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Abstract: Alpha-emitting radioisotopes are the most toxic among all radionuclides. In particular,
medium to long-lived isotopes of the heavier metals are of the greatest concern to human health and
radiological safety. This review focuses on the most common alpha-emitting radionuclides of natural
and anthropogenic origin in wild mushrooms from around the world. Mushrooms bio-accumulate a
range of mineral ionic constituents and radioactive elements to different extents, and are therefore
considered as suitable bio-indicators of environmental pollution. The available literature indicates
that the natural radionuclide 210Po is accumulated at the highest levels (up to 22 kBq/kg dry weight
(dw) in wild mushrooms from Finland), while among synthetic nuclides, the highest levels of up
to 53.8 Bq/kg dw of 239+240Pu were reported in Ukrainian mushrooms. The capacity to retain the
activity of individual nuclides varies between mushrooms, which is of particular interest for edible
species that are consumed either locally or, in some cases, also traded on an international scale.
The effective radiation dose from the ingestion of this food can reportedly range from 0.033 µSv/kg dw
to 26.8 mSv/kg and varies depending on the country. Following pollution events, such consumption
may expose consumers to highly radiotoxic decay particles produced by alpha emitters.

Keywords: alpha-emitters; radioactivity; exposure; food; fungi; anthropogenic radionuclides;
naturally occurring radionuclides

1. Introduction

Mushrooms are a highly biodiverse group of organisms, a part of the traditional gastronomic
heritage of the world, and also an important source of nutrients for small and large wildlife [1].
Some mushrooms are seen as having healing properties and, above all, many, when well-prepared,
have a delicious taste [2]. Mushrooms typically grow in forests and fields, but almost all ecosystems
will support their growth in the proper substrate medium [3]. These fruiting bodies of fungi are
relatively rich in minerals and trace metals (including radionuclides) on a dry weight (dw) basis [4–6].

Although the phenomenon of radioactivity was discovered over 100 years ago, the special
significance recorded in the pages of radiochemistry and nuclear chemistry history was realized from
the 1940s to the 1960s [7–9]. The development and use of nuclear energy and the testing of nuclear
weapons have in the past created a flux of released artificial radiation emitters that have been deposited
in various environmental and food compartments, undergone biogeochemical cycles, and thus
necessitate the need for control and surveillance measures [9–12]. In particular, nuclear weapons
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testing has led to massive contamination of nuclear test sites [13], and atmospheric detonations
(1945–1980) and major accidents at nuclear power plants (i.e., Chernobyl in 1986 and Fukushima
in 2011) have resulted in a substantial spread of radioactive isotopes all over the world. To some
extent, emissions can also arise from current human activities such as mining, coal burning, and oil
and gas exploration [14–20]. A range of edible mushrooms, including species foraged from the wild,
are efficient bio-accumulators of various radioactive contaminants [21–26].

Most of the studies on radioactivity in edible mushrooms reported so far have been dedicated to
the activity concentration of less hazardous gamma emitters (electromagnetic radiation), such as the
artificial nuclides 134/137Cs, and the natural nuclide, 40K [3,23,27–32]. From a radio-toxicological point
of view, the nuclides of the greatest importance are medium- and long-lived alpha-radioactive isotopes.
Alpha decay (α-decay) is a form of decay where an atomic nucleus produces an alpha particle and
changes into a different atomic nucleus. An alpha particle equals the 4He nucleus, containing two
protons and two neutrons. Alpha particles have energy from 2 (147Sm) to 8.8 MeV (212Po), with a
median of 5 MeV and a velocity of about 15,000 km/s. Because of their rather large mass and low speed,
alpha particles interact with other atoms. The high mass and charge of alpha particles, in relation
to other forms of nuclear radiation, give them greater ionizing power, but the penetration depth is
much smaller [30]. Every significant alpha emitter present in the environment belongs to Group A
(highly toxic radioisotopes) [33]. Thus, the ingestion of an alpha emitter and the resulting exposure to
the internal organs of humans or animals could be of high concern when the source is contaminated
food or feed [34,35]. At present, 210Po is judged as one of the most hazardous radionuclides. It is
10,000 times more toxic than hydrogen cyanide, and alongside the botulinum toxin, it is one of the most
toxic substances ever known [36]. The use of 210Po as a poison to kill Alexander Litvinenko in 2006
increased interest in the radio-toxicological properties of this radioisotope as well as its occurrence in
the environment and bioaccumulation in food products [37].

The analysis of alpha-emitting nuclides in mushrooms, foods and other biological materials is very
laborious, highly time-consuming, and expensive, because of the complicated analytical procedures
that are required for low or ultralow physical occurrence and the required sensitivity of detection,
selectivity and accuracy of analytical equipment [38]. In consequence, the amount of information
available on the occurrence of alpha emitters in environmental matrices including mushrooms is much
lower in comparison to other radionuclides and especially, as mentioned, the gamma emitters.

The aim of this review is to present an overview on the occurrence and bio-concentration of
alpha radioactivity in mushrooms worldwide along with consideration of the health aspects for
human consumers.

