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Abstract
Salmonella-specific antibodies play an important role in host immunity; however, the mech-

anisms of Salmonella clearance by pathogen-specific antibodies remain to be completely

elucidated since previous studies on antibody-mediated protection have yielded inconsis-

tent results. These inconsistencies are at least partially attributable to the use of polyclonal

antibodies against Salmonella antigens. Here, we developed a new monoclonal antibody

(mAb)-449 and identified its related immunogen that protected BALB/c mice from infection

with Salmonella enterica serovar Typhimurium. In addition, these data indicate that the

mAb-449 immunogen is likely a major protective antigen. Using in vitro infection studies, we

also analyzed the mechanism by which mAb-449 conferred host protection. Notably, mac-

rophages infected with mAb-449-treated S. Typhimurium showed enhanced pathogen

uptake compared to counterparts infected with control IgG-treated bacteria. Moreover,

these macrophages produced elevated levels of pro-inflammatory cytokine TNFα and nitric

oxide, indicating that mAb-449 enhanced macrophage activation. Finally, the number of

intracellular bacteria in mAb-449-activated macrophages decreased considerably, while

the opposite was found in IgG-treated controls. Based on these findings, we suggest that,

although S. Typhimurium has the potential to survive and replicate within macrophages,

host production of a specific antibody can effectively mediate macrophage activation for

clearance of intracellular bacteria.

Introduction
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative, gram-negative
bacterium that causes zoonotic food-borne disease worldwide. S. Typhimurium causes a severe
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invasive disease in mice, resulting in bacterial dissemination within phagocytes of the spleen
and liver [1]. The ability of S. Typhimurium to survive and replicate within macrophages plays
a major role in its pathogenicity [1–4]. In the host, the innate and acquired immune systems
are critical for controlling Salmonella infection [5–8]. Both cellular and humoral factors partici-
pate in the host defense against Salmonella [9–14]; however, the mechanisms of bacterial clear-
ance via specific antibodies remain obscure despite detailed evidence for antibody-mediated
protection in mouse models [7,9,10,13,15].

Studies using the passive transfer of anti-Salmonella serum to B cell-deficient mice and anal-
ysis of anti-Salmonella antibody production have clearly shown that antibodies are important
for immune protection [7,10,13,16–18]. According to some reports, antibodies contribute to
the immunological response by opsonizing extracellular Salmonella, which facilitates its phago-
cytic uptake [10,12,15,19]. However, the exact bactericidal mechanisms and an antigen are not
known. In earlier studies with polyclonal antibodies against Salmonella, we reported that the
antibody-dependent phagocytic uptake of Salmonella induces high-frequency apoptotic cell
death that facilitates a Salmonella-specific T cell response [10,20]. Moreover, serum bacteri-
cidal assays revealed that anti-Salmonella antibodies contribute to immunity by promoting the
complement-mediated killing of bacteria [21–24]. Most evidence on the activity of Salmonella-
specific antibodies was derived from studies using immune sera or polyclonal antibodies from
mice immunized with heat-killed or attenuated Salmonella, which might preclude a clear
understanding of the mechanisms of antibody-dependent clearance.

In our study, we prepared hybridoma-derived mAb-449 and identified its related immuno-
gen, which conferred protection against infection with virulent S. Typhimurium. In vitro func-
tional analysis revealed that pre-treatment of S. Typhimurium with mAb-449 enhanced
macrophage activation and bacterial uptake and clearance, suggesting a mechanism for anti-
body-mediated protection against Salmonella infection.

