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Abstract

Background: Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies
and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from
animals other than mice lack reproducible results.

Methods: Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral
transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine
cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding
morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous
and induced differentiation.

Results: Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of
iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use
of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs)
exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs).

Conclusions: The generation of reproducible protocols in different animal species will provide an informative tool
for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities
in animal breeding through transgenic technology and will support a new era of translational medicine with large
animal models.
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Background
Induced pluripotent stem cells (iPSCs) have enormous
potential in cellular therapy, reprogramming, and early
development approaches as they can differentiate into
numerous autologous cell lineages, including the three

germ layers. Since the major breakthrough of iPSC gen-
eration in 2006 [1], several studies have reproduced the
induction of cellular pluripotency through overexpres-
sion of specific transcription factors. Although some re-
ports describe iPSC generation in dogs, pigs, horses,
cattle, and some other species as reviewed elsewhere [2],
the most thoroughly characterized iPSC cells are un-
doubtedly from humans and mice [3–16].
Interestingly, iPSCs can be generated from species that

do not have well-characterized embryonic-derived pluri-
potent stem cells (ES cells) yet. For example, in bovine
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and equine models, the lack of characterization of pluri-
potent features leads to their denomination as embry-
onic “stem cell-like” cells [17, 18], although recent
advances have been reported recently in cattle [19]. The
clinical use of iPSCs is still limited by several factors, in-
cluding the low efficiency of reprogramming and the
lack of studies assuring the safety of transplantation pro-
cedures, a consequence of unstable karyotypes and gen-
omic alterations due to viral integration. iPSC
production, therefore, must be improved to be reprodu-
cible and safe for its therapeutic use to become possible
[20].
Though mice are still the most studied and used

model for basic and applied research, it has considerable
limitations, in special, in early development, and in over-
all physiology when compared to humans [21]. Rabbits
are also considered adequate models for translational re-
search [22, 23]; however, its in vitro cell culture and
pluripotency acquisition still lack further robust
characterization [24]. In this context, domestic animal
species such as swine, small ruminants, and even com-
panion animals such as dogs may provide an important
contribution to regenerative and translational medicine.
iPSC technology suggests that although species-specific
differences are evident, the basic mechanisms of pluripo-
tency acquisition may follow similar patterns in mam-
mals, and iPSCs have been reported from these animals
[25–27]. Specifically, large farm animals are important
models not only for pre-clinical stem cell therapies due
to their physiological and morphological similarity to
humans [28, 29], but they also may greatly benefit from
pluripotency in vitro to the generation of genetically su-
perior or modified organisms for agricultural and bio-
medical applications, for example, for reproductive
sciences [30].
A deeper understanding of the process of acquisition

and maintenance of pluripotency and reprogramming in
large domestic models will allow the optimization of sev-
eral reproductive biotechnologies, the development of
genetically engineered herds that may be useful as pre-
clinical models for gene and cellular therapies, enhanced
animal breeding programs and bioreactors [30]. This
study tested whether the mechanisms used to induce
pluripotency in human and mouse models can generate
and maintain pluripotency in bovine and equine cells.
Similarities and differences between the species in which
ES cells were or were not reported yet are described and
discussed.

Methods
All procedures were performed in accordance with the
Guide for the Care and Use of Laboratory Animals of
the National Institutes of Health and The ARRIVE
Guidelines, as well as with the rules issued by the

National Council for Control of Animal Experimentation
(CONCEA, Ministry of Science, Technology and Innova-
tions and Communications, and in accordance with Law
11.794 of October 8, 2008, Decree 6899 of July 15,
2009). Protocols were then approved by the Ethics Com-
mittee on Animal Use of the School of Veterinary Medi-
cine and Animal Science, University of São Paulo, Brazil
(protocol number 2913/2013), and by the Ethics Com-
mittee on the Use of Animals of the Faculty of Animal
Science and Food Engineering, University of São Paulo,
Brazil (protocols number 3526250717 and 2192250918).