2. Alpha Emitters in Mushrooms

Analytical data on the occurrence of the alpha emitters (210Po, 222Rn, 226Ra, 228Th, 230Th, 232Th,
234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu, 241Am) in mushrooms were collected from the available
literature (49 papers and reports) and are systematically presented in Tables 1 and 2. In a few cases,
the collected literature data on the radioactivity concentration were converted (using a consensus value
of 10% dry matter relative to fresh mushrooms) with the aim of normalization, comparability and
presentation of the results based on a dry weight (dw). Unlike certain other nutritional elements,
alpha-emitting radionuclides are not essential for fungi, but they are absorbed by the mycelium,
bio-accumulated in the fruiting bodies (mushrooms) and cycled in the food webs which extend to
animals and humans. The risk from low-level radiation is still unknown and is based on the linear
hypothesis which has been in operation that demonstrated that the relationships between hazard
and radiation dose at high levels of exposure also apply to low levels [33,39]. Baeza et al. analyzed
239+240Pu, 234,238U, 228,230,232Th, and 226Ra bioaccumulation and distribution in a series of cultures
of the species Pleurotus eryngii under controlled laboratory conditions. During the growth period,
226Ra was located in the gills of the cap, while 239+240Pu, 234,238U, and 228,230,232Th were observed
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mostly in the remaining part of the cap [40]. However, there are no studies on inter-species differences
in alpha-emitters accumulation in cultivated mushrooms under controlled conditions.

2.1. Naturally Occurring Radioisotopes in Mushrooms

Natural radiation includes permanent low-level cosmic radiation and the radiation arising from
the decay of naturally occurring radionuclides, namely the primordial radioactive elements in the
crust of the Earth and their radioactive decay products (natural radioactive decay chains). Thus,
human exposure to radiation has always been an unavoidable effect of the ubiquitous distribution
of natural radioactivity [41]. Cosmogenic radionuclides (i.e., 3H, 14C) are produced constantly by
a bombardment of stable nuclides by cosmic rays, principally in the atmosphere. The origin of the
primordial natural radionuclides of the Earth (i.e., 40K, 87Rb, 235U, 238U, 232Th) is connected to the
phenomenon of nucleosynthesis in stars, and their half-lives are longer or comparable with the age
of the Earth. The secondary natural radioactive elements found in the environment are directly
joined to the very long half-lives of the parents of these chains: the uranium (parent nuclide 238U),
thorium (parent nuclide 232Th), and actinium (parent nuclide 235U) decay chains [42].

Technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials
including, usually, industrial wastes or by-products enriched with radioactive elements found in the
environment, such as uranium (U), thorium (Th), and potassium (K) and any of their decay products,
such as radium (Ra) and radon (Rn), polonium (Po) and radiolead (Pb) [14,43–46]. The presence of
nuclides in mushrooms and plant-based foods depends on the geological structure of the lithosphere,
the agronomic condition of arable soils, and the climate [47,48]. In general, higher activity concentrations
of radionuclides have been measured in Ramsar (Iran), Kerala and Madras (India), Yangjiang (China),
Pakistan, Brazil and Sudan, in high natural radioactivity background areas or impacted by TENORM [15,
47,49–53].

Activity concentrations of naturally occurring radionuclides accumulated in mushrooms
worldwide vary over a wide range—about eight orders of magnitude (Table 1). The highest
activity concentration among all the mushrooms studied so far has been reported for polonium
210Po (T1/2 = 138.4 days) that appears at the end of the decay chain of uranium 238U and is an
interesting natural element to investigate due to its radioecology (high bioconcentration factor) and
one of the highest radiotoxic characteristics [48,54]. 210Po enters the biosphere through various routes
of terrestrial and marine radio-ecological pathways. The major source of contamination of flora
and fauna with 210Po basically comes from contaminated soil or through aerosol-associated fallout
from the atmosphere [48,55,56]. 210Po is more easily accumulated by mushrooms and has higher
bioconcentration factors when compared to other alpha emitters [57]. The increase in polonium
concentration in mushrooms may also be related to the chemical similarities with sulfur or selenium
elements [58]. Polonium is an element from the oxygen family, together with sulfur, selenium and
tellurium—so called chalcogen elements. The susceptibility of fungi to higher accumulation of 210Po
than other alpha emitters could be explained in part by the type and quantity of sulfur (S) ligands
that they produce, but this has not been studied so far. Mushrooms differ in their contents of sulfur,
which is a major chemical element in mushrooms as well as the main element in ligands for, e.g., Hg or
Se. The type and quantity of sulfur ligands associated with 210Po that bio-accumulate in mushrooms is
a species-specific feature that is dependent on environmental conditions related to the soil bedrock
background composition as well as anthropogenic pollution, as in the case of several other metallic
elements [54].

The highest activity concentrations of 210Po have been reported in mushrooms from
Scandinavia [23,59,60] and in mushrooms growing close to a uranium mine in Germany [61], while the
lowest levels are seen in collections from Poland and New Zealand [57,62–66] (Table 1). The authors
Guillén and Baeza (2014) noted that the pattern distribution of 210Po seemed to be species-dependent [67],
but a comparison of inter-genus data shows that the most important aspects are local conditions, e.g.,
natural radioactivity, atmospheric fallout, geological conditions, etc. [20,23,57,59,61,63].
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Radium, 226Ra (T1/2 = 1600 years), along with 210Po, belongs to the natural series of 238U [48].
The highest 226Ra activity concentrations have been reported in mushrooms collected in the vicinity of
uranium mines or places with a higher natural uranium background [61,68,69]. The variation of 226Ra
occurrence in mushrooms is substantially lower in the areas not affected by higher 210Po and 226Ra
backgrounds [61,70–79] (Table 1).