Materials and Methods

Ethics statement
Six-week old female BALB/c mice were purchased from SLC Japan, Inc. (Hamamatsu, Japan)
and maintained in accordance with the National Institute of Animal Health research animal
resource guidelines. Up to four mice were kept in each cage and housed in a temperature-regu-
lated room and had free access to food and water. The handling of the animals in the study was
performed under Fundamental Guidelines for Proper Conduct of Animal Experiment and
Related Activities in Academic Research Institutions under the jurisdiction of the Ministry of
Education, Culture, Sports, Science and Technology, Japan. The specific experiments were
approved by and conducted according to the guidelines of the experimental animal ethics com-
mittees of the National Institute of Animal Health (NIAH), Japan (Project license 12–025,13–
012, 12–106). All animal experiments were performed to ameliorate suffering according to the
guidelines of the experimental animal ethics committees of the NIAH.

Bacterial strains
The S. Typhimurium Χ3306 (LD50 in BALB/c:<10 CFU) [10] was used in this study. Bacteria
were grown overnight in Luria Bertani (LB) medium at 37°C.

Bacterial challenge
One day after administration of mAb-449 at various concentrations in 200 μL PBS or 200 μL
immune serum, and 4 weeks after immunization with lipopolysaccharide (LPS), mice were
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challenged with bacteria at 10-fold the LD50 dose via intraperitoneal infection [7,10]. Mice
administered PBS, control IgG, or control serum were used as controls. Challenged mice were
monitored daily for their body weight loss and any signs of sickness. Mice that were in a mori-
bund condition or had lost more than 30% of body weight were considered to have reached an
experimental endpoint, and were humanely euthanized by carbon dioxide-bottled gas accord-
ing to the guidelines of the experimental animal ethics committees of Fundamental Guidelines
for Proper Conduct of Animal Experiment and Related Activities in Academic Research Insti-
tutions and the NIAH. The number of mice surviving after two weeks of daily observation was
used to determine the relative degree of protection.

Immunization
Immunization of mice with LPS was carried out twice by subcutaneous injection of 1.0–2.5 μg
emulsified in Freund’s incomplete adjuvant (Difco, Franklin Lakes, NJ, USA) [25,26]. The
immune serum and control serum were used 4 weeks after immunization of mice with LPS, or
with adjuvant only.

In vitro infection studies
The mouse macrophage-like cell line RAW264.7 was obtained from American Type Culture
Collection. RAW264.7 cells (1 × 105 cells/well) were infected with various multiplicities of
infections (MOIs) of Χ3306 [27]. In some experiments, MOI 1 of Χ3306 were treated with vari-
ous concentrations of mAb-449 or control IgG or with 5 μg/mL F(ab’)2 for 30 min at 37°C
before adding to the cell culture [10,27]. After 1 h of infection with the pre-treated Χ3306,
RAW264.7 cells were washed with PBS and incubated with medium containing 100 μg/mL
gentamicin for 1 h at 37°C in a 5% CO2 incubator. The medium was then replaced with fresh
medium containing 30 μg/mL gentamicin. The culture medium was collected for cytokine and
nitric oxide production assays, and the cells were lysed in 1 mL 0.2% Triton X-100 in PBS for 5
min to enumerate bacteria on LB plates as previously described [10].

Syk kinase assay
RAW264.7 cells (1 × 105 cells/well) were infected with MOI 1 of S. Typhimurium pre-treated
with 5 μg/mL mAb-449 as described above. Endogenous Syk kinase activity was analyzed using
a PathScan1 phospho-Syk (panTyr) sandwich ELISA kit (Cell Signaling, Danvers, MA, USA)
according to the manufacturer’s instructions.

ELISA to test for TNFα production
TNFα production by RAW264.7 cells was measured using a mouse TNFα ELISA Ready-
SET-Go!1 kit according to the manufacturer’s instructions (eBioscience, San Diego, CA,
USA).

