an equal percentage of
data was taken from each standard name for training, validation, and testing, thereby avoiding
center-based bias in modeling.

2. K-fold: The VA dataset was divided into K-folds in such a way that each fold was stratified by
standard name. The K-1 fold of the data was used for training, and the remaining fold was for
validation. This was repeated until all folds were validated. We performed 5-fold and 10-fold
cross-validation to better capture the variance in data folds.

3. Center-based: The VA-ROQS dataset came from 40 (n = 40) different treatment centers. Data from
39 (n-1) centers were used for training, and one center’s data was used for testing. We repeated
this process until all centers were tested based on the model trained on the remaining n-1 centers.

Model Testing

Once the model is thoroughly validated and finalized, we need to test it on entirely new data
(unseen by the model during training). We built a final model on the VA-ROQS dataset and tested it
on the VCU dataset. One of the reasons we choose VA-ROQS for training and VCU for testing was to
avoid any overlap of data between the training and test sets.

3.5. Evaluation Metrics

The performance of a model can be measured with different evaluation metrics. However,
these metrics need to consider the class (structure labels) distribution to evaluate the model
accurately. The dataset presented has a high level of class imbalance, as shown in Tables 1 and
2. Hence we evaluated the performance of each model using four distinct metrics—overall accuracy,
macro-averaged precision, recall, and F1 score. Overall accuracy simply measures the percentage of
OARs in the validation set classified correctly.

A macro-averaged metric computes results for each class independently and then takes the
average of all to calculate the overall average metric. In contrast, a micro-average aggregates
the contributions of all classes to compute the overall metric. We note that in classification tasks
such as ours in which each structure name is mapped to precisely one label, accuracy is the same
as the micro-averaged F1 score. A micro-averaged F1 score and overall accuracy metrics do not
disproportionately penalize a classifier for performing poorly on the less frequent classes, whereas
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macro-averaged F1 score is heavily influenced by how well the classifier performs on the less frequent
classes. Hence the performance of a rare class and a more frequent class are equally important.

Accuracy measures how well a classifier performs overall, whereas macro-averaged precision,
recall, and F1 score better capture how well a classifier can identify cases that it does not often see,
which is extremely important in real-world settings. The mathematical expressions of each of these
metrics are shown below.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1score = 2 · Precision · Recall
Precision + Recall

(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

In the above formulae, truth table counts are represented by TP as true positives, TN as true negatives,
FP as false positives, and FN as false negatives.

Along with all the above-mentioned metrics, we used a confusion matrix, which is a summary
of prediction results on a classification task. The numbers of correct and incorrect predictions are
summarized with count values and broken down by each class. The confusion matrix shows how the
classification model is confused when it makes predictions. It provides insight not only into the errors
made by a classifier, but more importantly, the types of errors that are made. All the metrics mentioned
were computed from the confusion matrix.

3.6. fastText Classification Algorithm

The fastText text classification algorithm [18] is an extension of the word vector method,
which includes three major steps. First, generating the word vectors: fastText learns the vector
representation of words from subwords (character n-gram) [27]. For example, the word “Bladder”
with a character n-gram of 3 will have fastText representations such as “<bl, bla, lad, add, dde, der,
er>” wherein < and > are added to indicate the beginning and end of the word. The technique of
breaking the word into character n-gram makes it work well with rare words. This helps to find the
vector representation of a word, even if it is not seen in training, and this done by breaking down
the word into character n-grams to get the word embedding. A subword size can be selected with
range minn and maxn, indicating the minimum and maximum length of the subwords to generate.
Along with these, fastText also considers wordNgrams (word n-gram) to build the vector representation.
Vector size is selected by setting the dim parameter. In Section 3.7 we explained the hyperparameter
tuning.

