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Abstract

Single neurons in cortical area LIP are known to carry information relevant to both sensory and value-based decisions that
are reported by eye movements. It is not known, however, how sensory and value information are combined in LIP when
individual decisions must be based on a combination of these variables. To investigate this issue, we conducted behavioral
and electrophysiological experiments in rhesus monkeys during performance of a two-alternative, forced-choice
discrimination of motion direction (sensory component). Monkeys reported each decision by making an eye movement
to one of two visual targets associated with the two possible directions of motion. We introduced choice biases to the
monkeys’ decision process (value component) by randomly interleaving balanced reward conditions (equal reward value for
the two choices) with unbalanced conditions (one alternative worth twice as much as the other). The monkeys’ behavior, as
well as that of most LIP neurons, reflected the influence of all relevant variables: the strength of the sensory information, the
value of the target in the neuron’s response field, and the value of the target outside the response field. Overall, detailed
analysis and computer simulation reveal that our data are consistent with a two-stage drift diffusion model proposed by
Diederich and Bussmeyer [1] for the effect of payoffs in the context of sensory discrimination tasks. Initial processing of
payoff information strongly influences the starting point for the accumulation of sensory evidence, while exerting little if any
effect on the rate of accumulation of sensory evidence.
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Introduction

One of the most successful enterprises of experimental

psychology and systems neuroscience has been the elucidation of

mechanisms underlying simple forms of decision-making. Green

and Swets [2] provided the theoretical groundwork for this effort

with their theory of signal detection. Incorporating Bayesian

principles, Green and Swets accounted for the psychophysical

decisions of human subjects in numerous circumstances by

invoking an optimal combination of sensory information about

the stimulus and prior information about the probability of a

particular response being correct. The final weight of evidence

favoring one or the other response was expressed as the ‘‘likelihood

ratio’’, a formulation that has exerted a prodigious impact on

subsequent studies of decision-making and on the development of

artificial decision-making algorithms.

While the original formulation of Green and Swets was

designed only to account for the accuracy of choice data, a rich

body of experimental and theoretical work subsequently extended

the insights of signal detection theory into dynamical models in

which evidence is accumulated gradually over time during single

trials. Originating in seminal work by Laming [3], Link and Heath

[4] and Ratcliff [5], these models depicted the decision mechanism

as a ‘‘diffusion’’ process in which a decision variable assumes a

neutral value at the beginning of a trial, then ‘‘drifts’’ gradually

under the influence of incoming sensory information toward a

‘‘barrier’’. The decision is reached when the diffusing decision

variable encounters the specified barrier, or threshold. The key

variables in such models are the starting point of the diffusion

process, the drift rate of the decision variable under the influence

of incoming sensory information, the distance between the starting

point and the decision barrier, and noise associated with all three

variables. A related class of models, called accumulator models,

invokes separate accumulators to model forced-choice tasks with

two or more alternatives [6,7], and recent versions of such models

allow for the possibility of competition among the accumulators

and decay or leakage of accumulated information (e.g. [8,9,10]).

These models generate remarkably precise fits to both accuracy

and reaction time data with relatively few parameters, and

simulations have demonstrated the feasibility of implementing the

models in recurrent networks of biophysically realistic neurons

[11,12,13,14,15]. As Ratcliff and McKoon [16] have recently

observed: ‘‘It has probably not been realized in the wider scientific

community that the class of diffusion models has as near to

provided a solution to simple decision making as is possible in

behavioral science.’’
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Given the success of diffusion models in accounting for large

classes of behavioral data, neurophysiologists have naturally

employed these models to examine the neural mechanisms

underlying simple forms of decision-making. Hanes and Schall

[17] showed that a diffusion model accounts well for variability in

saccadic reaction times measured in monkeys performing a

countermanding task, and more impressively, they demonstrated

that the underlying signals measured from single neurons in the

frontal eye field are well described by the drift rate variable, but

poorly described by the threshold variable, of an underlying

diffusion process. This initial finding led to a substantial body of

work suggesting that diffusion models account well for the neural

mechanisms underlying saccade generation in several contexts

[18].

Shadlen and colleagues opened a particularly rich vein of

research by applying accumulator models to study neural

mechanisms underlying the workhorse task of psychophysics—

the two-alternative, forced-choice (2AFC) sensory discrimination.