Nitric oxide production assay
Macrophage nitric oxide production was determined by measuring the concentration of nitrite,
a stable metabolic byproduct from the reaction of nitric oxide and oxygen with Griess reagent
as previously described [10]. For this, 100 μL /well of sample was transferred to a 96-well plate
and mixed with an equal volume of Griess reagent (50:50 mix of 1% sulfanilamide in 2.5%
phosphoric acid and 0.1% N-1-naphthylethylenediamide hydrochloride in distilled water).
After a 5-min incubation at room temperature, absorbance was measured at 595 nm, and
nitrite concentration was determined from a sodium nitrite standard curve.
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Electron microscopy and immunoblotting analysis of the protective
antigen
For electron microscopy analysis, the bacterial suspension was placed on collodion-coated cop-
per grids (400 mesh, Nisshin EM, Tokyo, Japan) for 2 min. The grids were incubated with
mAb-449 or immune serum followed by colloidal gold-conjugated goat anti-mouse immuno-
globulin (10-nm diameter, BBI Solutions, Cardiff, UK) before imaging with a transmission
electron microscope (H-7500, Hitachi, Tokyo, Japan).

LPS was isolated from heat-killed bacteria by hot phenol-water extraction [28], and approxi-
mately 5 μg of the isolate was separated by 12% SDS-PAGE (Bio-Rad, Hercules, CA, USA) and
analyzed by a modified silver staining procedure [29] or used for immunoblot analysis. For the
latter, LPS samples were transferred onto polyvinylidene difluoride (PVDF) membranes (Bio-
Rad). For dot blot analysis, S. Typhimurium lysate was prepared by resuspending the bacterial
pellet in PBS and sonicating on ice as previously described [30]. The sonicated samples were
centrifuged, and the total protein content in the supernatant was determined by bicinchoninic
acid protein assay kit (Pierce, Rockford, IL, USA). S. Typhimurium whole cell lysate before or
after treatment with endotoxin removal resin (Promega, Madison, WI, USA) or LPS were spot-
ted onto nitrocellulose membranes. The PVDF and nitrocellulose membranes were then
blocked with Blocking One solution (Nacalai Tesque, Kyoto, Japan) followed by primary anti-
body incubation in mAb-449-producing hybridoma culture supernatant (~2 μg/mL) and incu-
bation in peroxidase-conjugated rabbit anti-mouse IgG2a secondary antibody (1:2000;
Invitrogen, Carlsbad, CA, USA). Reactive bands were detected with 3,3-diaminobenzidine tet-
rahydrochloride (Wako, Osaka, Japan) and hydrogen peroxide.

Statistical analysis
Prism 6 (GraphPad, CA, USA) was used for the statistical analyses. The survival rates were ana-
lyzed using the Kaplan-Meier log-rank test. Statistical analyses were performed using two-way
ANOVA or Student’s t-test to compare groups. Data are presented as the mean ± standard
deviation (SD) for 3–6 samples per group.

Results

mAb-449 monoclonal antibody conferred protection against S.
Typhimurium infection
Previous investigations demonstrated that pre-treating S. Typhimurium with anti-Salmonella
IgG from immune serum enhanced bacterial uptake by macrophages and imparted a specific
protective effect against S. Typhimurium infection in vivo [10]. As expected, sera from mice
immunized with Salmonella UF20 (aroA-) exhibited a high antibody titer that enhanced bacte-
rial uptake by mouse macrophage-like RAW264.7 cells and conferred protection against S.
Typhimurium infection in BALB/c mice (S1A and S1B Fig). To generate a mAb that enhances
macrophage bacterial uptake, we used a modified in vitro infection assay [31] and determined
that treatment of the S. Typhimurium strain Χ3306 with mAb-449 promotes their phagocytosis
by RAW264.7 cells (S1C Fig) [10]. Further characterization by antibody subtyping identified
the mAb-449 isotype as IgG2a (S1D Fig).

Subsequently, to determine whether the antibody could induce specific protective immunity
to Salmonella infection in vivo, mAb-449 was administered to naïve mice at various concentra-
tions the day before challenge with 10-fold the LD50 dose of S. Typhimurium (Fig 1). Notably,
while PBS-administered control mice succumbed to disease within 7 days of S. Typhimurium
challenge, mice inoculated with 1 mg or 200 μg mAb-449 survived. In addition, a lower dosage
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of 20 μg mAb-449 showed a protective effect in 50% of the population. Thus, these data indi-
cate that mAb-449 administration confers a protective immunity against S. Typhimurium
challenge.

