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A B S T R A C T

Background: The 5-year survival rate of patients with pancreatic ductal adenocarcinoma (PDAC) is around 5% due
to the fact that themajority of patients present with advanced disease that is treatment resistant. Familial pancreatic
cancer (FPC) is a rare disorder that is defined as a family with at least two affected first degree relatives, with an esti-
mated incidence of 4%�10%. The genetic basis is unknown in the majority of families although around 10%�13% of
families carry germlinemutations in known genes associated with hereditary cancer and pancreatitis syndromes.
Methods: Panel sequencing was performed of 35 genes associated with hereditary cancer in 43 PDAC cases from
families with an apparent hereditary pancreatic cancer syndrome. Findings: Pathogenic variants were identified in
19% (5/26) of PDAC cases from pure FPC families in the genes MLH1, CDKN2A, POLQ and FANCM. Low frequency
potentially pathogenic VUS were also identified in 35% (9/26) of PDAC cases from FPC families in the genes FANCC,
MLH1, PMS2, CFTR, APC and MUTYH. Furthermore, an important proportion of PDAC cases harboured more than
one pathogenic, likely pathogenic or potentially pathogenic VUS, highlighting themultigene phenotype of FPC.
Interpretation: The genetic basis of familial or hereditary pancreatic cancer can be explained in 21% of families
by previously described hereditary cancer genes. Low frequency variants in other DNA repair genes are also
present in 35% of families which may contribute to the risk of pancreatic cancer development.
Funding: This study was funded by the Instituto de Salud Carlos III (Plan Estatal de I + D + i 2013�2016): ISCIII
(PI09/02221, PI12/01635, PI15/02101 and PI18/1034) and co-financed by the European Development
Regional Fund ‘‘A way to achieve Europe’’ (ERDF), the Biomedical Research Network in Cancer: CIBERONC
(CB16/12/00446), Red Tem�atica de investigaci�on cooperativa en c�ancer: RTICC (RD12/0036/0073) and La
Asociaci�on Espa~nola contra el C�ancer: AECC (Grupos Coordinados Estables 2016).
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Research in context

Evidence before this study

Previous studies have identified germline mutations in
CDKN2A, TP53, MLH1, BRCA2, ATM and BRCA1 via next-genera-
tion sequencing that are associated with pancreatic cancer
development in an estimated 5.5% of unselected PDAC cases.
Approximately 10%�13% of FPC families carry germline muta-
tions in BRCA2, PALB2, ATM, CHEK2, CDKN2A, Lynch syndrome
mismatch repair genes, Fanconi anaemia related genes and
PRSS1 and SPINK2 (hereditary pancreatitis), among others. A
search of the current literature was performed to identify genes
associated with hereditary pancreatic cancer risk and a panel of
35 genes was selected to perform a genetic screening of familial
PDAC cases.

Added value of this study

On the whole, this study provides increasing evidence that the
genetic basis of hereditary pancreatic cancer can be explained by
previously described hereditary cancer associated genes such as
MLH1, CDKN2A, POLQ and FANCM. In addition, previously unde-
scribed likely pathogenic variants were found in PTEN, POLQ and
TET2 in PDAC cases from 2 different families, which may be novel
variants associated with this syndrome. Furthermore, low fre-
quency potentially pathogenic VUS were identified in additional
genes such as FANCC, PMS2, CFTR, APC and MUTYH, although their
role in pancreatic cancer risk needs to be clarified in other cohorts.

Implications of all the available evidence

The understanding of the genetic basis of hereditary pancreatic
cancer has important implications for the identification of true
high risk individuals in order to optimise secondary screening
strategies.
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1. Introduction

The prognosis of patients diagnosed with pancreatic ductal adenocar-
cinoma (PDAC) is dismal with a 5-year survival rate of around 5% as the
majority of patients present with advanced disease, which is aggressive
and treatment resistant. Screening high-risk populations would result in
an earlier diagnosis and a higher chance for cure. Very few risk factors
have been identified, although there is good evidence to suggest that
smoking, obesity, a family history of pancreatic cancer, pancreatitis and
diabetes increase pancreatic cancer risk [1]. More recently, it has been
shown that alterations in the microbioma may play a role in PC develop-
ment [2]. There are no effective biomarkers for early detection in the
general population. CA19-9 is currently used in the clinic, although the
sensitivity and specificity for the diagnosis of symptomatic pancreatic
cancer is 79%�81% and 82%�90%, respectively [3]. Several potential bio-
markers have been recently described for early detection, such as a
three-protein panel in urine [4], Galectin-1 (Gal-1) in serum [5], throm-
bospondin-2 (THBS2) in plasma [6], circulating tumour DNA (ctDNA) [7]
and the IMMrayTM PanCan-d 29 biomarker signature in serum [8].

