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Abstract

Alpha Synuclein (a-Syn) is a protein implicated in mechanisms of neuronal degeneration in Parkinson’s disease (PD). a-Syn is
primarily a neuronal protein, however, its expression is found in various tumors including ovarian, colorectal and melanoma
tumors. It has been hypothesized that neurodegeneration may share common mechanisms with oncogenesis. We tested
whether a-Syn expression affects tumorigenesis of three types of tumors. Specifically, B16 melanoma, E0771 mammary
gland adenocarcinoma and D122 Lewis lung carcinoma. For this aim, we utilized transgenic mice expression the human
A53T a-Syn form. We found that the in vivo growth of B16 and E0771 but not D122 was enhanced in the A53T a-Syn mice.
The effect on tumorigenesis was not detected in age-matched APP/PS1 mice, modeling Alzheimer’s disease (AD),
suggesting a specific effect for a-Syn- dependent neurodegeneration. Importantly, transgenic a-Syn expression was
detected within the three tumor types. We further show uptake of exogenously added, purified a-Syn, by the cultured
tumor cells. In accord, with the affected tumorigenesis in the young A53T a-Syn mice, over- expression of a-Syn in cultured
B16 and E0771 cells enhanced proliferation, however, had no effect on the proliferation of D122 cells. Based on these
results, we suggest that certain forms of a-Syn may selectively accelerate cellular mechanisms leading to cancer.
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Introduction

PD is a progressive, age-related neurodegenerative disorder,

primarily defined by its related movement disabilities, including

resting tremor, muscle tone rigidity and bradykinesia [1]. As the

disease progresses, it also affects multiple systems within the central

and peripheral nervous systems, and causes additional non-motor

symptoms [2]. Pathologically, PD is characterized by dopaminer-

gic neuronal loss in the nigro-striatal pathway of the brain and by

the presence of Lewy bodies and Lewy neurites (reviewed in [3])

that with disease progression, spreads from the brain stem to the

frontal neocortex [4]. Lewy bodies are intra-neuronal cytoplasmic

inclusions whose primary structural component is a-Synuclein (a-

Syn) (reviewed in [3]). a-Syn is a presynaptic protein critically

involved in the cytopathology and genetics of PD (reviewed in

[5,6,7]) and the related human synucleinopathies [8]. A progres-

sive conversion of the soluble a-Syn protein, into soluble oligomers

and insoluble aggregates is preceding its intraneuronal cytoplasmic

deposition and underlies its cytopathology in this group of

disorders [9,10]. This progressive conversion and accumulation

in cytotoxic forms of a-Syn is associated with neurodegeneration

in PD [11].

The physiological role of a-Syn is still unclear. Recent studies

have suggested that the neuronal a-Syn protein is involved in

aspects of vesicle trafficking, both in exocytosis [12,13,14,15,16]

and endocytosis [17]. In accordance with the findings indicating its

enrichment in presynaptic terminals, a-Syn was shown to affect

synaptic vesicle recycling [17,18] and synaptic vesicle pools

[19,20].

Nevertheless, a-Syn expression is not restricted to the central

nervous system. A portion of a-Syn is detected in plasma [21], red

blood cells [22] and skin fibroblasts [23]. In addition, a-Syn

expression was found in a variety of brain tumors [24,25] as well as

peripheral cancers, including ovarian and breast [26], colorectal

tumors [27] and in melanoma [28].

It has been suggested that neuronal loss in neurodegenerative

diseases may result from activation of cell cycle components.

Neurons are generally considered to be post mitotic cells and are

non-replicating. However, specific components of cell cycle

machinery may be reactivated in some neurons upon certain

stimuli (reviewed in [29]). While such activation of cell cycle

machinery may result in proliferation of cancer cells, reactivation

of cell cycle in post mitotic neurons may lead to apoptosis.

Growing number of factors has recently emerged as being

critically involved in both cancer and neurodegenerative diseases

(reviewed in [30]).

In this study we aimed at testing whether a-Syn expression is

involved in tumorigenesis. We tested the effect of a-Syn expression
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on the in vivo growth and proliferation of three types of murine

tumors. Specifically, B16 melanoma, E0771 mammary gland

adenocarcinoma and D122 Lewis lung carcinoma, utilizing the

A53T a-Syn transgenic mouse model [31]. We found enhanced

growth and proliferation for B16 and E0771 in this transgenic

mouse model. Yet, no effect on tumorigenesis of D122 was

detected. Importantly, we detected the transgenic, human, a-Syn

expression within tumor cells and suggest, that these tumor cells

uptake a-Syn which in turn, specifically activates certain cellular

mechanisms leading to tumorigenesis.