Functional analysis of mAb-449 antibody
Preliminary analyses demonstrated that mAb-449 could increase S. Typhimurium uptake by
RAW264.7 cells (S1C Fig). Therefore, we performed in vitro infection assays and found signifi-
cantly more intracellular bacteria following pre-treatment with mAb-449 than after pre-treat-
ment with control IgG (Fig 2A). In addition, we also observed a dose-dependent increase in the

Fig 1. Immunoprotective potential of monoclonal antibodymAb-449 against S. Typhimurium
infection.Mice were intravenously injected with mAb-449 1 day before intraperitoneal challenge with 10-fold
the LD50 of S. Typhimurium (n = 4/group). Mice injected with PBS only were used as controls. The Kaplan-
Meier log-rank test stratified by regimen was significant (p < 0.0001).

doi:10.1371/journal.pone.0151352.g001

Fig 2. The effect of mAb-449 on bacterial uptake by RAW264.7 cells. Intracellular bacteria were quantified following infection at (A) MOI 1 of S.
Typhimurium treated with 0.1, 0.5, 1, 5 or 10 μg/mL mAb-449, control IgG, or No-antibody (PBS); (B) MOI 0.1, 0.5, 1, 5, or 10 of S. Typhimurium treated with
5 μg/mL mAb-449 or control IgG; and (C) MOI 1 of S. Typhimurium treated with 5 μg/mL F(ab’)2 fraction of mAb-449 or control IgG. One hour after infection,
intracellular bacteria were quantified by serial dilution plating on LB. (D) Syk kinase activation in S. Typhimurium-infected RAW264.7 cells was analyzed by
ELISA. (A-D) Graphs showmeans and SD of triplicate readings. (A, B) Two-way ANOVA analyses showed significant differences in bacterial uptake with
increased (A) mAb-449 concentration (p < 0.0001) or (B) MOI of mAb-449-treated S. Typhimurium (p < 0.0001). (C, D) Significance was assessed using
Student’s t test.

doi:10.1371/journal.pone.0151352.g002
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number of adherent bacteria with increasing concentrations of mAb-449 (S2A Fig). Moreover,
the number of adherent and intracellular bacteria also increased with higher MOIs (S2B–S2F
Fig and Fig 2B). This finding was dependent on mAb-449 activity since treatment with mAb-
449 induced significantly higher bacterial uptake than treatment with control IgG (Fig 2B).
Furthermore, mAb-449 enhanced S. Typhimurium uptake by mouse macrophage-like J774.1
cells and peritoneal macrophages (S2G and S2H Fig).

Next, we investigated whether this bacterial uptake was mediated by the F(ab’)2 region of
mAb-449. Treatment with only the F(ab’)2 region had no effect on S. Typhimurium uptake,
indicating that the Fc moiety is required for the uptake of bacteria by macrophages (Fig 2C).
Crosslinking of the macrophage Fc receptor (FcR) and the Fc component of IgG promotes
phagocytosis by initiating intracellular signals conveyed by tyrosine kinase cascades [32]. To
determine whether mAb-449 induced FcR-mediated signaling, phosphorylation of the tyrosine
kinase Syk was examined in RAW264.7 cells following infection with S. Typhimurium (Fig
2D). Notably, the level of phospho-Syk was significantly higher in RAW264.7 cells infected
with mAb-449-treated S. Typhimurium bacteria than in control IgG-treated or No-antibody
(PBS)-treated S. Typhimurium. Altogether, these results suggest that mAb-449 functions by
eliciting FcR activation on macrophages to enhance their uptake of opsonized bacteria.