In the second step, word vectors are averaged to form a document vector, and in our method,
it represents the vector representation of the complete RT structure. In the third and final step, it passes
the averaged vectors through a shallow neural network with one hidden layer and uses the softmax
function to generate the probability of a structure is one of the standard RT structures. Figure 2 shows
the architecture of the fastText supervised classification algorithm.
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Figure 2. Pictorial representation of fastText supervised classification algorithm.

3.7. fastText Hyperparameter Tuning

After the initial selection of models, we chose fastText for further analysis, as it performed
better than all other models. To further improve the model’s performance, selecting appropriate
hyperparameter values is important. The fastText algorithm has many hyperparameters, and we
chose eight parameters to optimize, which have an impact on the data dictionary and model training.
Out of eight hyperparameters selected for model tuning, two hyperparameters minn and wordNgrams
were kept at fixed values. wordNgrams selects the number of consecutive individual words while
building a data dictionary. Physician-given names are most likely to have less than three distinct
words; to avoid considering the complete given name as a token, we set wordNgrams to 2. On the
other hand, minn provides the minimum number of consecutive characters to consider as a token.
We set minn to 2 to capture the more meaningful tokens rather than selecting every character as a
token. Table 4 shows the hyperparameters and values tested.

A total of 15,360 combinations of hyperparameters was generated; each combination of
hyperparameters was used to build a separate model for each disease type, and so considering the
two disease types, overall we created 30,720 models. Models were evaluated with metrics described
in Section 3.5 on the validation dataset and were recorded separately for each of the diseases types.
Figures S3 and S4 show the impact of each hyperparameter on model performance. Boxplots are
used to show the distribution of model performance (F1 score) for each value of the hyperparameter;
the value with the smallest inter-quartile range and highest median was selected. The hyperparameter
value was selected based on its performance on both disease type data (prostate and lung). The best
values for hyperparamter selected are shown in Table 4 with brief descriptions.

4. Results

In this section, we present the results of our models for both the VA and VCU datasets. We built
models with combinations of feature sets, feature weighting methods, and machine learning algorithms.
We observed that among all models, the fastText model performed consistently well on our data.
Hence we present the detailed descriptions of results from only the fastText models. Results from the
remaining models are shown in the Supplementary Material. The macro-averaged precision, recall,
F1 score, and overall accuracy for both prostate and lung datasets for all the validation types are shown
in Table 5. Individual class level results are shown in Tables S4–S7 for prostate and Tables S9–S12 for
lung in the Supplementary Material.
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Table 4. fastText hyperparameters and values tested for tuning the model.

Parameter Name Best Value Values Tested Description

epoch number of epochs 50 5, 10, 15, 20, This parameter is used to determine the
25, 35, 45, 50 number of times a model will see the

entire dataset

lr learning rate 1.0 0.05, 0.1, 0.25, This determines the step size taken at
0.5, 0.7, 1.0 each iteration while moving toward

a minimum of loss function

minn minnum length of 2 2 minimum length of subword used to
char ngram build word vector

maxn maximum length of 6 3, 4, 5, 6 maximum length of subword used to
char ngram build word vector

wordNgrams maximum length 2 2 Along with unique terms consecutive
of char ngram n-terms word vectors are generated

dim size of the 300 100, 150, 200, In ML context word vectors are numerical
word vector 250, 300 representations of word. dim indicates

the length of the representation

Word vectors are build in such a way
ws size of the 3 3, 4, 5, 6 that it can predict the neighboring words

context window in given text. It helps to encode the
semantics of word. Window size indicates
the range of words to predict.

A loss function is a measure of how good
loss loss function softmax ns, hs, a prediction model does in terms of being

ova, softmax able to predict the expected outcome.

Table 5. Disease specific macro-averaged precision, recall, F1 score, and overall accuracy for validation
and test sets.