Sporadic PDAC occurs worldwide at an approximate frequency of
7 in 100,000 person-years and its incidence rate increases at 1% per
year [9,10]. However, the risk of developing PDAC increases accord-
ing to the number of affected family members, the standard inci-
dence ratio is 4.6 with one affected family member to 32 with three
affected family members [11]. Familial pancreatic cancer (FPC) is
defined as a family with at least one pair of affected first degree rela-
tives and an estimated 4%�10% of pancreatic cancers diagnosed have
a familial background [12,13]. Next-generation sequencing analysis
has identified germline mutations in 6 genes including CDKN2A,
TP53, MLH1, BRCA2, ATM and BRCA1 that are associated with pancre-
atic cancer development in 5.5% of all pancreatic cancer (PC) cases,
both sporadic and those with a family history of pancreatic cancer
[14,15]. FPC appears to be inherited in an autosomal dominant man-
ner and around 10%�13% of families carry germline mutations in
BRCA2, PALB2, ATM, CHEK2, CDKN2A, Lynch syndrome mismatch
repair genes, Fanconi anaemia related genes and PRSS1 and SPINK2
(hereditary pancreatitis) as well as other novel genes [16,17,18].
However, the major underlying genetic defect(s) are still unknown in
the majority of families. Families present with either a high incidence
of only pancreatic cancer or in combination with other cancer syn-
dromes such as Hereditary Breast and Ovarian Cancer (HBOC), Peutz
Jeghers Syndrome (PJS) and Familial Atypical Multiple Mole Mela-
noma (FAMMM).

One of the keys to improving patient prognosis is early diagnosis
and FPC is a known high risk population that would benefit from
early detection strategies. The Spanish familial pancreatic cancer reg-
istry (Pan-Gen-FAM) was established in 2009 in Spain with the prin-
cipal objective to characterise the phenotypic and genetic
background of FPC [19]. The registry currently includes over 200 indi-
viduals representing some 88 families presenting with pancreatic
cancer alone or in combination with known cancer syndromes.
Healthy high risk individuals are offered a secondary screening pro-
gram for the early detection of PC at a potentially curative stage. This
consists of annual magnetic resonance imaging (MRI) and endoscopic
ultra-sound (EUS) and blood biomarkers, including CA19-9 analysis
in serum [20,21].

The aim of the study was to analyse individuals recruited to the
familial pancreatic registry for a pathogenic germline mutation in
genes frequently associated with hereditary cancer. Panel sequencing
was performed of 35 genes associated with hereditary cancer in 43
PDAC cases with an apparent hereditary pancreatic cancer syndrome,
11 high risk individuals who participate in the early detection pro-
gram and 9 individuals diagnosed with non-pancreatic tumours or
pancreatitis from families within the Pan-Gen-FAM registry.

2. Methods

2.1. Recruitment of cases and high risk individuals

This study was approved by the local ethics committee. High risk
families were identified in the clinical oncology or familial cancer
unit in 10 hospitals participating throughout Spain. High risk families
with the following phenotype or characteristics were included in the
study: Familial pancreatic cancer families with at �2 affected first
degree relatives (FPC), HBOC families with at least one case of PC,
FAMMM families, Hereditary Non Polyposis Colorectal Cancer
(HNPCC) families with at least one case of PC and PC cases diagnosed
at �50 years of age. Patients were asked to sign the informed consent
before inclusion into the study and an exhaustive family tree consist-
ing of at least 3 generations was prepared for each participating fam-
ily. The index case reported the occurrence of pancreatic cancer and
other relevant cancer types and diseases within the family. Blood
samples in EDTA tubes were taken on entry into the study and leuco-
cytes and lymphocytes fractions were isolated from whole blood and
stored until DNA extraction and sequencing analysis. All clinical and
personal data was stored in a secure database (RedCap).