Materials and Methods

Mice
The following mouse lines were used: C57BL6 (B6); APP/PS1

[32] (Jackson Laboratories, Bar Harbor, MN, USA); a-Syn null

2/2 mice C57BL/6JolaHsd [33]; C3H; F1 C57BL6/C3H (B6/

C3HF1) (Harlan Laboratories, Rehovot, Israel); and A53T a-Syn

+/+ [31]. a-Syn 2/2 and APP/PS1 harbor the B6 genetic

background [34]; and A53T a-Syn+/+ harbor the B6/C3H

genetic background.

This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the Hebrew University of Jerusalem NIH approval

# OPRR-A01-5011 (Permit Number: MD-09-11816-5). Surgery

was performed under anesthesia with isofluran and all efforts were

made to minimize suffering.

Cells
The following B6-compatible cell lines were used: B16

melanoma [35], E0771 (obtained from Prof. Sirotnak F.M.,

Memorial Sloan-Kettering, New York, NY), and D122 [36]. B16

cells were grown and maintained in a Dulbecco’s-modified Eagle’s

medium (DMEM) with 10% fetal calf serum, 2 mM L-glutamine

and 100 U/ml Penicillin and Streptomycin (Biological Industries

Ltd, Beit Haemek, Israel). For D122 cells, the conditioning

medium included also 1 mM sodium pyruvate and MEM-non-

essential amino acids solution (61) (Biological Industries Ltd, Beit

Haemek, Israel). E0771 cells were grown and maintained in RPMI

1640 supplemented with 10% fetal calf serum with iron (Biological

Industries Ltd, Beit Haemek, Israel) and 10 mM HEPES. Stable

poly-clones (stably expressing, non-clonal cultures) were generated

with human wt a-Syn cDNA [37], human b-Syn cDNA [38] or

amyloid precursor protein carrying the Swedish mutation (APPsw)

[39] and the relevant mock-transfected clones, carrying the

corresponding selection marker.

a-Syn uptake by cultured cells
For uptake, cover slips were pretreated with poly-D-lysine (1%).

Cells grown on cover slips for 24 hours, were incubated for

16 hours longer in standard conditioning medium, supplemented

with purified a-Syn protein at a final concentration of 1 mM.

Following the incubation with a-Syn protein, cells were washed

twice and fixed. Immunocytochemistry was performed as

previously described [37].

Tumor growth and proliferation
To measure growth and proliferation we utilized a cohort of 3–4

or 9–10 months old A53T a-Syn+/+ and age-matched control

mice (males and females, separated). Mice were irradiated at a

dose of 500 rad one day prior to injections to suppress their

immune response. On the day of injection, cells were washed twice

in phosphate buffered saline (PBS), and counted. The mice were

subcutaneously injected with the indicate number of cells (in

100 ml PBS) at the right-side of their lower back. Pilot experiments

were performed in order to determine the number of cells for

injection in each cell line. The factors tested involved measurable

proliferation and ethical issues concerning tumor overgrowth. The

mice were observed daily for tumor growth and general behavior.

Tumor volume was measured independently by two researchers

who were blinded to mouse genotype and was calculated as

longitudinal diameter6lateral diameter260.4. Mice were sacri-

ficed when the tumor reached 1.2 cm in any one dimension and

final tumor weight was measured blinded to mouse genotypes.

Cell proliferation assay
The CellTiter-BlueH (Promega, Beit Haemek, Israel), was used

according to the manufacturer’s instructions. Briefly, 56103 cells

were seeded per well in a 96 well plates. Proliferation was

measured at 24, 48 and 72 hours post seeding. At each time point,

20 ml of CellTiter-BlueH Reagent were added and incubated for

one hour at 37uC. Then, the fluorescent signal was measured at

560 nm (excitation) and 590 nm (emission).

Western blotting
Protein samples extracted from tumors in 1% NP-40 in PBS

containing protease inhibitors cocktail (Sigma, Rehovot, Israel)

were analyzed by a 10% SDS–PAGE. Immunoblots were reacted

with the anti human a-Syn antibody, LB509 (Zymed); or with

H3C antibody (generously provided by Prof. George J.M.,

University of Illinois) for both a-Syn and b-Syn detection; and

8E5 for APP detection. Immunoblots were normalized to the

signal obtained for actin in the same sample (Sigma, Rehovot,

Israel).