Activation of macrophages mediated by treatment with mAb-449
Since mAb-449 enhanced bacterial uptake by macrophages (Fig 2), we investigated whether
macrophages could be activated by mAb-449. For this, we examined pro-inflammatory TNFα
and nitric oxide production in the culture supernatants of infected RAW264.7 cells. A signifi-
cant increase in secreted TNFα was detected in the supernatant of cells infected with mAb-
449-treated S. Typhimurium compared to counterparts treated with control IgG or No-anti-
body (Fig 3A). Correspondingly, nitric oxide synthesis was markedly elevated in the superna-
tant of RAW264.7 cells infected with mAb-449-treated S. Typhimurium compared to
supernatants from those infected with control IgG-treated or No-antibody-treated S. Typhi-
murium (Fig 3B). Furthermore, we inhibited the production of nitric oxide by using 100 μM
NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of nitric oxide synthase, in
our in vitro experiment (S3 Fig). Cytopathology also revealed a notable difference in the mor-
phology of RAW264.7 cells infected with mAb-449-treated S. Typhimurium compared to con-
trols (Fig 3C). Furthermore, experiments using GFP-labeled S. Typhimurium indicated that
mAb-449 enhanced uptake of S. Typhimurium into RAW264.7 cells (S4 Fig). Together, these
data support a role of mAb-449 in triggering macrophage activation and phagocytic bacterial
uptake.

Intracellular bacterial clearance by activated macrophages
To analyze whether the survival and/or replication of mAb-449-treated bacteria is affected by
macrophage activation, we enumerated intracellular bacteria with colony forming units (CFU)
assay (S5 Fig). To facilitate the comparison of intracellular CFU for mAb-449-, control IgG-
treated, and No-antibody S. Typhimurium, the CFU value for intracellular bacteria at 36 h
post-infection was expressed as a percentage relative to that observed 1 h post-infection (Fig 4).
These results indicated that the bactericidal activity of macrophages infected with mAb-
449-treated S. Typhimurium is enhanced relative to negative control groups. Moreover, in sim-
ilar numbers of intracellular bacteria with CFU as mAb-449-treated S. Typhimurium, that is
MOI 10, the bactericidal activity of macrophages infected with mAb-449-treated S. Typhimur-
ium is also enhanced relative to MOI 10 (S6 Fig). In addition, the nitric oxide synthesis in the
supernatant of RAW264.7 cells infected with mAb-449-treated S. Typhimurium was also
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found to be higher than that from supernatants of RAW264.7 cells infected with MOI 10 of the
bacteria (S7 Fig).

Analysis of mAb-449 antigen specificity and protective immunity
To identify the mAb-449 immunogen, we performed immunogold electron microscopy analy-
sis and found that the antibody bound to the bacterial cell surface (Fig 5A). Since the outer
membrane of gram-negative bacteria is often coated with LPS, we theorized that mAb-449 may
specifically recognize this immunogen. Dot immunoblot analysis using S. Typhimurium whole
cell lysate, LPS isolate, and LPS-depleted S. Typhimurium lysate revealed that mAb-449 bound
to the whole cell lysate and LPS isolate but not LPS-depleted lysate (Fig 5B). Moreover, an
immunoblot profile demonstrated that mAb-449 specifically recognizes the O-antigen region
of LPS (Fig 5C and 5D and S8 Fig).

Fig 3. Role of mAb-449 in macrophage activation. RAW264.7 cells were infected with MOI 1 of S. Typhimurium or culture medium treated with mAb-449,
control IgG, or No-antibody (PBS). (A) TNFα production by RAW264.7 cells 1 h after infection via ELISA. (B) Nitric oxide production was evaluated by Griess
assay 36 h after infection. (A, B) Graphs showmeans and SD of triplicate readings. Significance was assessed using Student’s t test. N.D., not detected. (C)
Image of RAW264.7 cells 36 h after infection with S. Typhimurium. Bar = 100 μm.