2.2. Next generation sequencing of PDAC cases, high risk individuals and
non-PDAC cases

A power calculation was performed using the online tool ClinCalc.
com (https://clincalc.com/stats/samplesize.aspx). A group of 38�96
PDAC cases were required to identify pathogenic variants with an
assumed frequency of 1%�2% in the test population (PDAC familial
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cases) and 0.001%�0.005% in the general population, with a power of
0.8, alpha value of 0.05 and a Beta value of 0.2. All diagnosed PDAC
cases with a source of germline DNA (lymphocytes or leucocytes)
were included in the sequencing study and finally 43 cases were
included. According to the power calculation, this would allow patho-
genic mutations to be identified with an assumed 2% frequency in the
test population and 0.005% frequency in the general population, with
a power of 0.8, alpha value of 0.05 and a Beta value of 0.2. Briefly,
genomic DNA was extracted from leucocyte using the Flexigene DNA
kit (Qiagen) according to the manufacturer�s instructions and quanti-
fied using the Qubit V2.0 Fluorometer (Life Technologies). A search of
the literature was performed using the terms “familial pancreatic
cancer” and “hereditary pancreatic cancer” in order to identify
publications that report germline mutations associated with pancre-
atic cancer. Furthermore, a search for “pancreatic cancer gene panels”
was performed in order to identify additional genes that are included
in commercially available sequencing panels. A targeted capture
sequencing panel that included 35 genes associated with cancer was
created. The genes included in the panel were APC, ATM, BMPR1A,
BRCA1, BRCA2, CDH1, CDKN2A, CHEK2, EPCAM, MLH1, MSH2, MSH6,
MUTYH, PALB2, PMS2, PTEN, SMAD4, STK11, TP53, VHL, PRSS1, TERT,
CFTR, TET2 9, DNMT3A, POLN 6, POLQ 6, ASXL1 5, FANCG 4, BUB1B 3,
ESCO2 3, FANCC 3, FANCM 3, MSH4 3 and RAD54L. The panel was
designed using the Agilent SureDesign Software (Agilent Technolo-
gies Inc.). 50 ng of genomic DNA was fragmented and adaptors were
added in a single enzymatic step. The adaptor-tagged DNA library
was purified and amplified. Next, 750 ng of each library were hybri-
dised using SureSelectQXT capture library for 90 min. The resulting
libraries were recovered using streptavidin magnetics beads, and a
post-capture PCR amplification was carried out. Library fragment size
distribution was assessed using the 2200 TapeStation Instrument
(Agilent Technologies). Sequencing was performed on the MiSeq
(Illumina) using paired-end protocol 2 £ 150 bp and Micro V2 chem-
istry. On average, 5.1 million of pass filter reads were produced per
sequencing run and 93.9% of reads had an average Phred score qual-
ity above Q30 and the read depth was greater than 200. Samples
from the trio family CEPH1463 [22] were used to validate the
sequencing panel and determine the sensitivity, specificity and over-
all depth of the sequencing panel. Further information is available in
supplementary methods.

2.3. Identification of potentially pathogenic mutations

The Ingenuity variant analysis (IVA) software was used to analyse
the sequencing data and identify pathogenic and potentially patho-
genic variants. The tertiary analysis strategy is summarised in Sup-
plementary methods and Supplementary Fig. M1. Briefly, “Genetic
Disease” was selected as the analysis design and the biological term
“familial cancer” (germinal disease) was used as the primary filter.
The variants identified were filtered based on the following criteria.
(1) An allele fraction � 25 and call quality � 20 was used to exclude
false positives, only variants that complied with this criteria in both
cases and controls (CEPH trio) were retained. (2) Common variants
with a frequency of more than 1% in the general population were
excluded. (3) Variants with a predicted pathogenic or likely patho-
genic consequence according to the ACMG guidelines were retained,
which included nonsense (STOP gain), frameshift, missense with a
damaging or possibly damaging effect according to SIFT or PolyPhen-
2 function predictions and canonical splice site variants. (4) Variants
with an inferred gain or loss of function were selected in the final
“genetic analysis” parameter. The reported pathogenic potential of
these 64 variants in hereditary cancer syndromes was assessed in
various databases including ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/), InSiGHT (https://www.insight-group.org/syndromes/lynch-
syndrome/) and HGMD: The Human Gene Mutation Database (http://
www.hgmd.cf.ac.uk/ac/index.php). The predicted pathogenicity of
the 64 selected variants according to the different databases con-
sulted is included in Supplementary Table 1. Variants were finally
classified into 3 groups. (1) Pathogenic variants, which were missense
or premature stop variants with a demonstrated pathogenic potential
in familial pancreatic cancer or other familial cancer syndromes. (2)
Likely Pathogenic variants, which were premature stop variants with
an unknown role in familial pancreatic cancer. (3) Potentially patho-
genic variants with an unknown significance (VUS), which were
defined as missense or splice site variants with an unknown signifi-
cance in familial pancreatic cancer.

2.4. Validation of pathogenic and likely pathogenic variants

The corresponding genomic sequence of the pathogenic and likely
pathogenic variants was retrieved from the ensemble Human
GRCh38.p12 data base (https://www.ensembl.org/index.html). Pre-
designed PCR/Sanger Sequencing primers (ThermoFisher) were used
for validation when available. If not, primers were designed using the
primer blast option in the NCBI database (https://www.ncbi.nlm.nih.
gov/tools/primer-blast/) and PCR amplicons from 400 to 800 bp were
selected. DNA was isolated from an independent leucocyte or lym-
phocyte sample from the same patient using the DNA and Blood DNA
isolation kit (Qiagen). DNA was quantified by nanodrop and
10�30 ng of genomic DNA was used for each PCR reaction. PCR was
performed using the Amplitaq gold reagent (Applied Biosystems)
according to the manufacturer’s instructions. The PCR conditions of
each primer pair was optimised on an individual basis and the list of
primers used and corresponding PCR conditions are shown in Sup-
plementary Table M1. Sanger sequencing was performed using the
Big Dye Terminator kit (Applied Biosystems) and fragments were
analysed using the ABI prism system at the Complutense University
of Madrid. Sequences were analysed manually by visualization of the
chromatograms and using the Blast suite of programs in the NCBI
database (https://www.ncbi.nlm.nih.gov/).