Immunohistochemistry
Mice, anesthetized with an intraperitoneal overdose injection of

Sodium Pentobarbitone (1 ml/1.5 kg), were perfused with phos-

phate-buffered saline (PBS). Following surgical removal of various

tissues including the tumors, the tissues were kept frozen and used

for further biochemical analyses or fixed for another 24 hr in the

formalin. Histochemical analysis was performed with formalin

fixed tissue as we have previously described [40]. Briefly, sections

of (5 mm) were deparaffinized in xylene followed by graded alcohol

in descending ethanol concentrations. Antigen retrieval was

performed by incubating the slides in 100% formic acid for

5 minutes, followed by extensive washes. Sections were blocked in

CAS-BLOCK (Invitrogen, Jerusalem, Israel). The sections were

then immunostained using anti human a-Syn antibody LB 509

(1:1000). Secondary ab was AlexaFluor-488 (1:200, Molecular

Probes). Staining were performed in parallel for the A53T a-

Syn+/+ and control genotypes.

Results

Enhanced growth rates of B16 melanoma and E0771
adenocarcinoma but not D122 Lewis lung carcinoma in
young A53T a-Syn +/+ mice

To investigate whether a-Syn expression affects tumor growth

and proliferation we used a cohort of young, 3–4 month old, A53T

a-Syn+/+ (a mix of four different litters) and control B6/C3H (F1

hybrid of C57BL6 and C3H genotypes) mice. Each mouse

genotype was randomly divided in three groups (n = 5–8 mice in

each group) and mice were subcutaneously injected either with B16

melanoma (2.56105), E0771 mammary gland adenocarcinoma

Tumorigenesis in A53T a-Syn+/+ Mice
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(16105) or D122 Lewis lung carcinoma (56104) cells. An additional

control group included PBS injected mice. Mice were assessed at

least every alternate day for tumor size and the final tumor weight

was determined at the day of termination, i.e., 15 days post

injection. Tumor growth in the three cell-injected groups was

progressive. No tumors were detected in the control PBS-injected

group.

The growth curves of B16 (Fig. 1a) and E0771 (Fig. 1b) tumors

indicate significant higher growth rates in the A53T a-Syn+/+
than the control B6/C3H mice. Specifically, the mean 6 SE

growth in A53T a-Syn+/+ and control B6/C3H mice is: 3.860.7

and 1.260.3 mm3 per day (respectively) for B16; and 1.360.2 and

0.360.07 mm3 per day (respectively) for E0771. In contrast, no

effect for transgenic a-Syn expression on D122 growth rate was

detected (with mean 6 SE growth set at 1.760.5 and

1.660.7 mm3 per day for A53T a-Syn+/+ and B6/C3H mice,

respectively) (Fig. 1c). In agreement with the growth curves results,

we measured a significant higher final tumor weight in A53T a-

Syn+/+ than control B6/C3H mice for the B16 melanoma

(178.4624.4 and 113.5610.2 mg, respectively, p = 0.015, t-test.

Fig. 1d). Similarly, higher final tumor weight in A53T a-Syn+/+
than control B6/C3H is measured for E0771 (129.5612.0 and

67.0613.7 mg, respectively, p = 0.012, t-test. Fig. 1e); but not for

D122 (98.3611.1 and 112.4619.8 mg, respectively, Fig. 1f)

tumors.

Considering the accurate control genotype for the homozygous

A53T a-Syn mice (originally generated with B6/C3H (F1)), we

thought that the original B6/C3H (F1) mice may not fully

represent an accurate genotype, as a genetic shift toward one of

the parental genotype may have occurred during their constant

breeding. We therefore injected B16 melanoma cells (as above) in

C3H, B6 and B6/C3H control genotypes and compared tumor

growth rates also in a-Syn 2/2 (B6 genetic background) and

A53T a-Syn+/+. The C3H mice developed very small, poorly

progressive B16 tumors (not shown). This result is expected

because the B16 melanoma cells are known to be non-

immunogenic and incompatible with the C3H mouse genotype

[41]. Importantly, no differences in B16 tumor growth were

detected between the two control genotypes, B6 and B6/C3H (F1)

at any time point post injection (not shown) or in their final tumor

weight (Fig. 1g). Specifically, the final tumor weight was

78.6610.2 and 69.0613.6 mg for B6/C3H and B6 genotype,

respectively. Similarly, the final tumor weight for a-Syn2/2 mice

was not different than these two control genotypes, determined at

87.467.3 mg. In contrast, B16 melanoma tumors were signifi-

cantly larger in the A53T a-Syn+/+, with a final mean weight of

167622.7 mg (p,0.05 Mann-Whitney test).