Using a discrimination of motion direction in which monkeys

indicate their decisions by making saccadic eye movements

[19,20], Shadlen and colleagues showed that a competing

accumulator model can account well for behavioral accuracy

and reaction time data, and they demonstrated that the dynamical

activity of single neurons in the lateral intraparietal area of

monkey cortex (LIP) is also well described by a noisy information

accumulation process [21,22,23,24,25]. Gold and Shadlen [21,26]

further suggested that LIP neurons combine accumulated sensory

information with additional sources of information (e.g. prior

probability and payoffs) to form decision variables that are

monotonically related to the log of the likelihood ratio of choosing

one alternative versus the other, and are thus ideally suited for

guiding decisions about where to move the eyes. These models

postulate that separate populations of neurons in LIP correspond

to accumulators that encode a quantity proportional to the log

likelihood ratio associated with each of the two alternatives.

Hanks, Dietterich and Shadlen [27] subsequently obtained

microstimulation data consistent with the idea that LIP activity

is not merely correlative, but plays a causal role in these decisions.

Importantly, Ratcliff and colleagues have shown that ‘‘build-up’’

neurons in the superior colliculus exhibit very similar properties

during a 2AFC discrimination, raising the possibility that

accumulation of information into a decision variable is accom-

plished by a distributed network of neural circuits within

oculomotor planning structures [28,29].

These findings raised the intriguing question of whether the role

of LIP in decision-making is specific to the accumulation of

sensory information, or whether, in the spirit of signal detection

theory, LIP incorporates a broader range of inputs known to

influence behavioral decisions. The answer to this question has

proven to be emphatically affirmative. LIP activity is now known

to reflect numerous variables relevant to behavioral decisions,

including the prior probability that a particular eye movement will

be instructed [30], the probability of obtaining a reward during

foraging or competitive games [30,31,32,33,34], addition and

subtraction of probabilistic quantities [35,36], the internal

confidence associated with a sensory decision [36], and—

remarkably—the social value of ethologically powerful stimuli

which can override the intrinsic appeal of liquid rewards to a

thirsty animal [37].

Somewhat surprisingly, the emerging model of LIP computa-

tion has not yet been tested by manipulating payoffs in the context

of a sensory discrimination task. Payoffs, like prior probabilities,

are known to bias choices in near-threshold discrimination tasks,

and this effect can be easily incorporated into the likelihood ratio

to create a payoff-weighted likelihood function [2,21,26]. Further-

more, the effects of payoff information on discrimination accuracy

and reaction times are well described by drift diffusion models that

postulate a two-stage accumulation process—an initial stage of

accumulation about the payoffs followed by a second stage of

accumulation of sensory information [1,38,39]. In the two-stage

model, the initial accumulation of payoff information sets the

starting point of the diffusion process that accumulates sensory

information, a postulate that is well supported by fits to the

behavioral data. In contrast to the strong effect of payoff

information on starting point, fits to the behavioral data indicated

that payoff information had little or no effect on the drift rate of

the diffusion process.

Our primary goal in this paper is to examine the effect of

explicit payoff information on the activity of LIP neurons while

monkeys perform a 2AFC perceptual discrimination task. It is

known that LIP neurons are sensitive to the magnitude of a reward

associated with a visual cue or an eye movement target [30,40,41],

but it is not known how LIP processes sensory and reward signals

when the animal must balance the two (sometimes conflicting)

sources of information in making decisions. We therefore trained

two rhesus monkeys to perform the classic random dot motion

discrimination task in which the perceived direction of motion is

indicated by a saccadic eye movement to one of two visual targets

corresponding to the two possible directions of coherent motion

[19,20]. The important modification was that the size of the

reward for a correct response to each of the two possible directions

of motion was manipulated (single vs. double reward). Reward

magnitude for each alternative was cued in advance by the color of

the saccade target corresponding to each possible choice. Unequal

rewards led to a choice bias in favor of the more highly rewarded

target, and analysis of the behavioral data demonstrated that the

induced choice bias was nearly optimal for maximizing overall

reward rate [42].