Primary cell isolation and culture
Fibroblasts and adipose tissue-derived mesenchymal
cells (AdMsc) were used in this study. Bovine (Bos
taurus × Bos indicus) fetal fibroblasts (bFF) were isolated
from a 50-day gestation fetus, murine (Mus musculus)
fetal fibroblasts (mFF) were obtained from a 13-day ges-
tation pool of fetuses, equine (Equus caballus) fibro-
blasts were derived from adult females (eAF), and
human (Homo sapiens) fibroblasts used were acquired
commercially (hAF, HDFa, Thermo Scientific). Bovine,
human, and equine mesenchymal cells (bAdMSCs,
hAdMSC, eAdMSCs, respectively) were derived from ap-
proximately 2 cm3 of adipose tissue, minced and incu-
bated for 3 h at 38.5 °C in 0.040 g/mL collagenase IV
(Sigma Aldrich). Fibroblasts and AdMsc were main-
tained in Iscove’s Modified Dulbecco’s Media (IMDM,
Life Technologies) supplemented with 10% fetal bovine
serum (Hyclone) and antibiotics (Life Technologies).

Induction of pluripotency
A minimum of 3 independent replicates were performed
for each cell lineage for pluripotency induction. All cell
lineages used were under 10 cell passages.
Polycistronic lentiviral vectors (stem cell cassette

(STEMCCA) [31]) containing human OCT4, SOX2, c-
MYC, and KLF4 (hOSKM) or murine OSKM (mOSKM)
were produced through 293FT lipofection (Lipofecta-
mine 2000, Life Technologies) as described previously
[32]; however, we used a ratio of 6:1:2 μg of OSKM;
auxiliary vectors REV, TAT, and hgpm2; and packaging
vector VSVG, respectively.
Transduction was performed overnight [32, 33], and 5

or 6 days after transduction, the cells were transferred to
mitotically inactivated mouse embryonic fibroblasts
(MEFs) and cultured for at least 14 days. iPSC medium
consisted of DMEM/F12 KO (Life Technologies) supple-
mented with 20% KSR (Life Technologies), 1% glutamine
(Life Technologies), 1:1000 β-mercaptoethanol (Life
Technologies), 1% non-essential amino acids (Life Tech-
nologies), 10 ng/mL basic fibroblast growth factor
(bFGF, Peprotech), antibiotics (pen/strep, Life Technolo-
gies), and, when specified, leukemia inhibitor factor
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Fig. 1 hAdMSC, hAF, eAdMSC, eAF, bAdMSC, bFF, and mFF throughout in vitro cellular reprogramming: before transduction (× 200) and iPS
colonies after replating (× 40 and × 200)
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(mouse or human -hLIF or hLIF, 1000 U/mL, Millipore,
for mouse and human iPSCs, respectively) and 2i (two
inhibitor - GSK3 inhibitor or iGSK3, 3.3 μM, Stemgent
and MEK inhibitor or iMEK, 1 μM, Stemgent).
The first cell passage was performed manually in all

experiments, and clonal lineages were then cultured
in vitro. Human iPSCs (hiPSCs) did not respond well to
enzymatic digestion with collagenase, trypsin, or dispase
(data not shown). Murine, bovine, and equine (miPSCs,
biPSCs, eiPSCs) iPSCs were dissociated from each other

after a second passage with TrypLE Express (Life
Technologies).

Induced pluripotent cell characterization
Cell cultures were visually assessed every 2 days for mor-
phological changes. Alkaline phosphatase (AP) staining
was performed with the Leukocyte Alkaline Phosphatase
Kit (Sigma) following the manufacturer’s directions. At
least 3 lines of biPSCs, eiPSCs, hiPSCs, and miPSCs were
maintained for a minimum of 10 passages. At least one

Fig. 2 a, b Bovine in vitro reprogrammed cells (p0) with murine OSKM non-supplemented and supplemented with 2i+LIF, respectively. c, d
Equine in vitro reprogrammed cells (p0) with human OSKM non-supplemented and supplemented with 2i+LIF, respectively (× 200)