Tumor growth is not affected in old A53T a-Syn+/+ mice
To search for a potential association between a-Syn- related

pathologies and tumor growth, we next measured the effect of a-

Syn expression on tumor growth in old, symptomatic A53T a-

Syn+/+ and control mice. Importantly, the A53T a-Syn+/+
mouse model involves an age-dependent neurodegeneration.

Specifically, the mice appear generally healthy up to ,7 month

of age, at 9–10 month about 60% of the colony is symptomatic

and at 12–15 month of age 100% of mice are sick (for a detailed

description of this mouse model, see [31]). Cohorts of mice

(including males and females, separated) at 9–10 month old A53T

a-Syn+/+, and age-matched B6, C3H or a-Syn 2/2 control mice

Figure 1. Tumorigenicity in young A53T a-Syn +/+ and control F1 B6/C3H mice. (a). Mice (3–4 months old) were subcutaneously injected
with 0.256106 B16 melanoma cells. Tumor volumes were determined every 1–2 days post injection. The experiment was stopped after 15 days, when
the tumors in the A53T a-Syn +/+ group reached 1 to 1.2 cm in diameter. The graph represents the means 6 standard errors (SE) of 5–8 mice in each
group. A representative growth curve out of three independent experiments. (b). Mice were injected with 16105 E0771 mammary gland
adenocarcinoma cells and tumor volume was measured as in (a). (c). Mice were injected with 56104 D122 Lewis lung carcinoma and tumor volume
was measured as in (a). (d). Mean weights of tumors formed in each genotype group at 15 days post- injection 6 SE for B16, *,p = 0.015, t-test; (e).
E0771, *, p = 0.012, t-test; (f). D122; (g). Mean weights of tumors formed in each genotype group at 15 days post- injection 6 SE, n = 6–7, *, p,0.05
Mann-Whitney test.
doi:10.1371/journal.pone.0019622.g001

Tumorigenesis in A53T a-Syn+/+ Mice
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were randomly divided in two groups and injected in parallel, with

B16 (2.56105) or D122 (56104 cells). Similar to the results

obtained for young mice, poor proliferation of B16 was observed

with the incompatible C3H control genotype (Fig. 2a–d). In

addition, D122 tumor growth was not affected by the transgenic a-

Syn expression in the old A53T a-Syn+/+ mice (Fig. 2b,d).

However, unlike the results in young A53T a-Syn+/+ mice, the

growth rate of B16 melanoma was not enhanced by the A53T a-

Syn transgene. The growth curves and the final weight of B16

tumors were highly similar in the old A53T a-Syn+/+ and age-

matched B6 control genotype (Fig. 2a,c). We therefore conclude

that the effect of a-Syn expression on tumor growth is not

associated with its level of pathogenesis.

The proliferation of B16 melanoma is not affected in a
mouse model for Alzheimer’s disease

We next sought to determine whether the enhanced B16

melanoma growth rate in the young A53T a-Syn+/+ mice is

specifically related to the transgenic a-Syn expression or rather, to

general neurodegenerative mechanisms. For this aim we subcuta-

neously injected B16 melanoma cells (0.256106) in 3–4 month old

APP/PS1+/2 mice, modeling AD [34]; their non-transgenic

littermates (harboring the B6 genotype); and age-matched A53T

a-Syn+/+ mice. Tumor growth rates were measured (as above).

Specifically, n = 5–7 mice in each group, containing males and

females, separated. The results indicate very similar growth curves

for the APP/PS1+/2 and their non-transgenic littermates.

Specifically, no differences in tumor initiation or its growth rate

were detected between the two groups throughout the two weeks of

measurements (Fig. 3a). Importantly, B16 melanoma growth rate in

A53T a-Syn+/+ mice was significantly higher than the growth rates

measured for the APP/PS1+/2 and their non-transgenic control

littermates, injected and treated in parallel (Fig. 3a). In accord, the

final tumor weight was significantly higher in A53T a-Syn+/+ mice

(149.4643.2 mg) than APP/PS1+/2 (65.1626.2 mg) or control

(B6 genotype) littermates (74.0620.3 mg) (Fig. 3b).