To determine how sensory and reward information are

integrated at the cellular level, we recorded from single neurons

in LIP while the monkeys performed this task. Our analyses were

designed to address four questions, the first two descriptive and last

two mechanistic: 1) Are reward and sensory information

integrated at the level of single neurons, and if so, in what

proportions and with what dynamics? 2) Are individual LIP

neurons influenced only by the reward value of the target in the

response field, or do they also reflect the reward associated with

the alternative target, so that they can reflect relative as well as

absolute reward magnitude [32,34,35]? 3) Are the dynamics of

LIP activity consistent with a two-stage diffusion model as

proposed by Diederich and Bussmeyer [1]? 4) Does payoff

information affect the starting point of the sensory accumulation

process in LIP as suggested by the model of Diederich and

Bussmeyer, or does its influence accumulate gradually along with

the accumulation of sensory information (drift rate)? Our data

address each of these questions, thereby shedding new light on the

neural basis of oculomotor decisions and the relationship of neural

activity to formal models of decision-making.

Methods

Subjects and Ethics Statement
Two adult male rhesus monkeys, A and T (12 and 14 kg), were

trained on a two-alternative, forced-choice, motion discrimination

task with multiple reward contingencies. Daily access to fluids was

controlled during training and experimental periods to pro-

mote behavioral motivation. Before training, the monkeys were

prepared surgically with a head-holding device [43] and a scleral

Decision Signals in LIP
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search coil for monitoring eye position [44]. All surgical,

behavioral, and animal care procedures complied with National

Institutes of Health guidelines and were approved by the Stanford

University Institutional Animal Care and Use Committee. Ethical

standards incorporated into these guidelines and into our routine

laboratory procedures include a psychological enrichment pro-

gram, frequent contact with other animals (visual, auditory,

olfactory and, where appropriate, touch and grooming), regular

veterinary supervision and care, and pharmacological ameliora-

tion of pain associated with surgeries.

A Motion Discrimination Task with Multiple Reward
Contingencies

On each behavioral trial the monkeys observed a noisy random-

dot motion stimulus and reported which of two possible directions

of motion were present by making a saccadic eye movement to one

of two targets. The motion stimulus was composed of dynamic

random dots, viewed through a circular aperture on a dark

computer screen. On each trial a variable proportion of the dots

moved coherently in one of two opposite directions while the

remaining dots were flashed transiently at random locations and

times (for a detailed description see [45,46,47]). The difficulty of

the discrimination was varied parametrically from trial-to-trial by

adjusting the percentage of dots in coherent motion: the task was

easy if most of the dots moved coherently (e.g. 50% or 100%

coherence), but became progressively more difficult as the

coherence decreased.

Importantly, the coherence only describes the strength of the

motion, not its direction. In the data figures that follow, the ‘‘sign’’

of the coherence indicates the direction of coherent motion. Thus

+25% coherence and –25% coherence are equally strong motion

signals, but move in opposite directions. Typically, the animals

viewed a range of signed coherences spanning psychophysical

threshold. The animals were always rewarded for indicating the

correct direction of motion, except at 0% coherence where they

were rewarded randomly (50% probability) irrespective of their

choice.

Figure 1 illustrates the sequence of events comprising a typical

trial of the motion discrimination task. From left to right, trials

began with the onset of a small dot that the monkey was required

to fixate for 150 ms. Next, two saccade targets (hollow gray circles)

appeared for 250 ms. The two targets were 10 degrees eccentric

from the visual fixation point and 180 degrees apart from each

other. The targets were positioned in-line with the axis of motion

being discriminated. By convention, the target corresponding to

positive coherence is target 1 (T1) while the other is target 2 (T2).

Target 1 was placed in the response field of the LIP neuron under

study (see below), while target 2 was placed in the opposite

hemifield.

After 250 ms the targets changed color, indicating the

magnitude of reward available to the monkey for correctly

choosing that target. A blue target indicated a low magnitude

(L) reward (1 unit, ,0.12 ml of juice), while a red target indicated

a high magnitude (H) reward (2 units). As there are two reward

magnitudes (H and L) to be assigned to each of two target

locations (T1 and T2), there were four reward conditions overall,

schematized by the vertical row of panels in Figure 1: 1) the LL

condition in which both targets were blue, 2) the HH condition in

which both targets were red, 3) the HL condition, in which T1 was

red and T2 was blue, and 4) the LH condition which was the

mirror of the HL condition.