Fig. 3 Non-replicative cell colonies of bFF transduced with hOSKM. a × 40. b × 200
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lineage of biPSCs was maintained for more than 50 pas-
sages, 1 lineage of eiPSCs and of hiPSCs for 30 passages,
and 1 of miPSCs for more than 10 passages, and then
cryopreserved.
Immunofluorescence of OCT4 protein was based on a

protocol described in Oliveira et al. [34]. Briefly, iPSC
cell cultures were fixed in 4% PFA for 20 min and

maintained at 4 °C in PBS supplemented with 3% BSA
and 0.5% Triton X-100 for a minimum of 12–16 h. Cell
cultures were incubated in a blocking solution (PBS sup-
plemented with 3% BSA and 0.2% Tween-20) for 1 h at
room temperature. Cells were incubated with the pri-
mary antibody (OCT4 - rabbit anti OCT3/4, 1:50,
Sigma) for 12–16 h at 4 °C, washed, and subsequently

Fig. 4 AP detection and immunofluorescence of OCT4 in iPS colonies derived from human, equine, bovine, and mouse cells. × 200
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incubated with secondary antibodies (goat anti-rabbit
488, 1:100, Alexa Fluor, Invitrogen) for 2 h. Additionally,
cells were incubated without primary antibodies for con-
trol to assess the immunofluorescence technique. Detec-
tion of NANOG was performed in biPSCs and miPSCs
through immunofluorescence as described above (rabbit
anti-NANOG, 1:100, Abcam 80892) and by RT-qPCR
analysis in hiPSCs (Power SYBR Green, Life Technolo-
gies, F: 5′ CCAAAGGCAAACAACCCACTT 3′, R: 5′
CGGGACCTTGTCTTCCTTTTT 3′).
Embryoid bodies (EBs) were produced by seeding iPSC

cells in dishes previously treated with 0.6% agarose and
cultured in the absence of bFGF for 48–60 h. For

in vitro induction of spontaneous differentiation, EBs
were plated in dishes previously treated with 0.1% gel-
atin for a minimum of 6 days in DMEM/F12 KO supple-
mented with 20% FBS and antibiotics.
For in vivo differentiation assay, iPSC equine, bovine,

and human as well as control cells (not reprogrammed)
were injected subcutaneously in BALB/c nude female
mice. One to four injections of approximately 1.5 × 106

cells in 30% Matrigel (BD Biosciences) in PBS were
injected per animal. Tumors, when present, were col-
lected, fixed in PFA 4%, processed for histopathology,
and stained with hematoxylin and eosin stain (H&E) for
microscopic evaluation [35].

Fig. 5 Immunofluorescence of NANOG in iPS colonies derived from bovine (a) and mouse (b) cells. × 200

Fig. 6 Detection of NANOG expression in hiPS colonies
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Results
Human cells showed the first signs of morphological dif-
ferentiation into pluripotent cells approximately 10 days
after transduction. Human adult fibroblasts (hAF) and
human adipose-derived mesenchymal cells (hAdMSC)
displayed initial colony formation approximately 5 days
after transduction, and colonies were picked approxi-
mately 20 days after transduction (Fig. 1).

Enzymatic dissociation of hiPSCs did not allow culture
viability after incubation with TrypLE Express or Dispase
(BD Biosciences); therefore, hiPSCs were manually pas-
saged throughout the experiments.
Equine adult fibroblasts (eAF) and adipose tissue mes-

enchymal cells (eAdMSCs) were transduced with murine
or human OSKM, which resulted in induced colonies
approximately 3 days after transduction only with