2.5. Statistical analysis

The Chi-square or Fishers exact test were used to analyse the dif-
ferences in the frequency of the different variant types between the 3
patient groups (PDAC cases, non-PDAC cases and high risk individu-
als) and the different family phenotypes (FPC vs. HBOC-PC).

3. Results

3.1. Validation of the sequencing panel

Sequencing was performed in a CEPH trio reference panel (two
parents and their child) of European origin (www.hapmap.org) [22], the
sensitivity of the panel was 0.995475 and the specificity was 0.996492.
With regard to the panel design used in this study, 98.53% of the panel
had a depth of greater than 200X and the coverage at this depth was
always greater than 98%. Panel sequencing was also performed in 3 pre-
viously identified BRCA2mutation carriers, one individual with a BRCA2
and BRCA1 germline mutation one CDKN2 mutation carrier from the
Pan-Gen-FAM registry in order to validate the panel for the ability to
detect pathogenic mutations. All mutations were successfully identified
with the panel (Supplementary Tables 1 and 2).

3.2. Identification of pathogenic, likely pathogenic variants and
potentially pathogenic VUS in PDAC cases

Panel sequencing was performed in 43 PDAC cases from 43 different
families, one case was also previously diagnosed with breast cancer. The
characteristics of these cases are shown in Table 1 and Supplementary
Table 1. Pathogenic, likely pathogenic or potentially pathogenic VUS
were identified in 32/43 (74%) of PDAC cases and 11/43 (26%) cases

https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.insight-group.org/syndromes/lynch-syndrome/
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Table 1
Characteristics of the 43 PDAC cases included in the study.

Demographic data

Sex 19 males 24 females
Median age (range) 59.5 (29�84)
Median age males (range) 57 (31�80)
Median age female (range) 62 (29�84)
Family phenotype
FPC 26
HBOC + PC 8
CYSTIC FIBROSIS + PC 1
PC<=50 years 8

FPC: at least 2 affected 1st degree relatives; HBOC + PC: hereditary breast and ovarian
cancer with at least one case of PC; HBOC + PC <=50 Y: hereditary breast and ovarian
cancer with at least one case of PC less than 50 years of age; PC<=50 years: 1 affected
case less than 50 years of age; FAMMM-PC: FAMMM syndrome with at least one case
of PC. CYSTIC FIBROSIS + PC: case of cystic fibrosis and pancreatic cancer.

Table 2
Pathogenic and likely pathogenic variants identified in PDAC cases from familial pan-
creatic cancer families.

Family
Phenotype

Genbank accession
and transcript

Variant classification

FPC NM_000077.4 (CDKN2A):
c.176T>G (p.Val59Gly)

Pathogenic variants with
a determined pathogenic
role in familial cancerFPC NM_000249.3(MLH1):

c.1852A>G (p.Lys618Glu)
HBOC + PC NM_000249.3(MLH1):

c.1852A>G (p.Lys618Glu)

FPC NM_199,420.3(POLQ):
c.4541_4544delCTTC
(p.P1514fs*3)

Likely pathogenic premature
stop variants with an unknown
consequence in familial
pancreatic cancerHBOC + PC NM_007194.3(CHEK2):

c.409C>T (p.Arg137Ter)
PC<=50 years NM_000314.6(PTEN):

c.156delG (p.H53fs*9)
HBOC + PC NM_001127208.2 (TET2):

c.1954C>T (p.Q652*)
and c.3368delC
(p.P1123fs*14)

FPC NM_199,420.3(POLQ):
c.7486dupC (p.H2496fs*17)

FPC NM_020937.3(FANCM):
c.5791C>T (p.Arg1931Ter)

FPC: at least 2 affected 1st degree relatives; FPC + <=50 years: 2 affected 1st degree rela-
tives and one diagnosed at less than age 50; HBOC + PC: hereditary breast and ovarian
cancer with at least one case of PC; HBOC + PC<=50 Y: hereditary breast and ovarian can-
cer with at least one case of PC less than 50 years of age; PC<=50 years: 1 affected case
less than 50 years of age; FAMMM-PC: FAMMM syndrome with at least one case of PC.
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were negative for variants. These were most frequently found in the
genes MLH1, CFTR, FANCC and RAD54L and the frequency of these var-
iants is shown in Supplementary Table 1 and Fig. 1. 9/43 (21%) cases
had pathogenic or likely pathogenic variants and 3 of these cases also
had potentially pathogenic VUS. Pathogenic and likely pathogenic var-
iants were validated by Sanger sequencing in the original DNA sample
used for panel sequencing as well as an independent sample of lympho-
cytes from the same patient and the results were consistent.