Evaluation Type Disease Validation Type Precision Recall F1 score Accuracy

70:30 0.97 0.97 0.97 0.99

5-fold 0.96 0.96 0.96 0.98

Prostate 10-fold 0.96 0.97 0.96 0.98

Validation VA Center 0.94 0.94 0.94 0.97

(VA-ROQS) 70:30 1.00 0.99 0.99 1.00

5-fold 0.98 0.98 0.98 0.99

Lung 10-fold 0.99 0.99 0.99 0.99

VA Center 0.93 0.93 0.93 0.99

Test Prostate - 0.94 0.99 0.96 0.98

(VCU) Lung - 0.83 0.89 0.86 0.96

After fastText was selected as a final model, we tested the robustness of this method with
four different validation types. Each of the validation types tested a different aspect of our model
performance. Below we describe the results for each of these validation types.

4.1. Validation Results

70:30 validation: This validation type was chosen to test the model generalizability when data
was split into 70% for training and 30% for testing. We split the data such that 70% of the patients from
each center were under the training set and the rest of the patients from each center were under the
testing set. We observed that our method was able to generalize well, and our model achieved overall
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macro-averaged F1 scores of 0.97 and 1.0 for prostate and lung datasets respectively. That indicates that
our model was able to predict each label correctly. We also observed that our results were consistent
across all classes regardless of class imbalance. Figures 3a and 4a show the class-wise results for
prostate and lung data.

K-fold validation: With this validation type we checked the performance on the complete
dataset. Here, we split the data into K-folds using a K value of 5. We observed that the 5-fold
cross-validation achieved overall macro-averaged F1 scores of 0.96 and 0.98 for prostate and lung
datasets respectively. Excellent results from 5-fold validation indicates that our model was able to
generalize the overall data and not just on some random split of the data. We also repeated the same
process for 10-fold cross-validation and observed that the model achieved similar results with 0.96 and
0.99 macro-averaged F1 scores for prostate and lung respectively. We chose to present the 5-fold results
here, and the 10-fold cross validation results are presented in the Figure S5 for the prostate and Figure
S6 for the lung. It is important to see the consistent performance of each label in all folds. Figure 3b for
the prostate and Figure 4b for the lung shows that our model has performed consistently well across
all folds for each class and provided consistent performance.

Center-based validation: VA has 40 radiation therapy centers. Even though they all are under
one VA management, we believe that there are some differences in their practices. Each center operates
as an individual institution at the practice level. In order to test this hypothesis, we trained the model
on the data from 39 centers and tested it on one center and repeated this process until all the centers
had been tested. We observed that the model achieved 0.94 and 0.93 overall macro-average F1 scores
for the prostate and lung respectively. Although the model performed well, the performance dropped
by 2% for the prostate and around 6% for the lung. This indicates that our model has high performance,
but the inherent variance in structure naming practices at the different VA centers caused the model
to make some mistakes, which lead to a decrease in performance when compared to the first two
validation types.

4.2. Test Results

Once the model is finalized after thorough validation methods, it is imperative to check the
model’s performance on the unseen dataset. Here, the VCU dataset was used as a test set, which was
never used in algorithm selection, model training, or validation. The final model was built with
hyperparameters selected (see Section 3.7) on the entire VA-ROQS dataset. By using the VCU dataset
as a test set, we were able to assess two aspects of our model. First, the model’s ability to generalize
the on unseen data. Second, generalizability and transfer learning on a dataset from a different source.
We observed that our model was able to predict the correct labels with high macro-averaged F1 scores
of 0.94 and 0.86 for prostate and lung datasets, respectively. However, model performance dropped
when compared to the model validation results, which indicates that although the model is robust, it is
still affected by the change in the data source. We a observed drop in overall macro-average F1 score
due to the one OAR label BrachialPlexus; VCU dataset did not have any OARs labeled BrachialPlexus but
our model predicted the BrachialPlexus_L as BrachialPlexus. Even if the number of samples is very few,
macro-averaged metrics give equal importance to all labels and penalize the overall score regardless of
the number of instances of labels in the dataset. Figure 5a,b shows the class-wise results for prostate and
lung data (see Tables S3 and S8 in supplementary material for individual class level results of prostate
and lung). We suspect that it is because VCU is an academic medical center, unlike the VA, and hence
the structure-naming practices at VCU differ to accommodate the needs of academic hospitals.
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(a)