The uptake of thorium (228Th T1/2 = 1.91 years; 230Th T1/2 = 7.54 × 104 years;
232Th T1/2 = 1.4 × 1010 years) by mushrooms, as well as uranium (238U T1/2 = 4.47 × 109 years;
235U T1/2 = 7.04 × 108 years; 234U T1/2 = 2.45 × 105 years) [80,81] is lower than that of 210Po and
226Ra (Table 1), and this can be related to low bio-concentration factors for Th and U, regardless of
their abundance in soil [4,5,82]. However, significant differences between uranium and thorium
activity concentrations have been reported. In the case of thorium, the highest activity concentrations
of 228Th and 232Th have been noticed in Brazil, with the lowest in Poland [73,76,78,83–91]. In the
case of uranium, the highest activity concentrations of the alpha emitters 234U, 235U and 238U
have been reported in mushrooms from Germany, Turkey, Finland, and Slovakia [60,61,86,88,90],
with the lowest being in Poland, Serbia, Bosnia and Herzegovina as well as China (Yunnan) and New
Zealand [58,62,70,71,78,83,84,89,91–95]. If the uranium activity is compared to its daughter nuclide,
226Ra, the maximum radium activity concentration is always higher than the activity of the parent
(238U). This might suggest that they are not in equilibrium in mushrooms. The increase in radium
activity concentration might be due to the chemical similarities with calcium, in much the same way as
polonium is physically and chemically an analog of the chalcogen elements (group 16 of the periodic
table) [58,67,96]. However, the reported data have shown that mushrooms may bioaccumulate 234U
and 238U more effectively than 230Th and 232Th, while both elements (U and Th) were bio-excluded
(bioaccumulation factor values in the range from 0.005 to 0.19) [86,89,91].
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Table 1. The activity concentration ranges of naturally occurring alpha-emitting radioisotopes in wild-growing mushrooms (the Latin names of the species are cited as
described by the authors—the current names of some species can be found on the Index Fungorum web site) collected from different countries as well as the effective
dose from mushrooms consumption presented as a proportion of total dietary consumption (µSv/kg dw) (* calculation based on the isotopic activity concentration and
effective dose coefficients (Sv/Bq) for ingestion of radionuclides for adults [97]).

Radionuclide
(Sv/Bq) Species Activity Concentration

(Bq/kg dw)
Effective Dose *

(µSv/kg dw) Country References

210Po
(1.2 × 10−6)

Baorangia bicolor, Boletus bainiugan, B. calopus, B. flammans, B. obsclereumbrinus,
Butyriboletus roseoflavus, Rubroboletus sinicus, Rugiboletus extremiorientale,

Wolfiporia cocos
1.66–308 1.99–370 China [58,98,99]

Albatrellus ovinus, Cantharellus cibarius, Cortinarius armillatus, C. caperatus, Craterellus
cornucopioides, C. tubaeformis, Hygrophorus camarophyllus, Lactarius rufus,

L. scrobiculatus, L. utilis, L. torminosus, Leccinum variicolor, L. versipelle, L. vulpinum,
Rozites caperatus, Russula aeruginea, R. decolorans, R. paludosa, R. parazurea,

R. xerampelina, R. vinosa, Suillus luteus

6–22,000 7.2–26,400 Finland [59,60]

Agaricus sp., Boletus sp., Leccinum sp., Lepiota sp., Lycoperda sp., Suillus sp.,
Xerocomus sp. 1.0–640 1.2–768 Germany [61]

Not specified <9 <10.8 New
Zealand [62]

Leccinum scabrum, L. versipelle, Russula paludosa, R. decolorans 4.7–198 5.64–238 Norway [23]

Amanita muscaria, A. rubescens, A. phalloides, Agaricus silvicolae-similis, Boletus edulis,
Cantharellus cibarius, Hydnum repandum, Imleria badia, Lactarius torminosus, Leccinum

scabrum, L. versipelle, L. aurantiacum, L. aurantiacum var. quercinum, L. vulpinum,
L. aurantiacum var. duriusculum, Leccinellum pseudoscabrum, Lycoperdon excipuliforme,

Macrolepiota procera, Marasmius oreades, Russula cyanoxantha, R. nobilis, R. solaris,
Scleroderma citrinum, Strobilomyces strobilaceus, Tylopilus felleus, Suillus bovinus,

S. luteus, Xerocomus badius, X. subtomentosus

0.23–17 0.28–20.4 Poland [57,63–66,100]

222Rn Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus 16–36 - Russia [78]

226Ra
(2.8 × 10−7)

Amanita fulva, Armillaria mellea, Boletus edulis, Cantharellus cibarius, Flammulina
velutipes, Gomphus clavatus, Hydnum repandum, Leccinum scabrum, Macrolepiota

procera, Paxillus involutus, Rozites caperata, Russula cyanoxantha, R. emetica,
Suillus variegatus, Xerocomus badius

22–48 6.16–13.4 Austria [70]

Agaricus campestris, A. blazei, Agaricus sp., Lentinula edodes, Pleurotus eryngii,
P. ostreatus, P. ostreatoroseus 7.3–66 2.04–18.5 Brazil [74]
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Table 1. Cont.

Radionuclide
(Sv/Bq) Species Activity Concentration

(Bq/kg dw)
Effective Dose *

(µSv/kg dw) Country References

Agaricus blazei, Armillaria solidipes, Boletus aereus, B. brunneissimus, B. edulis,
Boletus sp., Cantharellus cibarius, Cyclocybe parasitica, Flammulina velutipes,

Gomphus floccosus, Hygrophorus russula, Hypsizygus ulmarius, Lactarius hatsudake,
L. volemus, Lentinula edodes, Leucocalocybe mongolica, Macrolepiota albuminosa,

Neoboletus obscureumbrinus, Pleurotus djamor, Termitomyces albuminosus,
Tylopilus balloui, T. felleus

0.05–3.65 0.014–1.02 China [79]

Terfezia sp. 419 117 Egypt [68]

Not specified 29.3–61.6 8.20–17.3 France [71]

Agaricus sp., Boletus sp., Leccinum sp., Lepiota sp., Lycoperdon sp., Suillus sp.,
Xerocomus sp. 0.3–512 0.084–143 Germany [61]