The colored targets were visible for 250 ms before onset of the

visual motion stimulus, which appeared for 500 ms, centered on

the fixation point. Following offset of the motion stimulus, the

monkey was required to maintain fixation for a variable delay

period (300–550 ms) after which the fixation point disappeared,

cueing the monkey to report his decision with a saccade to the

target corresponding to the perceived direction of motion. If the

monkey chose the correct direction of motion, he received the

reward indicated by the color of the chosen target.

Fixation was enforced throughout the trial by requiring the

monkey to maintain its eye position within an electronic window

(1.25 degrees radius) centered on the fixation point. Inappropriate

breaks of fixation were punished by aborting the trial and

Figure 1. A two-alternative, forced-choice, motion discrimination task with multiple reward contingencies; sequence of events
comprising a typical trial. From left to right, trials begin with the onset of a fixation point. Two saccade targets appear and then change color
indicating the magnitude of the reward available for correctly choosing that target. A blue target indicates a low magnitude (L) reward, while a red
target indicates a high magnitude (H) reward. The four reward conditions are depicted vertically—LL,HH, LH and HL, from top to bottom. The visual
motion stimulus is centered on the fixation point. Following offset of the motion stimulus, the monkey maintains fixation during a variable delay
period after which the fixation point disappears, cueing the monkey to report his decision with a saccade to the target corresponding to the
perceived direction of motion. If the monkey chooses the correct direction of motion, he receives the reward indicated by the color of the chosen
target.
doi:10.1371/journal.pone.0009308.g001
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enforcing a time-out period before onset of the following trial.

Psychophysical decisions were identified by detecting the time of

arrival of the monkeys’ eye in one of two electronic windows (1.25

radius) centered on the two choice targets (T1 and T2).

All trials were presented pseudo-randomly in block-randomized

order. For monkey A, we employed 12 signed coherences, 0%

coherence and four reward conditions, yielding 52 conditions

overall. For monkey T we eliminated four of the lowest motion

coherences because this animal’s sensitivity to the motion stimulus

was somewhat lower than monkey A’s. Thus monkey T was tested

for 36 conditions overall. We attempted to acquire 40 trials for

each condition, enabling us to characterize a full psychometric

function for each of the four reward conditions. Because these

behavioral data were obtained simultaneously with electrophysi-

ological recordings, however, we did not always acquire the full 40

trials for each condition (the experiment typically ended when

single unit isolation was lost). For the data reported in this paper,

the number of repetitions obtained for each experiment ranged

from 8 to 40 with a mean of 36.

The full data set analyzed in this paper consists of 33 behavioral

sessions from monkey A and 24 sessions from monkey T. Multiple

LIP neurons were sometimes recorded simultaneously—either

from multiple electrodes or a single electrode (see below)—yielding

a total of 51 LIP neurons from monkey A, and 31 from monkey T.

Procedures
During both training and experimental sessions monkeys sat in a

primate chair at a viewing distance of 57 cm from a color monitor.

Visual stimuli were presented on the monitor under computer

control. The monkeys’ heads were positioned stably using the head-

holding device, and eye position was monitored throughout all

experimental sessions by means of a magnetic search coil apparatus

(0.1u resolution; CNC Engineering, Seattle, WA).

Area LIP was identified by a combination of stereotactic

location, characteristic physiological activity and anatomical

magnetic resonance imaging. Single neurons were isolated and

their activity recorded with extracellular microelectrodes. Monkey

T received a single craniotomy that matched the dimensions of the

recording cylinder. For monkey A, the cylinder was placed on

intact skull protected with a thin layer of dental acrylic. For this

animal, a 3 mm ‘‘burr-hole’’ was drilled, under surgical condi-

tions, one day before beginning recordings at a given location

within the recording cylinder.