(b)

(c)

Figure 3. VA-ROQS prostate dataset—cross-validation results: (a) VA-ROQS 70:30 split cross-validation,
(b) VA-ROQS 5-fold cross-validation, (c) VA-ROQS center based validation.
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(a)

(b)

(c)

Figure 4. VA-ROQS lung dataset—cross-validation results: (a) VA-ROQS 70:30 split cross-validation
(b) VA-ROQS 5-fold cross-validation (c) VA-ROQS center based validation.



Healthcare 2020, 8, 120 15 of 22

(a)

(b)

Figure 5. Test results (VCU dataset): (a) prostate, (b) lung.

5. Discussion

The proposed radiotherapy structure name standardization methodology is system agnostic.
Each of the validation types we presented on the VA-ROQS data demonstrates that our model is
robust and works well to identify the correct TG-263 standardized names. We also tested our model
with data from outside of the VA system (VCU dataset) which shows that our method works well for
data from other institutions.

For the prostate RT structures, we observed that the majority of mistakes made by the model were
in classifying SmallBowel and LargeBowel. This confusion is attributed to the fact that the same name
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can be used for both anatomical structures. In Table 6, we can see that “bowel” is used to label both
SmallBowel and LargeBowel.

Table 6. Error analysis of VCU dataset prostate structure.

Error Type Physician TG-263 Name Predicted Count
Given Name Standard Name Name

Type I bowel LargeBowel Non_OAR 1

bowel SmallBowel Non_OAR 22

Type II nonptvpenilebulb Non_OAR PenileBulb 2

small bowel Non_OAR SmallBowel 1

In the VCU Lung dataset validation, accuracy and macro-average F1 score dropped when
compared to the 70:30 split validation. This drop was caused by the misclassification of the lung and
brachial plexus related structures, as shown in Table 7.

Table 7. Error analysis of VCU dataset lung structure names.

Error Type Physician TG-263 Predicted Count
Given Name Standard Name Name

bilatlungs Lungs Non_OAR 5
ptv Lungs Non_OAR 1

lung-l Lung_L Non_OAR 1
lung_l1 Lung_L Non_OAR 4

Type I lung-r Lung_R Non_OAR 2
lung_r1 Lung_R Non_OAR 4

spinal column SpinalCord Non_OAR 1
spine SpinalCord Non_OAR 1

brachial_plexus BrachialPlexus_L BrachialPlexus 1

Type II esophagus Heart Esophagus 1

lung Lung_R Lungs 1

ipsi_lung Non_OAR Lung_L 1
left lung Non_OAR Lung_L 1

brachial plexus Non_OAR BrachialPlexus 1
Type III brachial_plexus Non_OAR BrachialPlexus 2

lung Non_OAR Lungs 1

plexus Non_OAR BrachialPlexus 3

t7 cord Non_OAR SpinalCord 1

5.1. Error Analysis

Figure 6 shows the confusion matrices for all validation types on validation dataset (VA-ROQS)
and Figure 7 shows the confusion matrices for each test dataset (VCU). We performed error analysis
on the test set to understand our model’s ability to generalize on unseen data. Error analysis provides
the insights into the reasoning behind the failure of the model prediction. We need to look at the
types of errors made by our model; to this effect, we divided misclassified predictions into three
main categories.

• Type I: When the structure was OAR but predicted as Non_OAR.
• Type II: When the structure was OAR but predicted as the wrong OAR.
• Type III: When the structure was Non_OAR but predicted as OAR.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Validation set (VA-ROQS) confusion matrices of different validation types for both prostate
and lung. (a) Prostate 70:30 split validation. (b) Lung 70:30 split validation. (c) Prostate 5-fold
cross-validation. (d) Lung 5-fold cross-validation. (e) Prostate VA Center cross-validation. (f) Lung
VA center cross-validation. Lighter color indicates better prediction. Diagonal indicates the correctly
predicted labels.
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(a) (b)

Figure 7. Test set (VCU) confusion matrices. (a) Prostate. (b) Lung. Lighter color indicates better
prediction. Diagonal indicates the correctly predicted labels.