Agaricus campestris, A. xanthodermus, Armillaria mellea, Boletus sp., Bovista plumbea,
Chroogomphus rutilus, Clavariadelphus truncates, Clitocybe nebularis, Clitocybe sp.,

Cortinarius sp., Entoloma sp., Hydnellum concrescens, Hydnum rufescens, Hygrocybe
acutoconica, Inocybe sp., Lactarius salmonicolor, Lepista flaccida, L. nuda, Lycoperdon
perlatum, Macrolepiota mastoidea, Marasmius oreades, Melanoleuca cognata, Mycena

seynii, Ramaria formosa, R. obtusissima, Russula delica, Sarcodon martioflavus, Suillus
collinitus, Vascellum pratense

0.3–1.0 0.084–0.28 Greece [77]

Terfezia sp., and not specified edible mushrooms 60–700 16.8–196 Iran [68,69]

Terfezia sp. 439 122 Kuwait [68]

Pleurotus squarrosulus, Psathyrella atroumbonata, Pleurotus tuber-regium, Termitomyces
striatus, T. robustus 2.68–21.6 0.75–6.05 Nigeria [76]

Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus 29–78 8.12–21.8 Russia [78]

Amanita muscaria, A. curtipes, Clitocybe sp., Gymnopilus penetrans, Hebeloma
cylindrosporum, Lactarius deliciosus, Lycoperdon perlatum, Plerurotus eryngii, Rhizopogon

roseolus, Russula cessans, R. toruosa, Tricholoma equestre, T. pessandatum, T. terreum
0.021–62 0.006–17.4 Spain [40,72]

Boletus sp., Brunneoporus malicola, Fomitopsis pinicola, Ganoderma applanatum,
Hericium clathroides, Megacollybia platyphylla, Pluteus cervinus, Suillellus luridus 4–14 1.12–3.92 Serbia [75]

Terfezia sp. 438 122 Tunisia [68]

Agaricus campestris, Agaricus porphyrocephalus, Boletus edulis, Craterellus
cornucopioides, Cantharellus cibarius, Lepiota cristata, Lycogala epidendrum, Marasmius

oreades, Morchella esculenta, Nectria cinnabarina, Stropharia coronilla
4.4–5.2 1.23–1.46 Turkey [73]
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Table 1. Cont.

Radionuclide
(Sv/Bq) Species Activity Concentration

(Bq/kg dw)
Effective Dose *

(µSv/kg dw) Country References

228Th
(7.2 × 10−8)

Not specified 3.1–127 0.22–9.14 Brazil [87]

Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius
deliciosus, Leccinum sp., Suillus luteus 0.34–31.8 0.025–2.29 Slovakia [86]

Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius deliciosus,
Macrolepiota procera, Plerurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus
bovinus, Terfezia arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp.

1.4–13 0.11–0.94 Spain [40,84,85]

230Th
(2.1 × 10−7)

Leccinellum pseudoscabrum, Leccinum aurantiacum, L. aurantiacum var. duriusculum, L.
aurantiacum var. quercinum, L. vulpinum 0.04–2.13 0.001–0.16 Poland [91]

Cantharellus cibarius, Grifola frondosa, Lactarius deliciosus, Leccinum sp., Suillus luteus 0.05–3.75 0.004–0.27 Slovakia [86]

Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum,
Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Plerurotus eryngii,
Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri,

Tricholoma equestre, T. terreum, Tricholoma sp.

0.053–6.9 0.004–0.50 Spain [40,83–85]

232Th
(2.3 × 10−7)

Not specified 0.6–142 0.14–32.7 Brazil [87]

Terfezia sp. 1.76–3.71 0.41–0.85 Iraq [89]

Pleurotus squarrosulus, Psathyrella atroumbonata, Pleurotus tuber-regium, Termitomyces
striatus, T. robustus 8.57–14.3 1.97–3.29 Nigeria [76]

Leccinellum pseudoscabrum, Leccinum aurantiacum, L. aurantiacum var. duriusculum, L.
aurantiacum var. quercinum, L. vulpinum 0.02–0.63 0.005–0.15 Poland [91]

Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus 13–33 2.99–7.59 Russia [78]

Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius
deliciosus, Leccinum sp., Suillus luteus 0.04–4.59 0.009–1.06 Slovakia [86]

Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum,
Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Plerurotus eryngii,
Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri,

Tricholoma equestre, T. terreum, Tricholoma sp.

0.061–10.7 0.014–2.46 Spain [40,83–85]

Agaricus campestris, A. porphyrocephalus, Amanita rubescens, Boletus edulis, Bonomyces
sinopicus, Cantharellus cibarius, Craterellus cornucopioides, C. lutescens, Hygrophoropsis

aurantiaca, Hypholoma fasciculare, Hypholoma spp., Lepiota cristata, Lycogala
epidendrum, Marasmius oreades, Morchella esculenta, Nectria cinnabarina, Paxillus

involutus, Pleurotus cornucopiae, Pycnoporus cinnabarinus, Pycnoporus spp., Russula
delica, Stropharia coronilla

0.35–182 0.081–41.9 Turkey [73,88,90]
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Table 1. Cont.