For monkey A, neurophysiological recording was accomplished

with quartz/platinum-tungsten electrodes (Thomas Recording,

Giessen, Germany) that were positioned and manipulated daily

with a 5-channel single electrode system (‘‘Mini Matrix,’’ Thomas

Recording, Giessen, Germany). Recordings were typically made

with two to four electrodes. For monkey T, we employed tungsten

electrodes (FHC Inc., Bowdoin, Maine) positioned with a Crist

grid (Crist Instruments Co., Inc., Hagerstown, Maryland) and

manipulated with a Narishige single electrode drive (Narishige

Co., LTD, East Meadow, New York). Multiple neurons were

recorded simultaneously in 13 experiments for monkey A, and in 6

experiments for monkey T. In these experiments target 1 was

positioned so as to activate all response fields (simultaneous

recordings were only carried out if the response fields overlapped

substantially). When multiple neurons were recorded, spikes were

sorted and clustered off-line, based on a principle component

analysis of the resulting voltage waveforms using the Plexon off-

line sorter (Plexon Inc., Dallas, Texas).

Behavioral control and data acquisition were managed by a PC-

compatible computer running the REX software environment

[48] and QNX Software System’s (Ottawa, Canada) real-time

operating system. Visual stimuli were generated using a VSG

graphics card (Cambridge Graphics, UK) and presented on a

CRT display. After amplification, single unit spiking activity was

identified and collected along with digitized task events and eye

position traces using the Plexon (Plexon Inc., Dallas, Texas) data

acquisition system operating in conjunction with Rex. All data

were subsequently analyzed offline with custom scripts written in

the MATLAB (The MathWorks, Inc., Natick, Massachusetts)

programming language, running on Apple computers (Apple

Computer, Inc., Cupertino, California).

Cell Selection
We selected for study LIP neurons that exhibited persistent delay-

period activity during a delayed saccade task. Informal observations

in prior studies indicate a strong correlation between this property

and ‘‘choice predictive’’ activity in the motion discrimination task

[49,50]. Neurons with persistent activity in the delayed saccade task

comprised roughly a third of all LIP neurons encountered. We

employed a variant of the delayed saccade task that has been used

extensively to identify these neurons. Each trial began with the onset

of a small fixation target. After the monkey acquired and fixated the

target for 150 ms, a single saccade target appeared for a variable

delay period (250–800 ms). At the end of the delay period the fixation

point disappeared, cueing the monkey to saccade to the target.

Completed trials were identified by detecting the time of arrival of the

monkey’s eye in an electronic window (1.25 radius) centered on the

target. The saccade target was typically presented in pseudorandom

order at six locations—10 degrees eccentric and separated by equal

polar angles. Eccentricities and angles were sometimes varied to

locate the sensitive region of a given neuron’s RF.

Analysis of Psychophysical Data
We fitted psychophysical data with a logistic regression model

that describes the log-odds-ratio of choosing T1 as a function of

the linear sum of signed coherence and the values of each of the

two targets:

Equation 1:

ln
p

1{p

� �
~bb

0zbb
cohCOHzbb

t1T1valzbb
t2T2val

Where p is the observed probability of choosing T1, and bcoh, bt1

and bt2 are the fit coefficients representing the effects of motion

coherence and target values on this probability (the superscripts, b,

indicate coefficients for behavioral data, as opposed to physiolog-

ical data in Equation 3 below). b0 represents any global bias the

monkey has towards choosing T1. COH is the coherence of the

motion stimulus, in fractional units of the maximum coherence

employed and signed to signify the direction as described above.

Thus, COH ranges from -1 to 1, where -1 represents 248%

coherence and +1 represents +48% coherence. T1val and T2val are

assigned either +1, if the target was H, or 21 if the target was L.

For example, on HL trials in which the motion coherence was

212%, COH = 20.25, T1val = +1 and T2val = 21. Constraining

these factors to be in the same range (21 to 1) allows us to

compare directly the values of the fit coefficients.

Equation 1 can be rearranged to Equation 2, which was used to

generate the sigmoid functions in Figure 2.

Equation 2:

p~
1

1ze
{ bb

0
zbb

coh
COHzbb

t1
T1valzbb

t2
T2val

� �

Decision Signals in LIP

PLoS ONE | www.plosone.org 4 February 2010 | Volume 5 | Issue 2 | e9308



Analysis of electrophysiological data
For each neuron, electrophysiological data were analyzed by

means of a multi-variable, linear regression model:

Equation 3:

FR tð Þ~b0 tð Þzbcoh tð ÞCOHzbt1 tð ÞT1valzbt2 tð ÞT2val

zbchoice tð ÞCHOICE

where FR(t) is the mean firing rate over a given temporal epoch

and trial, and bcoh, bt1 and bt2 and bchoice are fit coefficients

representing the effects of motion coherence, target values and

choice on firing rate. As with the analysis of psychophysical data,

COH is the coherence of the motion stimulus on that trial, in

fractional units of the maximum coherence employed and signed

to signify the direction of motion. Similarly, T1val and T2val are

assigned either +1, if the target was H, or 21 if the target was L.