Pathogenic variantswere found in 3/43 (7%) cases, which involved the
genes MLH1 and CDKN2A. The pathogenic MLH1 variant c.1852A>G (p.
Lys618Glu) was found in 2 cases from 2 different families and the
CDKN2A c.176T>G (p.Val59Gly) variant was found in one case (Table 2).
Likely pathogenic variants (premature stop codon) with an unknown
role in FPC were also identified in 6/43 (14%) cases involving the POLQ,
CHEK2, PTEN, TET2 and FANCM genes (Table 2). The variants in the genes
FANCM, POLQ and CHEK2 were identified in 3 individuals from different
families and have been previously described in public databases. Previ-
ously undescribed variants in PTEN, and POLQ were also identified in 2
cases from 2 different families. Two likely pathogenic variants were iden-
tified in TET2 in the same individual, one of which had been previously
described. Pathogenic and likely pathogenic variants were most fre-
quently found in the genes PTEN, CDKN2A, FANCM and POLQ in FPC fami-
lies. Whereas, pathogenic and likely pathogenic variants in CHEK2 and
TET2 were most frequently found in HBOC+PC families (Fig. 2a). Variants
inMLH1were found in both FPC and HBOC- PC families (Fig. 2a). The dif-
ference in the frequency of variants between the different family pheno-
types was not statistically significant according to the Fishers exact test.

Potentially pathogenic VUS missense or splice site variants were
found in 26/43 (60%) PDAC cases. 23/43 (53%) had only potentially
pathogenic VUS and 8/43 (19%) had 2 or more potentially pathogenic
Fig. 1. The frequency of pathogenic and potenti
VUS. 8 potentially pathogenic VUS were identifie d in 2 or more cases
from different families (Supplementary Table 1). These variants all have
a MAF of � 0.01. The FANCC variant c.584A>T (p.Asp195Val) was found
in 4 PDAC cases from 4 different families and the RAD54L variant
c.1487G>C (p.G496A) was found in 2 PDAC and one breast case from 3
different families. Potentially pathogenic VUS in PMS2 (c.52A>G (p.
Ile18Val)), MLH1 (c.1853A>C (p.Lys618Trp)) and MUTYH (c.1187G>A
(p.Gly396Asp)) were found in 2 PDAC cases from 2 different families
and the c.3949G>C (p.Glu1317Gln) variant in APC was found in one
PDAC case and 1 breast case from 2 different families (Table 3).

Potentially pathogenic VUS were most frequently found in the
genes CFTR, MSH2, FANCC and PMS2 in FPC families. Whereas, variants
in MUTYH, TET2 and CHEK2 were most frequently found in HBOC+PC
families (Fig. 2b). The difference in the frequency of variants between
the different family phenotypes was not statistically significant
according to the Fishers exact test.
ally pathogenic VUS in 43 sequenced cases.



Fig. 2a. The frequency of pathogenic and likely pathogenic variants in PDAC cases from FFC and HBOC+PC families.

Table 3
Potentially pathogenic VUS identified in 2 or more individuals/PDAC cases from different families.

Genbank accession an transcript rs code MAF Frequency
(dbSNP)

Number of cases/individuals and family phenotype

NM_000136.2(FANCC):c.584A>T (p.Asp195Val)* 1800365 0.011 4 PC cases
(3 from FPC family and 1 from HBOC + PC family)

NM_001142548.1(RAD54L):c.1487G>C (p.G496A)* 138546115 0.002 2 PC cases and 1 PC/breast case
(PC case from HBOC + PC and PC/breast case from FPC and PC case
from PC<=50 years family)

NM_000535.6(PMS2):c.52A>G (p.Ile18Val)* 63750123 0.01 2 PC cases
(1 from FPC and 1 from FPC>=3 PC family)

0NM_000249.3(MLH1):c.1853A>C (p.Lys618Trp)* 63750449 0.001 2 PC cases
(1 from PC<=50 years and 1 from FPC>=3 PC family)

NM_001128425.1 (MUTYH): c.1187G>A (p.Gly396Asp)* 36053993 0.009 2 PC cases
(1 from FPC and1 from HBOC + PC family)

NM_000038.5(APC):c.3949G>C (p.Glu1317Gln) 1801166 0.006 1 PC case and 1 breast case
(PC case from FPC and breast case from HBOC + PC family)

NM_000492.3(CFTR):c.2758G>T (p.Val920Leu) 373885282 0.00004 1 PC cases and 2 high risk
(1 PC case from FPC and 2 high risk from the same FPC>=3 PC
family)

NM_001211.5(BUB1):c.341G>A (p.Arg114Gln) 1,372115983 0.000008 1 high risk and 1 BRCA2 carrier from
HBOC + PC <=50 Y families

* variants found in at least 2 PC cases from different families.
FPC: at least 2 affected 1st degree relatives; FPC>=3 PC: 3 or more affected 1st degree relatives; FPC + <=50 years: 2 affected 1st degree relatives and one diagnosed at less
than age 50; HBOC + PC: hereditary breast and ovarian cancer with at least one case of PC; HBOC + PC <=50 Y: hereditary breast and ovarian cancer with at least one case of
PC less than 50 years of age; PC<=50 years: 1 affected case less than 50 years of age.