Radionuclide
(Sv/Bq) Species Activity Concentration

(Bq/kg dw)
Effective Dose *

(µSv/kg dw) Country References

234U
(4.9 × 10−8)

Not specified 0.26 0.013 Bosnia and
Herzegovina [56]

Boletus bainiugan 0.19–0.89 0.009–0.044 China [58]

Fomes fomentarius 1.0–6.90 0.049–0.34 Kosovo [92,95]

Not specified <5 <0.24 New
Zealand [62]

Armillaria mellea, Boletus edulis, Lactifluus vellereus, Leccinellum pseudoscabrum,
Leccinum aurantiacum, L. aurantiacum var. duriusculum, L. aurantiacum var. quercinum,

L. vulpinum, Macrolepiota procera, Xerocomus badius
0.014–0.43 0.001–0.021 Poland [83,91]

Not specified 0.48–0.80 0.023–0.039 Serbia [93]

Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius
deliciosus, Leccinum sp., Suillus luteus 0.46–86.3 0.022–4.23 Slovakia [86]

Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum,
Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Pleurotus eryngii,

Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, Terfezia boudieri,
Tricholoma equestre, T. terreum, Tricholoma sp.

0.15–7.0 0.007–0.34 Spain [40,83–85]

235U
(4.7 × 10−8)

Not specified 0.02 0.009 Bosnia and
Herzegovina [94]

Boletus bainiugan 0.003–0.064 0.0001–0.003 China [58]

Not specified 1.56–5.61 0.073–0.27 France [71]

Fomes fomentarius 0.070–0.52 0.003–0.024 Kosovo [92,95]

Armillaria mellea, Boletus edulis, Lactifluus vellereus, Macrolepiota procera,
Xerocomus badius 0.006–0.010 0.0003–0.0005 Poland [83]

Not specified 0.02–0.03 0.009–0.01 Serbia [93]

Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum,
Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Plerurotus eryngii,
Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri,

Tricholoma equestre, T. terreum, Tricholoma sp.

0.007–0.42 0.0003–0.019 Spain [40,83,84]
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Table 1. Cont.

Radionuclide
(Sv/Bq) Species Activity Concentration

(Bq/kg dw)
Effective Dose *

(µSv/kg dw) Country References

238U
(4.5 × 10−8)

Amanita fulva, Armillaria mellea, Boletus edulis, Cantharellus cibarius, Flammulina
velutipes, Gomphus clavatus, Hydnum repandum, Leccinum scabrum, Macrolepiota

procera, Paxillus involutus, Rozites caperata, Russula cyanoxantha, R. emetica, Suillus
variegatus, Xerocomus badius

44–92 1.98–4.14 Austria [70]

Not specified 0.27 0.013 Bosnia and
Herzegovina [94]

Agaricus blazei, Armillaria solidipes, Boletus aereus, B. bainiugan, B. brunneissimus, B.
edulis, Boletus sp., Cantharellus cibarius, Cyclocybe parasitica, Flammulina velutipes,

Gomphus floccosus, Hygrophorus russula, Hypsizygus ulmarius, Lactarius hatsudake, L.
volemus, Lentinula edodes, Leucocalocybe mongolica, Macrolepiota albuminosa, Neoboletus
obscureumbrinus, Pleurotus djamor, Termitomyces albuminosus, Tylopilus balloui, T. felleus

0.15–7.68 0.007–0.34 China [58,79]

Cantharellus cibarius, C. tubaeformis, Craterellus cornucopioides, Lactarius rufus 92 4.14 Finland [60]

Boletus sp., Suillus sp., Xerocomus sp., Leccinum sp., Lepiota sp., Agaricus sp.,
Lycoperdon sp. 0.1–259 0.004–11.6 Germany [61]

Terfezia sp. 2.3–5.88 0.10–0.26 Iraq [89]

Fomes fomentarius 0.7–11.3 0.03–0.51 Kosovo [92,95]

Not specified 4 0.18 New
Zealand [62]

Armillaria mellea, Boletus edulis, Lactifluus vellereus, Leccinellum pseudoscabrum,
Leccinum aurantiacum, L. aurantiacum var. duriusculum, L. aurantiacum var. quercinum,

L. vulpinum, Macrolepiota procera, Xerocomus badius
0.015–0.51 0.0007–0.023 Poland [83,91]

Boletus edulis, Leccinum aurantiacum, L. scabrum, Paxillus involutus 7.4–19 0.33–0.85 Russia [78]

Not specified 0.67–1.11 0.03–0.05 Serbia [93]

Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius
deliciosus, Leccinum sp., Suillus luteus 0.45–99.4 0.020–4.47 Slovakia [86]

Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum,
Lactarius deliciosus, Macrolepiota procera, Omphalotus olearius, Pleurotus eryngii,

Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia arenaria, T. boudieri,
Tricholoma equestre, T. terreum, Tricholoma sp.

0.12–7.30 0.005–0.33 Spain [40,83–85]

Amanita rubescens, Bonomyces sinopicus, Cantharellus cibarius, Craterellus lutescens,
Hygrophoropsis aurantiaca, Hypholoma fasciculare, Hypholoma spp., Pycnoporus

cinnabarinus, Pycnoporus spp., Paxillus involutus, Pleurotus cornucopiae, Russula delica
1.03–168 0.046–7.56 Turkey [88,90]