Fig. 7 Embryoid bodies (a, c, e, g, × 100) and spontaneous in vitro differentiation (b, d, f, h; × 200) of hiPS, eiPS, biPS, and miPS
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human OSKM (Fig. 1) that were independent of hLIF/2i
supplementation (Fig. 2). Cells were replated approxi-
mately 15 days after transduction.
Bovine fetal fibroblasts (bFF) and adipose tissue mesen-

chymal cells (bAdMSCs) were transduced with murine or
human OKSM, and each group was cultured in iPSC
medium supplemented with 2i+LIF or not. After approxi-
mately 10 days, bFF cells transduced with murine OSKM
developed colonies morphologically similar to mouse
iPSCs or ES cells. bFF cells transduced with human
OSKM developed non-replicative cell colonies approxi-
mately 30 days post-transduction (Fig. 3). The bAdMSC
lineage used in this study did not develop colonies after
transduction with either hOSKM or mOSKM.
Murine fetal fibroblasts (mFF) were transduced with

murine OSKM, and the first colonies developed approxi-
mately 3 days after transduction and were clonally
replated after 15 days. Only colonies cultured with LIF
maintained typical morphology after replating.
Alkaline phosphatase enzyme (AP) and OCT4 were

detected in iPSC colonies from all four species (Fig. 4).
NANOG expression was detected in biPS and miPS by
immunofluorescence (Fig. 5) and in hiPS clonal lines by
RT-qPCR (Fig. 6). eiPSCs were further characterized
elsewhere (Pessôa et al. 2019).
Embryoid bodies are presented in Fig. 7. No teratoma

formation was observed when human or equine iPS cells
were inoculated in nude mice after 6 months. Tumors
were collected from animals injected with biPSCs or
miPSCs (Fig. 8) after approximately 2 months. Histo-
pathological evaluation revealed the growth of at least 3
different tissues per lineage, including well- and poorly
differentiated specimens. Animals that received mesen-
chymal cells or fibroblasts did not present teratoma

formation. The macroscopic identification of teratomas
derived from biPSCs in different periods is presented in
Fig. 9.

Discussion
Currently, the most common criteria for the
characterization of human and murine embryonic stem
cells include the presence of a typical phenotype, which is
described by an increased nucleus/cytoplasm ratio; the ex-
pression of pluripotency markers; high telomerase activity;
and in vitro and in vivo pluripotency [36]. In other species,
however, these criteria were not yet reproducible until the
advent of iPSC technology. In cattle, for example, isolation
of embryonic cells results in colonies that may correspond
to some of the criteria required for human and murine
cells; however, in vitro culture of these stem cells revealed
differences from the characteristics outlined above in sev-
eral reports [37–41].
Possible causes for these inter-species differences are

the difficulties of maintaining pluripotency conditions
in vitro, as well as the lack of knowledge about factors
that regulate stem cells isolated from embryos of domes-
tic species. Therefore, in these species, they are called
stem-cell-like [42].
Some studies have already reported bovine and equine

potential iPSC cell lines with interspecific vectors (hu-
man, swine, or murine cDNAs), but obtained cells with
divergent characteristics [8, 11, 43–45]. Huang et al. [46]
reported the use of a non-integrative polycistronic vector
containing bovine OCT4, SOX2, KLF4, and c-MYC
driven by independent promoters. Media were supple-
mented with LIF, MEK1/2, and GSK3 inhibitors (2i);
however, only quiescent non-proliferating cells were
generated. Interestingly, this “iPS-like” state described by

Fig. 8 Photomicrograph of a teratoma derived from miPS showing three different tissues: (A1) striated muscle, (A2) cartilage, and (A3)
pseudostratified ciliated epithelium. Photomicrograph of a tumor derived from biPS composed of (B1) undifferentiated tissue with high mitotic
activity, (B2) adipose tissue, and (B3) fibroblast-like fusiform cells. Hematoxylin and eosin, objective × 40