Figure 2. Tumorigenicity in old A53T a-Syn +/+ and control mice. (a). Mice (9–10 months old) were injected with B16 melanoma cells and
tumor volumes were determined as in Fig. 1a. The experiment was stopped after 20 days, when the tumors in any genotype group reached 1 to
1.2 cm in diameter. The graph represents the means 6 standard errors (SE) of 8–9 mice in each group. (b). Mice were injected with D122 Lewis lung
carcinoma cells and tumor volume was measured as in Fig. 1a. Mean weights of tumors formed in each group at 20 days post- injection 6 SE for B16
(c); and D122 (d). *, p,0.05 Mann-Whitney test.
doi:10.1371/journal.pone.0019622.g002

Tumorigenesis in A53T a-Syn+/+ Mice
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a-Syn expression is detected in the peripheral tumors
Attempting to elucidate the mechanisms by which a-Syn, a

neuronal protein affects the growth and proliferation of peripheral

tumors, we searched for a-Syn expression within the tumors. For

this aim, we analyzed protein samples extracted from the tumors

of young (3–4 month old) A53T a-Syn+/+ and control B6

genotype by western blotting and probed with the anti human a-

Syn antibody, LB509. We specifically focused on B16 melanoma

and D122 Lewis lung canrcinoma, representing a-Syn -affected

and -unaffected growth (respectively) (Figs. 4 and 5). Similar results

were obtained for E0771 (not shown). Human, (transgenic) a-Syn

immunoreactivity was detected in variable amounts in the different

tumor types in the A53T a-Syn+/+ but not in control B6 mice

(Fig. 4a). Importantly, no transgenic a-Syn signal was detected in

the original injected cancer cells (Fig. 4b).

The occurrence of transgenic a-Syn in the tumors (which are of

murine origin) may result from the PrP promoter, controlling the

transgenic expression of A53T a-Syn, which is expressed in

variable levels in non-neural tissues [42], including blood vessels in

the tumors or connective tissues surrounding the tumors. In this

case, the tumor sample may contain transgenic a-Syn that

originated from the adjacent host transgenic mouse tissue. An

alternative source for transgenic a-Syn in the tumors may be

transgenic a-Syn protein, that has migrated from peripheral tissues

or blood, into tumor cells. To specifically verify human transgenic

a-Syn expression within tumor cells rather than connective tissues

or blood vessels, we performed immunohistochemistry (IHC) on

formalin sections of B16 and D122 tumors from A53T a-Syn+/+
and control B6 mice. We detected specific human transgenic a-

Syn immunoreactivity in both, B16 and D122 tumors from A53T

a-Syn+/+. No transgenic a-Syn immunoreactivity was detected in

parallel-tested B16 or D122 tumors from control B6 mice

(Fig. 4c,d).

a-Syn uptake by cultured tumor cells
Growing evidence now suggest that a small portion of a-Syn is

secreted from cells that express it and that this secreted a-Syn may

than translocate into other, non neuronal cells. We sought to

determine whether cultured tumor cells may uptake exogenously

added a-Syn. For this aim, we incubated the different tumor cells,

with a conditioning medium supplemented with purified human

a-Syn (1 mM) and then performed immunocytochemistry using

the anti human a-Syn, LB509 antibody. In parallel, we

maintained sister cultures that were incubated in the same

conditioning medium but without the addition of a-Syn protein.

Following an incubation of 16 hours, a low but specific signal for

human a-Syn was detected in B16 and D122 cells (Fig. 5). Similar

result was obtained for E0771 cells (not shown). This result

therefore suggests that the tumor cells uptake a-Syn protein from

their surrounding environment.

a-Syn expression enhances proliferation in cultured B16
and E0771 but not in D122 cells

We next sought to determine whether a-Syn expression affects

cancer cell proliferation. For this aim, we generated stable poly

clones of a-Syn over expressing B16, E0771 and D122 cells. For

control cells, we generated poly clones over expressing b-Syn ;

APP protein, carrying the Swedish mutation (APPsw); or mock

transfected. Importantly, the expression level of the tested protein

was highly similar between the different cell lines (not shown). The

clones of each cell line were generated and maintained in parallel

and a-Syn expression level was verified in the a-Syn expressing

clones continuously [37]. The potential effect of over expressing

these proteins on cell proliferation was determined after 24, 48 and

72 hours post seeding. The results indicate no effect for b-Syn or

APP expression on cell proliferation after normalizing to the

mock-transfected cells throughout the 72 hours of measurements.