doi:10.1371/journal.pone.0151352.g003
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To determine if mAb-449 specific antigen could confer protection from S. Typhimurium
infection, mice were administered with anti-LPS serum and challenged with 10-fold the LD50

dose. As expected, the control serum administered mice died within 11 days of challenge,
whereas more than 80% of anti-LPS serum administered mice survived for the 15 days they
were monitored (Fig 6A). In addition, electron microscopy showed that anti-LPS serum
detected the surface components of S. Typhimurium (Fig 6B). In vitro infection study also
showed that anti-LPS serum treatment significantly enhanced bacterial uptake into macro-
phages (Fig 6C). These data indicate that mAb-449 antigen recognition generated a specific
protective effect against Salmonella infection in vivo.

Discussion
Several studies have shown that antibodies play a crucial role in mediating immunity against
Salmonella infection; however, these studies are limited to the use of immune sera containing
polyclonal antibodies [10,13,14,16,33]. Polyclonal antibodies consist of several immunoglobu-
lins with varied stoichiometries, specificities, and characteristics, which can influence the effi-
cacy of active antibodies and impede the mechanistic understanding of antibody function [34].
Therefore, in this study, we developed the mAb-449 to characterize immunoglobulin-mediated
immunity against S. Typhimurium infection (Fig 1).

The protective efficacy of mAb-449 was associated with enhanced bacterial uptake by mac-
rophages (Fig 2). Using RAW264.7 cells, we demonstrated that bacterial uptake is mediated by
the interaction between mAb-449 and FcRs (Fig 2C and 2D). This suggests that circulating
anti-LPS antibody may target extracellular bacteria during infection by FcR-mediated phagocy-
tosis [12]. FcRs are essential for antibody-mediated protection, as FcR-knockout mice immu-
nized with attenuated S. Typhimurium failed to clear a subsequent challenge infection [15].

FcR activation potentiates macrophage activation, which is characterized by bactericidal
activity and the production of pro-inflammatory cytokines and reactive oxygen intermediates
such as nitric oxide [35–37]. Accordingly, macrophages infected with mAb-449-treated S.
Typhimurium exhibited elevated TNFα and nitric oxide levels and altered cellular morphology

Fig 4. Effect of mAb-449 on intracellular bacterial killing.Relative CFU (%) of intracellular S.
Typhimurium 36 h after infection in RAW264.7 cells compared to samples taken 1 h post infection. Graph
shows means and SD of readings from two individual experiments performed in triplicates. Significance was
assessed using Student’s t test. Asterisk indicates statistical significance when compared to no-inhibitor
group (p < 0.01).

doi:10.1371/journal.pone.0151352.g004
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(Fig 3A and 3B). Most notably, the number of intracellular bacteria in the mAb-449-treated
macrophages was significantly decreased (Fig 4), which is likely due to enhanced phagocytic
killing. Furthermore, the potential of phagocytic killing was found to decrease when macro-
phages were treated with nitric oxide synthases inhibitor (S9 Fig). However, phagocytic killing
was not completely suppressed by nitric oxide synthases inhibitor and we suggest that other
active oxygen has an effect on phagocytic killing against S. Typhimurium [37]. From these
results, we speculate that treatment with a specific antibody is sufficient to overcome the adap-
tive mechanisms utilized by Salmonella species to facilitate intramacrophage survival and repli-
cation [38,39]. Thus, the continued development of mAb-449 may provide more information
on the protective role of antibodies against intracellular bacteria [40]. Because other intracellu-
lar pathogens such as Listeria monocytogenes andMycobacterium tuberculosis have modes of

Fig 5. Antigen recognition by mAb-449 and its role in immunoprotection. (A) Electron microscopy images of mAb-449-treated S. Typhimurium. Black
grains indicate mAb-449 binding regions on the bacterial cell surface. Bar = 500 nm. (B) Dot blot analysis showing antibody-antigen recognition with mAb-
449 or control IgG and S. Typhimurium constituents using whole cell lysate, LPS-depleted lysate, and S. Typhimurium LPS. (C) S. Typhimurium LPS was
analyzed by SDS-PAGE silver staining. (D) Immunoblotting to identify the antigenic constituent.

doi:10.1371/journal.pone.0151352.g005
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infection similar to Salmonella, we believe that these analyses would also be relevant to such
bacteria [40–42].