Choice is assigned a value of +1 for T1 choices and 21 for T2

choices. As with the psychophysical analysis, constraining these

factors to be in the same range (21 to 1) allows us to compare

directly the values of the fit coefficients and determine which have

greater impact on FR. Note that Equation 3 is very similar to

Equation 1 with the addition of a factor for behavioral choice.

Equation 3 was fit to the average firing rate for each neuron in

sliding 50 msec time windows.

To ensure that the effects on firing rate of coherence, target value

and choice (equation 3) did not arise artifactually from subtle

variations in the operant saccades, we also fit all data with a regression

model that included several saccade parameters as coregressors:

Equation 4:

FR(t)~b0(t)zbcoh(t)COHzbt1(t)T1valzbt2(t)T2val

zbchoice(t)CHOICEzblat(t)LATzbamp(t)AMP

zbacc(t)ACCzbvmax(t)VMAXzbdur(t)DUR

The latency, amplitude, accuracy, maximum speed and duration

of the saccade are represented respectively by LAT, AMP, ACC,

VMAX and DUR.

Figure 2. Relative reward biases choice. A–D. Psychometric functions (PMFs) describing each monkey’s probability of choosing T1 as a function
of motion coherence. Motion coherence is denoted with a magnitude indicating the strength of the motion and a sign indicating its direction.
Positive coherence denotes motion towards T1 while negative coherence denotes motion towards T2. Separate PMFs are plotted for each reward
condition (HH, red; LL, blue; HL, black; LH, green). Circles depict the observed proportion of T1 choices, and sigmoidal curves are fit quantitatively
with logistic regression. A–B. Results from one representative experiment for monkey A and monkey T, respectively. C–D. Average PMFs across all
behavioral sessions for monkeys A (n = 33) and T (n = 24), respectively.
doi:10.1371/journal.pone.0009308.g002
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To evaluate possible neural mechanisms underlying the

accumulation of sensory information by LIP neurons, we assessed

the rate of the increase in neural activity during the motion epoch

for each LIP neuron, generally following the procedure of Kiani

and Shadlen [36]. For each neuron, we first identified the well

known ‘‘dip’’ in LIP activity that follows the onset of motion

stimulus (see Figs. 3–5, first half of the motion epoch). We

calculated the mean peristimulus-time histogram (PSTH) of neural

activity for all correct T1 choices and considered the ‘‘dip’’ to be

the point of minimum activity between 50 ms and 300 ms after

stimulus onset. After identifying the time of the dip, we then

calculated for each reward condition the average rate of rise (or

fall) of neural activity between the dip and 1) the end of the motion

epoch, or 2) the point at which average firing rate saturated—

whichever came first. For neurons whose firing rate saturated

before the end of the motion epoch, we considered the point of

saturation to be the time at which the maximum firing rate was

achieved. We define the slope of the accumulation process to be

the best linear fit to the PSTH during this measurement window.

To obtain temporally independent data for this analysis, the

average firing rate during the measurement window was

calculated in 50 msec bins with no overlap.

The central goal of the slope calculation was to compare the

average rate of rise of LIP firing rates for the four reward

conditions, while factoring out any contribution of behavioral

choice or the motion stimulus itself (signed coherence). We

eliminated possible effects of choice by analyzing only trials that

ended in T1 choices, as indicated above. We neutralized the effects

of stimulus strength by conducting the analysis in the following

steps. 1) For each trial, we offset the ‘firing rate vs. time’ trace so

Figure 3. LIP represents the absolute value of the option in the RF. A. Average data from monkey A (n = 51 cells). B. Average data from
monkey T (n = 31 cells). Mean LIP firing rate as a function of time, for the HH (red) and LL (blue) reward conditions. Data are plotted separately for T1
(solid) and T2 (dashed) choices. 0–250 ms is the target epoch in which the blank targets are presented; 250–500 ms is the reward epoch in which the
targets change color to cue the reward condition; 500–1000 ms is the motion epoch in which the random-dot motion stimulus is presented; 1000–
1250 ms is the early segment of the delay epoch; 2350–0 ms (in the right panel) is the late delay epoch immediately preceding the saccade. Any
difference between the red and blue curves indicates an effect of the absolute value of the option in the RF.
doi:10.1371/journal.pone.0009308.g003
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that the firing rate was zero at the dip. Thus all firing rates during