Specifically, no significant effect for b-Syn or APP expression was

detected in neither one of the cell lines tested (i.e., B16, E0771 or

D122 cells). However, a significantly higher rate of proliferation

was observed upon a-Syn over expression in B16 and E0771 but

not in D122 cells. Specifically, an increase of ,25% in cell

proliferation was detected post 48 hours (Fig. 6) and 72 hours (not

shown) in B16 and E0771 cells over expressing a-Syn compared

with the mock-transfected cells. These results suggest that a-Syn

expression selectively affects cell proliferation in B16 and E0771,

but not D122 cancer cells.

Discussion

We tested whether a-Syn, a neuronal protein implicated in

neuronal loss in PD and the related synucleinopathies, is involved

Figure 3. Tumorigenicity of B16 melanoma is not affected in APP/PS1 tg mice. (a). Mice (3–4 months old) were injected subcutaneously
with 2.56105 B16 melanoma cells and tumor volumes were determined every 1–2 days post injection. The experiment was stopped after 14 days,
when the tumors in the A53T a-Syn+/+ group reached 1 to 1.2 cm in diameter. The graph represents the means 6 standard errors (SE) of 5–7 mice in
each group. (b). Mean weights of tumors formed in each group at 14 days post- injection 6 SE. *, p,0.05, Mann-Whitney test.
doi:10.1371/journal.pone.0019622.g003

Tumorigenesis in A53T a-Syn+/+ Mice
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in mechanisms of peripheral tumor growth and proliferation. We

specifically tested the involvement of a-Syn expression in the

growth and proliferation of murine B16 melanoma, E0771

mammary gland adenocarcinoma and D122 Lewis lung carcino-

ma. The specific cancer cell lines were injected subcutaneously

and tumor growth rates and final tumor volumes were compared

between the A53T a-Syn+/+ mice, modeling PD; APP/PS1,

modeling AD; and control genotypes including, F1 B6/C3H, B6

and C3H. Our results indicate significantly higher growth rates for

B16 and E0771 but not for D122 cancers in young, healthy, A53T

a-Syn+/+ mice than in the different control genotypes tested. In

accord with the effect on the growth rates, we measured a

significant effect on final tumor volumes. That is, higher volumes

were measured for B16 and E0771 but not D122 tumors grown in

A53T a-Syn+/+ than control mice. Interestingly, detectable levels

of human transgenic a-Syn protein were found within the tumor

cells and we showed that cultured tumor cells uptake exogenously

added a-Syn protein in their conditioning medium. In agreement

with the in vivo results, over expressing a-Syn in cultured tumor

cells selectively affected cell proliferation in B16 and E0771 but

not in D122 cells. Together, these results suggest that a-Syn

expression within the tumor cells specifically activates certain

mechanism leading to tumorigenesis.

Emerging but still provocative data suggest that a-Syn is

released from healthy neurons. Specifically, a small portion of a-

Syn may be released via exocytic vesicles [43]. The secretion

process may also occur with misfolded, cytotoxic forms of a-Syn,

thereby allowing the ‘‘spread’’ of abnormal a-Syn to neighboring

cells [44]. Despite these early findings, it remains unclear whether

release of a-Syn is associated with its pathogenicity or whether it

arises from a specific secretory pathway. No clear correlation has

been reported between the levels of a-Syn in human plasma and

CSF, and the occurrence of pathological a-Syn accumulation in

PD patients [21,44,45,46]. In this A53T a-Syn+/+ mouse model,

the transgenic a-Syn expression is controlled by the prion protein

promoter [31]. While the prion mRNA and protein are detected

Figure 4. Human transgenic a-Syn is detected in B16 and D122 tumors from A53T a-Syn +/+ mice. (a). Protein samples (50 mg, detergent
soluble) of B16 or D122 tumors from young control B6 and A53T a-Syn +/+ mice (each lane represents an individual mouse) analyzed by western
blotting and probed with anti human a-Syn antibody, LB509. (b) Protein samples (50 mg, detergent soluble) of human a-Syn over expressing and
naı̈ve B16 melanoma or D122 Lewis lung carcinoma cells analyzed by western blotting as in (a). (c). IHC of Formalin-fixed B16 tumors from B6 and
A53T a-Syn +/+ mice immunostained with the anti human a-Syn antibody, LB509 (red signal) (d) IHC of D122 tumors as in (c).
doi:10.1371/journal.pone.0019622.g004

Tumorigenesis in A53T a-Syn+/+ Mice
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primarily in the CNS, it can also be found in peripheral tissue.