Importantly, our analyses revealed that mAb-449 specifically recognized LPS on the outer
surface of S. Typhimurium bacteria (Fig 5) and likely binds the non-toxic O-antigen region
(Fig 5C). Because LPS is toxic to the host, its use as a vaccine candidate is often limited; how-
ever, this toxicity is inhibited following alkali treatment, which yields D-LPS (O-antigen
region) [42,43]. The ability of O-antigen region to elicit protective immunity suggests that it
may be a potential candidate for vaccine development [26].

An important aspect of vaccine design is to identify a major, protective antigen that elicits
the production of protective antibodies [34,44]. LPS is known to stimulate the cellular immune
response upon recognition by Toll-like receptor 4 (TLR4) [45,46]; however, the mechanism of
B cell-mediated immunity in response to LPS is not clearly understood [47]. Notably, our
results demonstrated that inoculation with anti-LPS antibody serum confers specific protective
immunity against Salmonella infection in mice by inducing macrophage activation and

Fig 6. Immunoprotective potential of antigen of mAb-449 against S. Typhimurium infection.Mice transferred with anti-LPS serum were challenged
with 10-fold the LD50 (n = 5/group). The Kaplan-Meier log-rank test stratified by regimen was significant (p = 0.01). (B) Immunogold electron microscopy
analysis of S. Typhimurium. Black grains indicate the anti-LPS serum binding region on the bacterial cell surface. Bar = 500 nm. (C) Increased number of
intracellular bacteria after infecting RAW267.4 cells with MOI 1 of S. Typhimurium treated with 1% anti-LPS serum or control serum. One hour after infection,
intracellular bacteria were quantified by serial dilution plating on LB. Graphs showmeans and SD of triplicates. Significance was assessed using Student’s t
test. * P = 0.0103.

doi:10.1371/journal.pone.0151352.g006
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bactericidal activity (Fig 4), suggesting that the mAb-449 immunogen is likely a major protec-
tive antigen.

The mechanisms underlying the protective efficacy of antibodies specific to Salmonella LPS
was demonstrated in earlier studies [21–23,48,49]. For instance, monoclonal IgA antibodies
directed against the O:9 or H:g,m antigens of S. Enteritidis conferred protection by interfering
with Salmonella attachment and penetration into epithelial cells, a mechanism that does not
depend on the involvement of the antibody Fc region [49]. Alternatively, our results showed
that mAb-449 engages FcRs to enhance macrophage bacterial uptake [19].

In conclusion, our study showed that mAb-449 is sufficient to confer protective immunity
against Salmonella infection in mice and identified the LPS O-antigen as a prominent B-cell
immunogen that mediates this process. In addition, we demonstrated a mechanism for anti-
body-mediated protection, wherein FcR–mAb-449 binding enhanced the uptake and killing of
Salmonella by macrophages. We suggest that, although S. Typhimurium has the potential to
survive and replicate within macrophages, host production of a specific antibody can effectively
mediate macrophage activation for clearance of intracellular bacteria. Altogether, these data
suggest that the continued study of mAb-449 will contribute to the understanding of antibody-
mediated protection against Salmonella infection, which will provide a foundation for the fur-
ther development of antibody-based approaches for effective vaccine design.