Type II and III errors are expensive errors when compared to the type I error, as they produce
false-positive OAR. Below we will explain these errors based on each cancer type. Looking at the
predicted and standard labels for physician-given names, we can infer that there is a pattern to errors
for a few structures. Table 6 shows the errors made on VCU Prostate dataset. We observe that the
majority of the errors come from type I. The major error was due to the lack of signal in the text label.
Just looking at the structure name “bowel” and inferring the “SmallBowel” or “LargeBowel” structures
is difficult even for experts.

In case of Lung, we see that there are many more type II an III errors made by the model. Table 7
shows all the errors made on the VCU Lung dataset. We can see that majority of the errors were made
while predicting the structures related to the lungs (Lung_L, Lung_R, or Lungs) and brachial plexus.
For lung-related structures we see that names containing numerical characters are most likely to be
predicted as Non_OARs, as it is common for Non_OAR structures to contain numerical characters.
For brachial plexus related structures, we can see that names containing “Plexus” are predicted as
BrachialPlexus if there is no other information found to determine it as left or right BrachialPlexus.
This also indicates the model errors due to the lack of signal in the input data. We also looked at the
errors made by the model from holdout set (70:30 split) validation results (see Tables S13 and S14
for prostate and lung errors respectively). We observed a similar patterns of errors for the prostate;
the major confusion is between “SmallBowel” and “LargeBowel”.

Our work differs in many ways when compared to the most recent proposed approaches in the
research community. Schuler et al. reported that their approach resulted in a 99% relabel rate [4],
but it requires the mappings from the domain expert from the same institute where data are collected.
In contrast, our method provides the same success rate with the added advantage of working on
arbitrary physician-given names from multiple institutes. Our work is scalable and generalizable to the
external dataset. Two other works proposed machine-learning-based structure name standardization
using geometric information [7,8]; both of those projects reported high accuracy. However, both of
them did not use all the structures; instead they used only OARs. Our approach takes all possible
structures into account and hence will work on real-world clinical datasets. However, due to the
aforementioned limitations of the related work, it is not possible to perform a direct comparison
between the accuracies from our approach and those from related work. It should also be noted
that our proposed approach is the very first text mining based method to automatically standardize
arbitrary structure names from the DICOM dataset.
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6. Limitations and Future Work

Although a very high macro-average F1-score was achieved, we observed that our model made
minor mistakes in identifying the correct TG-263 labels on the VCU dataset. To correct this issue,
we plan to extend this work in two ways.

First, the fastText algorithm provides the probability of each predicted class. The probability of
a class can be inferred as the model’s confidence in its prediction. By default, the model selects the
class with the highest probability as it is prediction. However, this default setting generated high
false positives. For example, there are nine standard structure names to choose from prostate data.
If one class has 0.2 probability and the remaining is distributed rest of the classes, then the class
with 0.2 probability is selected as a predicted class. It shows that the model has low confidence in its
prediction and is most likely to provide a false-positive result. To avoid these false-positive predictions,
we can accept the prediction only if it is above a certain threshold. Selecting the class above some
high threshold will increase the model’s precision but will decrease the recall. It is crucial to have
high precision and reasonably low recall; in the real world, false positives are more expensive than
false negatives. It is vital to predict the correct labels in the structure name standardization process
than being able to even predict all labels. False positives (wrong OAR labels) can hurt all downstream
analyses. Hence, in the future, we will flag the low probability predictions to be verified by human
experts, and these human-corrected predictions can then be used to retrain the model.