the measurement window (defined above) are calculated relative to

the firing rate at the dip. 2) For each neuron, for all trials at a given

signed coherence level, the firing rate in each 50 msec bin was

normalized to the maximum firing rate (relative to the dip)

observed in any single bin on any trial during the measurement

window. 3) For each signed coherence level, normalized firing

rates were averaged within time bins across trials. Averages were

calculated separately for the four reward conditions. 4) For each

reward condition, normalized firing rates were averaged across all

positive coherence levels to obtain, for each neuron, a normalized,

reward-condition-specific PSTH. (T1 choices were relatively rare

at negative coherences, and we therefore omitted negative

coherences from the average to avoid measurement noise resulting

from small numbers of trials.) 5) For each neuron, the slope of the

PSTH was measured for each reward condition during the

measurement window. 6) Statistical tests were performed to

identify differences in slopes between reward conditions across the

population (see Discussion). 7) For each reward condition,

normalized firing rates were then averaged across neurons to

obtain an average PSTH for the entire population of neurons for

each animal.

Results

‘‘Relative Value’’ Biases Choice
Figures 2A–D illustrate psychometric functions (PMFs) depict-

ing the observed proportion of T1 choices as a function of signed

motion coherence. A separate PMF is plotted for each of the four

reward conditions: high-high (HH; large rewards available for

both targets), low-low (LL; small rewards available for both

targets), high-low (HL; large reward for target 1 and small reward

Figure 4. LIP represents the relative value of the option in the RF. A. Average data from monkey A (n = 51 cells). B. Average data from
monkey T (n = 31 cells). Mean LIP firing rate as a function of time, for the HH (red) and HL (black) reward conditions. HH curves are the same as in
Figure 3A–B. Data are plotted separately for T1 (solid) and T2 (dashed) choices. In the left panels, responses are aligned to the target onset, while in
the right panels, responses are aligned to the saccade time. Any difference between the red and black curves indicates an effect of the relative value
of the option in the RF.
doi:10.1371/journal.pone.0009308.g004
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for target 2) and low-high (LH; vice-versa) (see Methods). The

sigmoidal curves are logistic regression fits to the observed data

(Methods). Figures 2A and 2B depict data from a representative

experiment for monkey A and monkey T respectively. Figures 2C

and 2D depict the average PMF across all behavioral sessions for

monkeys A (n = 33) and T (n = 24) respectively.

Two features of the data in Figure 2 are notable. First, the PMFs

for the unbalanced reward conditions are shifted horizontally with

respect to the balanced conditions, revealing a systematic choice

bias for the larger reward. Both monkeys chose T1 more

frequently when it was associated with a high reward relative to

T2 (black symbols and lines), and chose T2 more frequently for the

converse condition (green symbols and lines). Second, the observed

behavior for the balanced conditions (HH and LL reward

conditions—red and blue circles, respectively) is nearly identical,

indicating that the monkey’s probability of choosing T1 is

unaffected by changes in the absolute size of the reward. One

might have expected the PMFs to steepen for the HH condition if

the monkeys were motivated by the larger rewards to discriminate

the motion stimulus more carefully. Instead, both monkeys appear

to discriminate as well as they possibly can for both conditions,

suggesting a high baseline level of motivation throughout the

experiments. Both monkeys, however, were significantly more

likely to break fixation during LL trials as compared to HH trials

(LL trials: monkey A, 2.73%+/20.13; monkey T, 3.19+/20.35;

HH trials: monkey A, 1.77%+/20.12; monkey T, 1.66%+/20.27;

two-sample t-test, monkey A, p,10‘-4, monkey T, p,0.002).