Fig. 2b. The frequency of potentially pathogenic VUS in PDAC cases from FFC and HBOC+PC families.
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3.3. Potentially pathogenic VUS in cases with other cancer types and high
risk individuals

Panel sequencing was also performed in 9 individuals diagnosed
with other tumour types or pancreatitis from 9 additional families,
this included 3 breast cancer cases, 1 pancreatic neuroendocrine
tumour, 1 colon cancer, 1 liver cancer, 1 thyroid cancer, 1 ampuloma
and 1 pancreatitis case. Sequencing was also performed in 11 high
risk individuals from 9 different families, who participate in the early
detection program. 8 of these high risk individuals were diagnosed
with a relevant lesions during follow-up, this included 2 suspected
PDAC cases and 1 pancreatic neuroendocrine tumour (pNET) case
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that underwent a surgical resection, 2 IPMN and 3 pancreatic cysts.
The characteristics of the cases/high risk individuals and their family
phenotype are shown in Supplementary Table 1.

The potentially pathogenic VUS found in FANCM (c.5501G>A
(p.Arg1834His)) and APC (c.3949G>C (p.Glu1317Gln)) were identi-
fied in 2 breast cancer cases from HBOC+PC families. The same APC
variant was also found in a PDAC case from a different family. The
remaining cases with breast, liver, colon and thyroid tumours, ampu-
loma and pancreatitis were negative for pathogenic, likely pathogenic
or potentially pathogenic VUS. Potentially pathogenic VUS in MUTYH
(c.1187G>A (p.Gly396Asp)), CFTR (c.3154T>G (p.Phe1052Val)) and
the splice site variant in CHEK2 (c.592+50A>T (SPLICE SITE) were
identified in an individual diagnosed with a pancreatic neuroendo-
crine tumour from a family with multiple cases of colon cancer and
also pancreatic cancer (Supplementary Table 1).

One high risk individual with an IPMN lesion identified during
secondary screening had a potentially pathogenic VUS splice site var-
iant in ATM (c.7630�3C>T) and another high risk individual with a
pancreatic cyst had a potentially pathogenic VUS variant in BUB1
(c.341G>A (p.Arg114Gln). Two high risk individuals with no relevant
pancreatic lesions identified during follow-up had the potentially
pathogenic VUS variant in FANCM (c.1642G>C (p.Glu548Gln)) and
ATM (c.8560C>T (p.Arg2854Cys)), respectively. 2 high risk individu-
als from the same FPC family (with 8 cases of PC) had 2 potentially
pathogenic VUS variants in MSH6 (c.1857A>C (p.Glu619Asp)) and
CFTR ((c.2758G>T (p.Val920Leu)). Three individuals with pancreatic
tumours diagnosed during secondary screening were negative for
pathogenic, likely pathogenic or potentially pathogenic VUS (Supple-
mentary Tables 1 and 3).

3 potentially pathogenic VUS were found in an unaffected individual
with a pathogenic BRCA2 germlinemutation (c.6959T>A (p.Leu2320Ter))
in ATM (c.998C>T (p.Ser333Phe)), BUB1 (c.341G>A (p.Arg114Gln)) and
BRCA2 (c.8850G>T (p.Lys2950Asn)). The same BRCA2 potentially patho-
genic VUSwas also found in the sibling who also carried the same patho-
genic BRCA2 pathogenic variant and also had a cystic pancreatic lesion
that was identified during screening (Supplementary Table 1).

According to the chi-square analysis, the frequency of potentially
pathogenic VUS variants was higher in PDAC versus non-PDAC cases,
which was statistically significant (chi-square statistic: 4.3797,
p = 0.036). There was no significant difference in potentially pathogenic
VUS variant frequency between PDAC cases and high risk individuals.