Secondly, just using physician-given names to predict the standard names has provided excellent
results. However, we observed in some cases, just physician-given names are not enough to predict
the standard label. For example, “Bowel” has been used by physicians to label SmallBowel and
LargeBowel. It is clear from the example that physician-given names are not enough to build a
highly accurate model for all the classes. We expect that image-based features will best augment the
word-embedding-based features, which by themselves worked well, as demonstrated in this work.
In the case where the combined model (word embedding with geometric information) is not enough,
we plan to extend this model by further incorporating dose and volume data from the patient data to
serve as additional features for consideration.

Our proposed model has three limitations. Firstly, we are only predicting the identities of the
OARs and labeling them with standard names. However, the target (tumors) and PRVs are important
structures and identifying and labeling them is also crucial for treatment delivery quality assessment.
Secondly, we demonstrated that we can train on data from one institution and predict data from
another. Our model is also language dependent, as it was trained only on structure names written in
English. We believe the model pipeline will work for any language, but inter language models are only
possible if they are trained on a mixture of languages. Thirdly, the ML pipeline from data preprocessing
to prediction works as a standalone system. In the future, we plan to create a seamless enterprise
informatics platform that can automatically collect data from the treatment planning systems and
perform automatic structure name standardization on retrospective data.

7. Conclusions

In this paper, we presented a machine learning approach to standardize the radiotherapy structure
names. We observed that the fastText algorithm works best when compared to other feature weighting
and classification algorithms. Our method was evaluated with the data from 40 VA radiotherapy
centers and tested on an external dataset from VCU. We demonstrated that our method works well
on multiple disease sites and is also generalizable. To the best of our knowledge, this is the first and
the only model using the physician-given name to predict the TG-263 standard name using NLP and
machine-learning-based methods. We also observed that our approach fails in certain conditions,
when enough information is not available for the model to infer the correct label. Our approach
can be augmented with other available information, such as geometric information of structures.
We believe that the proposed structure names standardization methods can help with big data
analytics in the radiation therapy domain using population-derived datasets, including standardization
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of the treatment planning process, clinical decision support systems, treatment quality improvement
programs, and hypothesis-driven clinical research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2227-9032/8/2/120/s1,
Figure S1: Radiotherapy Structure name distribution per center for Prostate cancer in the VA-ROQS dataset;
Figure S2: Radiotherapy Structure names distribution per center for Lung cancer patients in the VA-ROQS dataset;
Figure S3: Hyperaparameter Tuning of fasttext for VA-ROQS Prostate cancer dataset; Figure S4: Hyperaparameter
Tuning of fasttext for VA-ROQS Lung cancer dataset; Figure S5: VA-ROQS Prostate 10 fold cross-validation results;
Figure S6: VA-ROQS Lung 10 fold cross-validation results; Table S1: Initial Model Selection Results for VA-ROQS
Prostate datasets; Table S2: Initial Model Selection Results for VA-ROQS Lung datasets; Table S3: VCU Test Set
results of Prostate structures; Table S4: VA-ROQS dataset 70:30 validation results for Prostate structures; Table S5:
VA-ROQS Prostate dataset 5 fold validation results; Table S6: VA-ROQS Prostate dataset 10 fold validation;
Table S7: VA-ROQS Prostate Center validation results; Table S8: VCU Test Set results of Lung structures; Table S9:
VA-ROQS Lung dataset 70:30 validation results; Table S10: VA-ROQS Lung dataset Center validation results;
Table S11: VA-ROQS Lung dataset 5 fold validation results; Table S12: VA-ROQS Lung dataset 10 fold Validation
results; Table S13: Error analysis of VA prostate structure names with 70:30 split validation; Table S14: Error
analysis of VA-ROQS dataset Lung structure names with 70:30 validation.
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TG-263 Task Group-263
RT Radiotherapy
ROQS Radiation Oncology Quality Surveillance Program
VCU Virginia Commonwealth University
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VHA Veterans Health Administration
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Non_OAR Non organs-at-risk
CT Computed tomography
MRI Magnetic resonance imaging
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