Nevertheless, its expression is restricted to the host, transgenic

mouse tissues. The finding of transgenic human a-Syn expression

in the tumor cells, that are of non-transgenic mouse origin (Fig. 4),

represent the potential translocation of human a-Syn from the

host transgenic tissue to the non-transgenic tumor cells. Further-

more, the results indicating uptake of exogenously added a-Syn by

cultured tumor cells (Fig. 5) further supports the explanation that

human transgenic a-Syn released from neuronal cells in the CNS

or peripheral cells may be the source of the human a-Syn detected

within the tumors, acting to selectively affect their proliferation.

Indeed, in our uptake experiments presented in Fig. 5, we have

added a high amount of 1 mM of purified a-Syn to the con-

ditioning medium. This amount is high considering that the

estimated amount of a-Syn in plasma is ,0.5–2 nM [21]. On the

other hand, we exposed the tumor cells to exogenously added

Figure 5. Culture B16 and D122 cells uptake exogenously added a-Syn. Cells were seeded on cover slips in 12 wells plates one day before
the addition of purified a-Syn (1 mM) into standard serum-containing medium. Control sister cultures were grown and maintained in parallel but
without the addition of recombinant a-Syn. Cells were then stained for the presence of a-Syn using anti human a-Syn antibody, LB509 (red signal).
doi:10.1371/journal.pone.0019622.g005

Figure 6. a-Syn expression in B16 and E0771 enhances cell proliferation. (a). Stable poly-clones of B16 cells over expressing either human
wt a-Syn, human b-Syn, amyloid precursor protein carrying the Swedish mutation (APPsw) or mock-transfected, were seeded in a 96-well plates at
56103 cells per well. Proliferation was determined by the fluorescence ratio at 560ex/590em and normalized to the mock-transfected cells. A
representative result of cells 48 hours post seeding. Mean 6 SE of n = 6 wells out of three repeats. (b) Stable poly-clones of E0771 and (c) D122,
seeded and measured as in (a). *, p,0.05, Mann-Whitney test.
doi:10.1371/journal.pone.0019622.g006
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a-Syn for 16 hours, a short exposure time considering that the in

vivo tumors are chronically exposed to the presence of a-Syn in

the plasma. Importantly, a-Syn expression is routinely detected

in various human tumors outside of the CNS. Including ovarian

and breast [26], colorectal tumors [27] and in melanoma [28].

The results indicate a more aggressive growth for the tumor cells in

the young (3–4 month) than the old (9–10 month) A53T a-Syn mice

(Figs. 1 and 2). While a-Syn monomer is detected within the tumor

cells in both, young (Fig. 4) and old mice (not shown), a thorough

examination of the tumor cells is needed in order to better relate

a-Syn toxicity to tumor proliferation. Specifically comparing for

different a-Syn forms, including its post-translational modifications.

There is substantial evidence based on well-designed epidemi-

ologic studies for generally low cancer rates in patients with

Parkinson’s disease (PD). Whereas the risk for leukemia,

lymphoma colorectal, prostate and lung cancer appears to be

lower, melanoma occurs more frequently among PD patients

[47,48,49]. The mechanisms underlying the altered cancer

morbidity among PD patients are not clear. Some speculations

regarding the potential effect of levadopa or PD-related gene

mutations have been suggested. However, the findings that the

association between PD and cancer is present both before and

after the diagnosis of PD and the rare occurrence of PD mutations,

jeopardize these explanations [50].

PD is a multifactorial disease, involving at least 13 different

genes and loci. Here we tested the potential involvement of a-Syn,

one major factor implicated in the pathogenesis of PD, in

mechanisms leading to tumorigenesis. The involvement of a-Syn

in certain mechanisms leading to tumorigenesis, partly support the

epidemiological findings indicating higher melanoma incidences

among PD patients. Specifically, tumorigenesis of murine B16

melanoma was enhanced in A53T a-Syn+/+ mice compared with

its growth and proliferation in the control genotypes. It is therefore

called for cautiously relating this enhancing effect of a-Syn on

proliferation of murine B16 melanoma to the increased incidences

of melanoma among PD patients as documented by epidemiology.