4. Discussion

This study shows that an important number (21%) of hereditary or
familial pancreatic cancer cases harbour pathogenic and likely patho-
genic variants in previously described genes associated with heredi-
tary cancer. In this study, 7% of PDAC cases from FPC families had a
pathogenic mutation in the genes CDKN2A and MLH1 that are tradi-
tionally associated with Lynch syndrome and hereditary melanoma.
The CDKN2A variant (c.176T>G; p.Val59Gly) was identified in a case
from an FPC family with more than 3 cases of PC and was previously
described in association with head and neck cancers. CDKN2A germ-
line mutations are rare in FPC families. However, members of familial
atypical multiple mole melanoma (FAMMM) syndrome families are
at a higher risk of developing PC and should therefore be offered
screening for early detection [14,23,24]. A predisposition to PC is
observed in individuals with Lynch syndrome (LS), which is charac-
terised by pathogenic variants in the mismatch repair genes MLH1,
MSH2, MSH6 and PMS2. The pathogenic MLH1 variant c.1852A>G (p.
Lys618Glu) was found in 2 cases from 2 different families and the
potentially pathogenic VUS c.52A>G (p.Ile18Val) in PMS2 was found
in 2 cases from 2 different families. LS individuals have an 8.6-fold
increased risk of PC compared with the general population and upper
gastrointestinal tract tumours predominantly occur in MLH1 patho-
genic variant carriers [25,26].
Pathogenic, likely pathogenic and potentially pathogenic VUS)
were found inMLH1, TET2, POLQ and CHEK2, whereas only pathogenic
and likely pathogenic variants were found in FANCM, CDKN2A and
PTEN. Interestingly, potentially pathogenic VUS were commonly
found in FANCC, CFTR and RAD54L. CFTR has been previously associ-
ated with pancreatic cancer risk, whereas the association with FANCC
and RAD54 variants is unclear. Patients with cystic fibrosis have an
increased lifetime risk of around 6 fold of developing tumours of the
digestive tract, including pancreatic cancer. This is thought to be a
consequence of the damage caused to the pancreas by chronic pan-
creatitis and inflammation that commonly manifest in these patients
[27]. CFTR pathogenic variants are more common among PC cases
compared to controls and a previous study has shown that common
CFTR mutations were detected in 5.3% of cases vs. 3.8% of controls
[28]. There is a modest increased PC risk associated with CFTR muta-
tions (odds ratios 1.4), particularly among smokers and those diag-
nosed at a younger age, with an odds ratio of 1.82 [28,29].

Germline mutations in the DNA repair genes such as BRCA, RAD51
and POLQ are associated with hereditary breast cancer [30]. Interest-
ingly in this study, pathogenic BRCA2mutations were generally found
in the context of HBOC syndrome with at least of one case of PDAC
and were not detected in any of the pure pancreatic cancer families.
The Fanconi anaemia (FA) pathway genes are related with DNA dam-
age and repair and mono-allelic mutations in these genes increases
the risk of several types of cancer in a sporadic fashion. In fact, the
FANCD1 gene is actually BRCA2 [31]. FANCM and FANCC form part of
the FA nuclear core protein complex, which consists of eight proteins,
with ubiquitin ligase activity that is required for the monoubiquitina-
tion of FANCD2 in response to DNA damage. The FANCM likely patho-
genic variant c.5791C>T (p.Arg1931Ter) found in one case in this
study is associated with non-BRCA1/BRCA2 related breast cancer and
has also been recently described in an individual from a FPC family
who was diagnosed with breast cancer at age 45 and PC some
20 years later (32). It is also of interest that the FANCC potentially
pathogenic VUS c.584A>T (p.Asp195Val) was also found in 4 cases.

POLQ at 3q13.31 codes for, pol u, a translesional DNA polymerase
involved in double strand break repair [30]. Therefore, the p.P1514fs*3
POLQ likely pathogenic variant found in this study is a strong causative
gene candidate in the described case. The RAD genes play an important
role in homologous recombination and defects in these genes are associ-
ated with chromosomal instability and also lymphoma predisposition
[33]. However, pathogenic variants in these genes have not yet been
associated with FPC. Therefore, it is of interest that the potentially path-
ogenic VUS c.1487G>C (p.G496A) was identified in 2 PDAC cases and a
breast cancer case from 3 different families considering that the fre-
quency of this variant in the general population is 0.002 (https://www.
genome.gov/10001688/international-hapmap-project/). CHEK2 (Check-
point kinase 2) is a serine/threonine kinase that forms part of the DNA
damage response pathway. Germline mutations in CHEK2 have been
associated with prostate and breast cancer [34]. The likely pathogenic
variant c.409C>T (p.Arg137Ter) found in this study is in the FHA
domain of CHEK2. The variant rs1801166 in APC (c.3949G>C (p.
Glu1317Gln)) is classified as conflicting interpretation of pathogenicity
in ClinVar, although it may have pathogenic potential and was found in
one PC case and one breast case from different families [35].

Germline mutations in PTEN have been rarely described in PC.
Recently, exome sequencing identified the missense mutation,
p.Arg234Gln in PTEN in a female diagnosed with a solid pancre-
atic tumour but without characteristics of PTEN hamartoma
tumour syndromes (PHTS). Loss of PTEN expression and overex-
pression of TP53 was also confirmed by IHC in the primary
tumour and the somatic KRAS p.Gly12Val mutation was also iden-
tified, which is characteristic of a PDAC [36]. However, the 2 trun-
cating variants found in the PDAC cases in this study have not
been previously described in familial cancer cases. TET proteins
(Ten-Eleven Translocation proteins) are enzymes involved in DNA

https://www.genome.gov/10001688/international-hapmap-project/
https://www.genome.gov/10001688/international-hapmap-project/
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demethylation and inactivation can lead to promoter hyperme-
thylation and somatic and germline alterations in these genes
have been implicated in myeloid and lymphoid tumours [37].
Interestingly, 2 likely pathogenic variants were found in this gene
in one case from a HBOC+ PC family.