Int. J. Environ. Res. Public Health 2020, 17, 8220 10 of 20

2.2. Anthropogenic (Artificial, Man-Made) Radioisotopes in Mushrooms

Anthropogenic radioactive contamination of the environment became a reality on 16 July 1945,
when the first fission weapon was tested near the town of Alamogordo (New Mexico, USA).
Nuclear weapon testing and accidents in civil installations have led to massive artificial (man-made)
radioactive pollution that has been spread all over the world. Since 1945, at least eight nations have
detonated 2047 nuclear devices, with between 423 and 520 being carried out in the atmosphere [19].
The production of plutonium and other transuranic isotopes has been estimated at 0.33 PBq of 238Pu,
7.8 PBq of 239Pu, 5.2 PBq of 240Pu, 170 PBq of 241Pu, 0.00037 PBq of 241Am, and 0.00026 PBq of 244Cm.
In Europe, the nuclear accident at the Chernobyl Nuclear Power Plant caused the biggest radiation
pollution event in the history of nuclear energy [101,102]. The incident released 20 kg of plutonium
(0.025 PBq of 238Pu, 0.055 PBq of 239,240Pu, 5 PBq of 241Pu), 0.006 PBq of 241Am, and 0.006 PBq of
243,244Cm [9,103–105]. The most recent nuclear accident, namely at the Fukushima Daiichi nuclear
power plant (NPP) was estimated to be 15 times smaller than that at Chernobyl [102]. It has released
about 2.4–19 GBq of 238Pu, 0.41–3.2 GBq of 239Pu, 0.51–3.2 GBq of 240Pu and 9.8–100 GBq of 242Cm [106].
Since 2015, the atmospheric releases from the Fukushima Daiichi NPP have continued, but at very low
levels which were not of radiological concern [106]. Thus, the medium- and long-lived radioactive
isotopes and especially the alpha-isotopes (such as 238Pu, 239Pu, 240Pu, 241Am, 243,244Cm, 237Np) are of
the greatest importance from the point of view of human health and functioning of ecosystems, as they
are radioactive and toxic metals, and hazardous environmental pollutants [54,107].

Also activity concentrations of artificial radionuclides accumulated in mushrooms worldwide vary
over a wide range (Table 2), but their reported range of contamination of mushrooms is smaller when
compared to natural radioisotopes (Tables 1 and 2). Nevertheless, the presence of man-made nuclides
in mushrooms and plant-based foods depends on local radioactive pollution conditions (nuclear
test sites, facilities, accidents and distance from these sites) and is influenced by global atmospheric
fallout [9,12,108,109]. Due to analytical difficulties, very few studies have dealt with anthropogenic
alpha emitters released into the environment, and have instead focused on the most common radioactive
elements, namely plutonium and americium, as well as uranium 236U [83–86,92,108,110–118].

There is only one article on 236U (T1/2 = 2.34 × 107 years) activity concentration in mushrooms [92],
which is an activation product of 235U or a decay product of 240Pu. Its presence has been reported
due to work on depleted uranium dispersion and pollution in the environment of the Balkan region
as a result of the Balkan (Kosovo) War in 1999. The 236U activity concentrations in mushrooms
determined by Jia et al. 2004 [92] ranged from 0.014 to 0.038 Bq/kg dw (Table 2). Among the four major
plutonium isotopes, three are alpha emitters: 238Pu (T1/2 = 87.7 years), the fissile and the most important
isotope, 239Pu (T1/2 = 24,110 years), as well as 240Pu, which is produced via neutron capture of 239Pu
(T1/2 = 6564 years) [107]. Plutonium is not effectively accumulated by mushrooms and shows a similar
distribution in fruiting bodies to that of thorium and uranium (stem > cap > gills) [40]. Baeza et al.
studied 239+240Pu accumulation in the saprophytic fungus Pleurotus eryngii cultivated under laboratory
conditions and its occurrence in wild-growing mycorrhizal mushroom species (Tricholoma equestre),
and concluded that its distribution seemed to be species-dependent, but were not able to confirm
whether saprophytic fungi presented a lower content of this radionuclide than mycorrhizal fungi,
as was observed in the case of 137Cs [40,115]. The highest activity concentrations of Pu isotopes have
been determined in mushrooms collected at sites in the Ukraine that were associated with indirect
contamination from the Chernobyl incident fallout in 1986 [83,108,112]. Mushrooms of various species
foraged elsewhere in Europe were affected by both sources—namely, the global atmospheric fallout
from earlier weapons testing and the incident at Chernobyl [84–86,110–114,116–118] (Table 2).
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Table 2. The activity concentration ranges of anthropogenic alpha-emitting radioisotopes in wild-growing mushrooms (the Latin names of the species are cited as
described by the authors—the current names of some species can be found on the Index Fungorum web site) collected from a different countries as well as the effective
dose from mushrooms consumption presented as a proportion of total dietary consumption (µSv/kg dw) (* calculation based on the isotopic activity concentration and
effective dose coefficients (Sv/Bq) for ingestion of radionuclides for adults [97]).

Radionuclide (Sv/Bq) Species Activity Concentration
(Bq/kg dw)

Effective Dose *
(µSv/kg dw) Country References

236U
(4.7 × 10−8)

Not specified 0.014–0.038 0.0007–0.002 Kosovo [92]

238Pu
(2.3 × 10−7)

Armillaria mellea, Boletus edulis, Lactifluus vellereus, Macrolepiota procera, Xerocomus badius 0.0001–0.031 0.00002–0.007 Poland [83]

Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius
deliciosus, Leccinum sp., Suillus luteus 0.02–0.78 0.005–0.18 Slovakia [86]

Agaricus campestris, Amanita muscaria, A. ponderosa, Hebeloma cylindrosporum, Lactarius
deliciosus, Macrolepiota procera, Omphalotus olearius, Rhizopogon roseolus, Russula cessans,

Suillus bovinus, Terfezia arenaria, T. boudieri, Tricholoma terreum, Tricholoma sp.
0.0008–0.020 0.0002–0.005 Spain [83,84]

Not specified 0.024–0.09 0.005–0.027 UK [117,118]

Boletus edulis, Cantharellus cibarius, Paxillus involutus, Suillus luteus, Xerocomus badius 0.029–43.6 0.007–10.03 Ukraine [83,108,112]
239Pu

(2.5 × 10−7)
Not specified 0.1 0.025 UK [113]

239+240Pu
(2.5 × 10−7)

Russula decolorans 0.002–0.02 0.0005–0.005 Finland [114,116]

Armillaria mellea, Boletus edulis, Lactifluus vellereus, Leccinum sp., Macrolepiota procera,
Xerocomus badius 0.001–0.09 0.0003–0.023 Poland [110,111]

Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius
deliciosus, Leccinum sp., Suillus luteus 0.07–3.16 0.017–0,79 Slovakia [86]

Agaricus campestris, Amanita muscaria, A. ponderosa, Clitocybe sp., Hebeloma
cylindrosporum, Lactarius deliciosus, Lycoperdon perlatum, Macrolepiota procera, Omphalotus

olearius, Pleurotus eryngii, Rhizopogon roseolus, Russula cessans, Suillus bovinus, Terfezia
arenaria, T. boudieri, Tricholoma equestre, T. terreum, Tricholoma sp.