Nevertheless, our results do not provide an explanation to the

reduced risk of various other cancer types, including, lung cancers

as found by epidemiology.

We tested the effect of A53T a-Syn over expression in vivo and wt

a-Syn over expression in cultured cells. Both wt and A53T mutant

a-Syn over expression enhanced the proliferation of B16 melanoma

and E0771 mammary gland adenocarcinoma. Similarly, both wt

and A53T mutant a-Syn over expression had no effect on D122

Lewis lung carcinoma. The similar effects for wt and A53T mutant

a-Syn described herein may suggest that the two proteins activate

the same cellular mechanisms leading to enhanced tumorigenesis.

Considering their critical role in PD [11,51], it is possible that the

two proteins act similarly in tumorigenesis and PD.

Dysregulation of genes that control cell cycle progression is a

hallmark of tumorigenesis. In accord, an association between

unscheduled cell cycle activity and neuronal apoptosis is related to

neurodegenerative diseases such as AD [29,52]. Growing evidence

suggests that in post mitotic, fully differentiated neurons, attempts

to induce proliferation results in apoptotic cell death and

neurodegeneration (reviewed in [29]). In this regard, it is

interesting to consider a-Syn as a protein involved in cell cycle

control. We show that its over expression in B16 and E0771

cancer cells enhanced their proliferation. In contrast, a-Syn over

expression in post mitotic neurons enhances mechanisms of cell

death [53] and is known to cause neurodegeneration [11].

Therefore, although studies in neurodegenerative diseases and

specifically, Parkinson’s disease, might not usually be considered

cancer research, they could ultimately provide insight into the

function of genes and mechanisms associated with cancer, and

help to characterize and refine biological pathways and/or

therapeutic targets.

Additional PD-associated genes were shown to be involved in

mechanisms leading to uncontrolled proliferation (reviewed in

[54]). One example of a PD-gene that is involved in tumorigenesis

is Parkin (PARK2). Parkin mutations are common among familial

early onset PD and cause up to 50% of these cases [55]. Parkin,

was long suspected to be a tumor suppressor gene because it

resides on the long arm of chromosome 6, a segment that is known

to be altered or deleted in a wide variety of human cancers and

Parkin mutations were recently identified in a surprisingly large

number of tumor types [56,57,58]. Parkin is an E3 ubiquitin ligase

and its activity in marking proteins to degradation is implicated in

the pathogenesis of PD. A recent study identified a novel Parkin

E3 target protein, namely, cyclin E protein. In tumor cells

containing Parkin mutations, cyclin E levels went up and cell

proliferation was enhanced [56,59]. Indeed, higher levels of cyclin

E were reported in Parkin-deficient primary neurons and it was

speculated that loss of Parkin causes dopaminergic neurons to re-

enter the cell cycle and as a result, degenerate [60]. Based on the

current knowledge, it is not expected that a-Syn and Parkin

proteins share similar mechanisms in PD or cancer. However, the

growing number of proteins affecting both neurodegeneration and

cancer supports an association between unscheduled cell cycle

activity and neuronal degeneration.

The synuclein family members include a, b and c-synucleins, (a-

Syn b-Syn and c-Syn). While a-Syn and b-Syn have been specifically

implicated in neurodegenerative diseases [51,61,62,63], c-Syn is not

involved in neurodegeneration but primarily involved in tumor-

egenesis [26,64,65]. c-Syn is highly expressed in breast carcinomas

and usually predicts poor clinical outcome in breast cancer [66].

Interestingly, the initial reports describing increased incidences of

cancer among PD patients specifically pointed at melanoma and

breast cancer [47,48]. However, a recent meta-analysis suggested

that melanoma but not breast cancer occurs in high incidence

among PD patients [49]. Investigations aimed to elucidate the

molecular mechanisms underlying the oncogenic functions of c-Syn

revealed that c-Syn expression in cancer cells results in an

accelerated malignant phenotype with increased cell proliferation,

motility, enhanced transcriptional activity and accelerated rate of

chromosomal instability [64]. It is therefore interesting to find out

whether a-Syn and c-Syn, two proteins sharing ,60% homology

[10], affect similar cellular mechanisms leading to tumorigenesis.
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