The potentially pathogenic VUS c.1187G>A (p.Gly396Asp) inMUTYH
was found in 2 cases from 2 different families, one pure FPC family and
one family with HBOC with PC. Pathogenic variants have been previ-
ously described in this gene in PC cases, although not in association
with FPC [16]. In this study, we also identified high risk individuals with
potentially pathogenic VUS in this gene. BUB1 forms part of the compo-
nents of the spindle assembly checkpoint (SAC) and controls chromo-
some segregation and germline mutations have been reported in
hereditary colorectal cancer (CRC). BUB1 germline mutations have been
previously described in pancreatic cancer cases, although the potentially
pathogenic VUS found in a high risk individual in this study has not pre-
viously described in familial cancer [38,39].

The majority of germline truncating variants found in this study
have not been described previously in the context of pancreatic can-
cer [14,16,17,18,40,41]. Around 20% of cases included in this study
had more than one pathogenic, likely pathogenic or potentially path-
ogenic VUS in the genes studied. The presence of more than one dele-
terious variant also been previously described in FPC [42]. The genes
associated with familial PDAC in this study included CDKN2A, MLH1,
BRCA2, POLQ, CHEK2, PTEN, TET2, FANCM, FANCC, RAD54L, PMS2 and
MUTYH, which is consistent with previous reports of panel sequenc-
ing in these individuals [14].

With regard to the distribution of pathogenic, likely pathogenic
and potentially pathogenic VUS in different cancer syndromes, our
data show that some genes are implicated in both FPC and HBOC syn-
drome cases, whereas, other genes are associated with either FPC or
HBOC cases. POLQ, FANCM, CDKN2A and PTEN pathogenic and likely
pathogenic variants were only found in FPC cases, whereas TET2 and
CHEK2 variants were only found in HBOC cases. However, pathogenic,
likely pathogenic and potentially pathogenic VUS in MLH1 were
found in both FPC and HBOC cases. With regard to potentially patho-
genic VUS, these were more frequently found in the genes MUTYH,
TET2 and CHEK2 in HBOC cases, whereas potentially pathogenic VUS
were most frequently found in PMS2, POLN andMSH2 in FPC cases.

There are some limitations of the study. Firstly, only 43 PDAC familial
cases were included due to the rare nature of this syndrome. Therefore
it would be ideal to validate these findings in an independent cohort
from another international registry. Furthermore, it would be interest-
ing to perform the same study in sporadic PDAC cases as there is
increasing evidence that these casesmay also harbour germline risk var-
iants. In fact, an estimated 4%�10% of patients with pancreatic cancer
harbour mutations in hereditary pancreatic cancer susceptibility genes
[43]. Although, due to the frequency of sporadic cases with germline
mutations, it is possible that these are actually familial cases that have
not been adequately identified as such.

This study was restricted to a panel of the most relevant 35 genes
in familial cancer. Even though the frequency of pathogenic, likely
pathogenic and potentially pathogenic VUS was quite high, it is possi-
ble that these cases harbour pathogenic variants in other genes that
have not been previously described. Therefore, these cases should
also be studied by whole genome or whole exome sequencing, even
those with identified pathogenic mutations due to likelihood that
this syndrome has a multi-gene basis with a variable penetrance.

This and other studies have shown that the genetic basis of heredi-
tary pancreatic cancer can be explained by previously described heredi-
tary cancer associated genes such as MLH1, CDKN2A, POLQ and FANCM.
According to our data, the genetic basis of hereditary pancreatic cancer
can be explained in 21% of families by these previously described genes
that includes 19% of pure FPC families. Furthermore, low frequency var-
iants in other DNA repair genes such as FANCC, PMS2, CFTR, APC and
MUTYH were also present in 35% of families which may contribute to
the risk of pancreatic cancer development. However, their role in pan-
creatic cancer risk needs to be clarified in other cohorts.

5. Conclusion

� Pathogenic and likely pathogenic variants were identified in 19%
of pure FPC families (MLH1, CDKN2A, POLQ, TET2, FANCM). Poten-
tially pathogenic VUS were identified in 31% of pure FPC families
(FANCC, MLH1, PMS2, CFTR, MUTYH)

� The genes associated with familial PDAC in this study included
CDKN2A, MLH1, BRCA2, POLQ, CHEK2, PTEN, TET2, FANCM, FANCC,
RAD54L, PMS2 andMUTYH.

� These results could contribute to the design of a potential useful
genetic signature for screening programs in a high-risk population.
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