Bressan et al. Stem Cell Research & Therapy          (2020) 11:247 Page 8 of 12



Huang and collaborators showed similarity to our non-
proliferating bovine colonies obtained when human
OKSM was used. Zhao et al. [47] reported the mainten-
ance of biPSCs for more than 50 passages when repro-
gramming was achieved through piggyBac transposon
integration of CAG-promoting OSKM, and Han et al.
[10] were able to maintain biPSC cell lines for at least 16
passages when embryonic fibroblasts were used for re-
programming through the retroviral mechanism. None-
theless, bovine reprogramming factors were also used
elsewhere [47, 48], and the biPSCs presented showed
characteristic pluripotency features, such as teratoma
formation and pluripotency markers OCT4, SOX2,
NANOG, and others (for extensive review, see Pessôa
et al. 2019b).
eiPSCs have already been obtained by transposon-

mediated or retroviral expression of human or murine
OSKM or OSK (without c-Myc) in fetal or adult fibro-
blasts [49–51] [45, 52, 53], keratinocytes [54], blood and
muscle cells [55], adipose tissue cells [45, 56], and um-
bilical cord tissue cells [45]. Overall, these cells pre-
sented different pluripotency features, such as teratoma
and embryoid body formation, alongside the detection of
pluripotency markers OCT4 and NANOG, as well as

others, as recently reviewed [2]. Regarding medium sup-
plementation, although there are reports of eiPS
dependent of the combination of LIF and FGF [49–51,
53], and even only LIF [52, 54, 56], eiPSCs produced
here were dependent exclusively of bFGF, as also seen in
other reports [45, 55].
Herein, cellular reprogramming was performed in bo-

vine and equine somatic cell cultures through the lenti-
viral transduction of interspecific OSKM (murine and
human). We also generated murine and human iPSC cells,
aiming to define a reproducible and controlled pluripo-
tency induction protocol for domestic species. The iPS
cells derived herein were positive for NANOG by im-
munofluorescence, which was used as a pluripotency re-
porter because no exogenous NANOG was used for
reprogramming. The iPSC lineages were characterized
after 10 passages and were maintained at least 30 passages
in vitro. Exogenous expression was not silenced even after
30 passages, as expected and reported previously in other
studies using viral vectors [57, 58]. Similarities and differ-
ences between species are summarized in Table 1.
In this study, interspecific transcription factors were

able to reprogram somatic cells into a pluripotent state.
In fact, evidence that regulatory interactions are

Fig. 9 Balb/c nude mice injected with bFF (a); biPS, 30 days (b); and biPS, 37 days (c). The same animal is presented in b and c

Table 1 Summary of pluripotency-related characteristics of hiPS, eiPS, and biPS derived from fibroblasts or mesenchymal cells and
miPS derived from fibroblasts

Exogenous transcription factors hiPS eiPS miPS biPS

human OSKM Murine OSKM Human OSKM Murine OSKM Murine OSKM Human OSKM

Morphology Flat n.a.* Flat Dome-shaped Dome-shaped Dome-shaped

1st appearance of typical colonies 5 days n.a.* 3 days 3 days 7 days > 30 days

Replating Manual n.a.* TrypLE TrypLE TrypLE n.a.**

AP + n.a.* + + + –

EB + n.a.* + + + n.a.**

Tumor formation – n.a.* – + + n.a.**

LIF dependence for iPSCs generation – n.a.* – + – n.a.**

n.a.* not assessed due to no colony formation, n.a.** not assessed due to quiescent-like colonies
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conserved among organisms has already been reported
[59, 60]. When OCT4, SOX2, c-Myc, and KLF4 cDNA
and protein are compared between species, both equine
and bovine OSKM transcription factors are more similar
to human than murine homologs [Table 2, mRNA simi-
larity % (protein similarity %)]*. The reason why bovine
fibroblasts were successfully reprogrammed with murine
but not human OSKM is still unclear. However, our re-
sults stress the need for further research into a possible
new mechanism of transcriptional networks.

Conclusions
Herein, we showed the generation of equine and bovine
stem cells in vitro through the expression of exogenous
and interspecific transcription factors. Although a simi-
lar protocol was able to reprogram these cells, it was ob-
served that they differ regarding requirements and
characterization. The acquaintance and maintenance of
pluripotency in vitro provide a powerful tool to improve
the understanding of early development in these species
and may also facilitate the production of genetically im-
proved organisms if combined with other reproductive
technologies.
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