Supporting Information
S1 Fig. Analysis of sera from mice immunized with UF20. (A) Intracellular S. Typhimurium
bacteria were quantified following infection for 1 h at MOI 5 of bacteria treated with 1%
immune serum for 30 min at 37°C using Raw264.7 cells. (B) Female BALB/c mice were intrave-
nously inoculated with UF20 or immune serum before S. Typhimurium challenge (n = 4). The
Kaplan-Meier log-rank test stratified by regimen was significant (p< 0.008). (C) RAW264.7
cells were infected with S. Typhimurium (MOI 5), and intracellular bacteria were enumerated
by culturing in LB medium. (D) mAb-449 antibody subtyping by ELISA. (A, C, D) Graphs
show means and SD of triplicate readings. Significance was assessed using Student’s t test.
(TIFF)

S2 Fig. Increased adherence of mAb-449-treated S. Typhimurium bacteria to RAW264.7
cells. (A–F) The number of adherent S. Typhimurium bacteria was quantified after pre-treat-
ment with mAb-449, control IgG, or No-antibody (PBS). (A) S. Typhimurium (MOI 1) were
treated with 0.1, 0.5, 1, 5, or 10 μg/mL mAb-449, control IgG, or PBS. Two-way ANOVA anal-
ysis showed significant differences in bacterial adherence with increased mAb-449 concentra-
tion (p< 0.0001). (B) MOI 0.1, (C) MOI 0.5, (D) MOI 1, (E) MOI 5, and (F) MOI 10 S.
Typhimurium were treated with 5 μg/mL mAb-449 or control IgG before infection. (G) J774.1
mouse macrophage-like cells and (H) peritoneal macrophages were infected with S. Typhimur-
ium (MOI 1) after treatment with 5 μg/mL mAb-449 or control IgG. One hour after infection,
intracellular bacteria were quantified by serial dilution plating on LB. (A-H) Graphs show
means and SD of triplicate readings. (B-H) Significance was assessed using Student’s t test.
(TIFF)

S3 Fig. Production of nitric oxide evaluated by Griess assay after infection of RAW264.7
cells and in the presence of an NOS inhibitor. The culture supernatants were assayed for
nitrite at (A) 24 h, (B) 36 h and (C) 72 h of infection. N.D., not detected. Significance was
assessed using Student’s t test. Asterisks indicate statistical significance when compared to no-
inhibitor group (P<0.05).
(TIFF)
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S4 Fig. Localization of S. Typhimurium in RAW264.7 cells. Image of RAW264.7 cells 36 h
after infection with S. Typhimurium (green). Bar = 25 μm.
(TIFF)

S5 Fig. Bacterial number measured as CFUs. RAW264.7 cells were infected with pre-treated
S. Typhimurium (MOI 1) and the number of intracellular bacteria was determined at 36 h.
(TIFF)

S6 Fig. Infection of RAW264.7 cells with similar numbers of intracellular bacteria with
CFU as mAb-449-treated S. Typhimurium. (A) Number of intracellular bacteria in CFUs. (B)
Relative CFU (%) of intracellular S. Typhimurium 36 h after infection in RAW264.7 cells com-
pared to samples taken 1 h post infection. Significance was assessed using Student’s t test.
Asterisks indicate statistical significance when compared to 1h group (P = 0.0483).
(TIFF)

S7 Fig. Nitric oxide production evaluated by Griess assay after 36 h of infection. RAW264.7
cells were infected with mAb-449-treated S. TyphimuriumMOI 1 and control IgG-treated
MOI 10. Significance was assessed using Student’s t test.
(TIFF)

S8 Fig. Determination of binding affinities of LPS from S. Typhimurium with mAb-449.
ELISA analysis showing antibody-antigen recognition with mAb-449 and LPS. Significance
was assessed using Student’s t test.
(TIFF)

S9 Fig. Effect of mAb-449 on intracellular bacterial killing after treatment with NOS inhib-
itor. Relative CFU (%) of intracellular S. Typhimurium 36 h after infection in RAW264.7 cells
compared to samples taken 1 h post infection. Significance was assessed using Student’s t test. �

P = 0.0124.
(TIFF)

S1 Protocol.
(PDF)
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