0.0066–0.246 0.0016–0.061 Spain [40,83,84,
115]

Not specified 0.16–1.0 0.04–0.25 UK [117,118]

Boletus edulis, Cantharellus cibarius, Paxillus involutus, Suillus luteus, Xerocomus badius 0.053–53.78 0.013–13.45 Ukraine [83,108,112]

241Am
(2.0 × 10−7)

Russula decolorans 0.003–0.01 0.0006–0.002 Finland [114,116]

Armillaria mellea, Boletus reticulatus, Cantharellus cibarius, Grifola frondosa, Lactarius
deliciosus, Leccinum sp., Suillus luteus 0.02–1.01 0.004–0.20 Slovakia [86]

Amanita muscaria, Clitocybe sp., Hebeloma cylindrosporum, Lactarius deliciosus, Lycoperdon
perlatum, Rhizopogon roseolus 0.0086–0.067 0.0017–0.013 Spain [115]

Not specified 0.065–0.98 0.013–0.19 UK [113,117,118]
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The element americium may originate from global atmospheric fallout connected to nuclear
weapon testing or as a decay product of its parent nuclide, 241Pu, which was identified in Chernobyl
fallout [103]. So far, its presence has been measured and reported only in mushrooms sampled in
European countries such as Finland, Slovakia, Spain and the UK, and the activity concentrations were
the lowest of all the alpha emitters, i.e., in the range from 0.003 to 1.01 Bq/kg dw [86,113–118] (Table 2).

Radioactive elements, especially alpha emitters, are not essential metals for biota. Due to their
occurrence in the environment, they are bio-accumulated along with essential micronutrients as well
as toxic elements. When compared to the essential trace elements, the activity concentrations of
the alpha-emitting radionuclides in wild-growing mushrooms from unpolluted areas in this study
were much lower (e.g., alpha emitters of U, Th, Ra, Rn) or lower (e.g., alpha emitters of Po, Pu, Am,
or 236U) [5,91,119,120]. In some species, such as Amanita citrina, Laccaria sp., Tricholoma populinum,
Strobilomyces strobilaceus, Russula exalbicans, Leccinum aurantiacum, Hebeloma sinapizans, and Cantharellus
cibarius, the amounts of uranium and thorium were higher than stable lead (Pb) or silver (Ag) [4].
As mentioned, the occurrence of natural alpha-nuclides in mushrooms is related to the geochemistry of
soil bedrock, agronomic activities and climate and the presence of man-made nuclides in mushrooms
depends on local radioactive pollution (nuclear test sites, facilities or accidents as well as the distance
from the accident sites) as well as the impact of global atmospheric fallout. If the location in
which mushrooms are collected is contaminated with radioactive substances (e.g., Chernobyl or
Fukushima area, nuclear test sites), the number of alpha emitters (especially transuranic, as 235U,
236U, 238U, 239Pu, 240Pu) might be higher than stable toxic trace metals, e.g., lead (Pb), mercury,
(Hg) [13,47,83,113,121–123].

3. Risk Assessment

Humans are exposed to radiation from two types of sources: external, which includes radionuclides
in the Earth and cosmic radiation, and internal radiation from radionuclides incorporated in the
body. In this study, the key pathways of radionuclide intake are inhalation, and ingestion of food
and water [124]. In the International System of Units (SI), the unit of ionizing radiation dose and a
measurement of the biological health effect of ionizing radiation on the human body is the Sievert
(Sv). If the dose is received over a very short duration, the LD50/60 is estimated at 4–5 Sv [125], so SI
prefixes are frequently used: i.e., the millisievert (mSv) and microsievert (µSv). The assessment of the
potential risk to human health connected to all ionizing radiation sources is phrased as the sum of all
evaluated effective doses (E) from all sources (internal and external) and is mostly given in mSv per
year. For exposure to the general public, the ICRP recommends that the limit should be expressed as
an effective dose of 1 mSv annually [125]. An impact of the total annual effective dose on an adult from
any food consumption may be presented as a dose from the mass of the food consumed (Sv/kg dw)
and calculated as the function of the product of the radioisotope conversion coefficient (Sv/Bq) and its
activity concentration (Bq/kg dw) in the foodstuff:

E = A × dc;

where:

A—activity concentration (Bq/kg dw),
dc—dose coefficient (conversion factor) (Sv/Bq), defined as the dose received from the unit of
radioactivity intake; the ICRP conversion coefficients recommended for the ingestion of alpha emitters
presented in the review in the case of adult members of the public, range from 4.5 × 10−8 Sv/Bq
for 238U to 1.2 × 10−6 Sv/Bq for 210Po, with an average value of 10−7 Sv/Bq (exact values are
shown in Tables 1 and 2) [97].

The potential health hazard risk due to the consumption of mushrooms is presented in
Tables 1 and 2. These radioelements are toxic to humans, both chemically (connected to their toxic
heavy metals properties; some with characteristics that are similar to the alkaline earth metal ions) and
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radiologically (connected to their nuclear disintegration), under certain conditions, and their toxicity
varies depending on the chemical and physical forms, amounts ingested and route of exposure. If the
exposure involves multiple active radioisotopes, the chemical and radiological toxicity can be additive
or may potentiate in some instances [126–128]. However, the dose calculations for human radiological
protection are very conservative and consider worst-case scenarios [29,97]. 210Po is one of the most
important radionuclides to which humans are exposed [129]. 210Po, together with gaseous radon (220Rn,
222Rn), 226Ra, 210Pb, and 40K, are natural radioactive materials that deliver the highest dose to living
organisms [43]. The associated radiation produces the same primary basic physicochemical effects
of excitation and ionization within the biological material and differs only in the spatial distribution
and intensity of these effects. At low levels of radiation, the clinical symptoms might not be observed
(radiolysis and small genetic reactions: mutations, cells necrosis or apoptosis; changes in the blood,
etc.) or might occur after a number of years as stochastic effects (i.e., leukemia). At much higher levels
(more than 1 Sv), there are many observed (determined) symptoms depending on the magnitude of
the dose: nausea and vomiting, headache, fatigue, fever, low number of white blood cells, bleeding,
anemia, etc. [33,130].

Of the reported activity concentrations for mushrooms worldwide, the highest effective doses
have been calculated for 210Po as a result of its high concentrations and the high value of its conversion
coefficient. Thus, 210Po occurrence would be the main source of alpha radiation for mushroom
consumers (0.28–26,400 µSv/kg dw) (Table 1). It is followed by 226Ra, which, at high concentrations,
results in high effective doses for consumers (0.006–196 µSv/kg dw) (Table 1). The values of the
annual radiation dose from thorium and uranium alpha emitters decay ingested through mushroom
consumption may be much lower because these radionuclides are accumulated to a much lower extent.
Although thorium radioisotopes are characterized by higher values of the conversion coefficient,
the doses from their decay are comparable to uranium, because thorium is weakly accumulated
(Table 1). The doses from anthropogenic alpha emitters have been significantly lower, even when
mushrooms have been collected from potentially polluted areas (e.g., Ukraine) (Table 2).

The total effective dose that might be received from the reported content of naturally occurring
alpha-emitters has been estimated to be in the range of 0.007 µSv/kg dw–26.7 mSv/kg dw depending
on the country (Table 1). Anthropogenic radionuclides might give an effective dose from 0.026 µSv/kg
dw to 44.4 µSv/kg dw (Table 2). Thus, the total effective dose from all reported sources might in be
the range of 0.033 µSv/kg dw to 26.8 mSv/kg dw. As mentioned before, the recommended yearly
adult dose limit is 1 mSv for the general public [97]. Depending on the origin of the wild mushroom,
some specimens may be highly enriched with alpha-emitting radionuclides and the resulting effective
dose may be significantly higher than permitted values. In unpolluted areas, the main source of
radiation would be naturally occurring radionuclides, especially 210Po and 226Ra.

4. Conclusions

The main pathways of radionuclide exposure are ingestion of food and water and inhalation.
Among food products, wild mushrooms are a possible source of radionuclides as they accumulate
radioactive elements in much the same way as other metals, and various species have different
retention capacities for individual radionuclides. The radioactive analogs of essential elements are
effectively accumulated, i.e., 210Po and 226Ra, while other heavy radioelements (especially artificial
radionuclides) are not heavily accumulated. Thus, naturally occurring radionuclides are the most
abundantly occurring of all the bio-accumulated alpha emitters. Local geological conditions and
potential radioactive pollution are the most important factors influencing the bioaccumulation level.
Thus, depending on the origin of the mushrooms, some might be highly enriched with alpha-emitting
radionuclides, and the effective dose might be significantly higher than suggested values (i.e., IAEA,
ICRP). In unpolluted areas, the main source of radiation would be naturally occurring radionuclides,
especially 210Po and 226Ra.
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5. Falandysz, J.; Borovička, J. Macro and trace mineral constituents and radionuclides in mushrooms: Health
benefits and risks. Appl. Microbiol. Biotechnol. 2013, 97, 477–501. [CrossRef]
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25. Strumińska-Parulska, D.I.; Skwarzec, B.; Pawlukowska, M. Plutonium fractionation in southern Baltic Sea
sediments. Isot. Environ. Health Stud. 2013, 48, 526–542. [CrossRef]

26. Steinhauser, G.; Brandl, A.; Johnson, T.E. Comparison of the Chernobyl and Fukushima nuclear accidents:
A review of the environmental impacts. Sci. Total Environ. 2014, 470–471, 800–817. [CrossRef] [PubMed]

27. Rantavaara, A. Radioactivity of Vegetables and Mushrooms in Finland after the Chernobyl Accident in 1986;
STUK-A59; Finnish Centre for Radiation and Nuclear Safety: Helsinki, Finland, 1987. Available online: https:
//inis.iaea.org/collection/NCLCollectionStore/_Public/19/001/19001484.pdf (accessed on 12 August 2020).
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96. Falandysz, J.; Saba, M.; Strumińska-Parulska, D. 137Caesium, 40K and total K in Boletus edulis at different
maturity stages: Effect of braising and estimated radiation dose intake. Chemopshere 2020. submitted.

97. ICRP—International Commission on Radiological Protection. The 2007 Recommendations of the International
Commission on Radiological Protection; ICRP Publ. 103. Ann. ICRP 37 (2-4); The International Commission on
Radiological Protection: Ottawa, ON, Canada, 2007.
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