For both monkeys, average behavior across all experiment

sessions (Fig. 2C,D) was very similar to the individual session

examples (Fig. 2A,B). Thus the effects of coherence and reward

Figure 5. A second look at the relative value effect. A. Average data from monkey A (n = 51 cells). B. Average data from monkey T (n = 31 cells).
Mean LIP firing rate as a function of time, for the LL (blue) and LH (green) reward conditions. LL curves are the same as in Figure 3A–B. Data are
plotted separately for T1 (solid) and T2 (dashed) choices. In the left panels, responses are aligned to the target onset, while in the right panels,
responses are aligned to the saccade time. Any difference between the blue and green curves indicates an effect of the relative value of the option in
the RF.
doi:10.1371/journal.pone.0009308.g005
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size on psychophysical choices were robust and consistent within

and across the data sets for the two monkeys. As we have reported

previously [42], the observed choice biases are nearly optimal in

terms of maximizing reward collection across an experimental

session. On average, both monkeys harvested rewards at ,98% of

the theoretical maximum given their underlying psychophysical

sensitivity to the motion stimulus.

The Representation of Choice, Absolute Value, and
Relative Value in LIP

Our analysis of LIP activity during this task revealed three

primary effects that varied dynamically over the course of a typical

trial: 1) the well known effect of decision outcome (choice),

particularly in the later stages of the trial, 2) an effect of the

‘‘absolute value’’ of the target in the neuron’s RF (T1) irrespective

of the value of T2, and 3) an effect of the ‘‘relative value’’ of the

target in the neuron’s RF (whether it was larger than, smaller than,

or equal to the value of T2). In the following three sections, we will

illustrate each of these effects and its dynamics qualitatively by

inspection of average PSTH’s for each monkey. In the fourth

section we will analyze these effects quantitatively by means of a

multiple regression analysis.

As described in Methods, we always positioned one response

target (T1) within the RF of the neuron under study, while

positioning the other target (T2) 180u away in the opposite

hemifield. The axis of stimulus motion was defined by these two

target positions so that motion discrimination choices correspond-

ed to saccades into or out of the RF. In the following sections, we

denote choices into the RF as ‘‘T1 choices’’ and those to the

opposite target as ‘‘T2 choices’’.

Representation of Choice: Qualitative Description
Figures 3A (monkey A) and 3B (monkey T) depict mean LIP

firing rate as a function of time for all successfully completed trials

in the HH (red) and LL (blue) reward conditions. Data are plotted

separately for trials in which the monkey chose T1 (solid lines) and

T2 (dashed lines). Both 3A and 3B consist of two panels: a left

panel with responses aligned to the time of target onset and a right

panel (labeled ‘‘late delay epoch’’) with responses aligned to the

time of the saccade. The black vertical lines in both figures denote

relevant task epochs.

Note first that in both 3A and 3B, the solid and dashed lines are

initially identical (for each color), but diverge approximately

200 ms into the motion period. Thus, shortly after the onset of the

motion stimulus, LIP neurons in both monkeys begin to signal

choice—whether the monkey will choose T1 or T2. This result is

not surprising. We explicitly selected for study neurons that

responded differentially to oppositely directed eye movements in

the delayed saccade task, and it is well known from previous work

that such LIP neurons typically exhibit ‘‘choice predictive’’ activity

during a variety of forced-choice tasks [30,49,51]. The data in

Figure 3 demonstrate that this property of LIP neurons holds for a

task in which decisions are based on a combination of visual

motion and reward information. The effect of behavioral choice in

the LIP data is robust, consistent across neurons and monkeys, and

present for all four reward conditions as demonstrated below.

An unanticipated difference between the two monkeys was the

absence of an initial visual ‘‘burst’’ in monkey T. The burst was

absent during the delayed saccade task as well (data not shown).

Although LIP neurons lacking the visual burst have been observed

by our lab and others previously, we have never recorded from a

monkey in which the burst appeared to be absent across the

population. We do not believe this result is due to oversampling

from a few unusual locations in LIP; our recordings sites were

reasonably widely distributed along the lateral bank of the

intraparietal sulcus. While this appears to be a genuine difference

between the monkeys, it does not affect any of our key results

pertaining to the accumulation of motion information or the

influence of reward condition on LIP activity since these results are

present in both monkeys.

Representation of Absolute Value: Qualitative
Description

Any differences in neural activity between the HH and LL

conditions indicate an effect of absolute reward value since the

relative reward value (compared to the value of T2) is identical in

the two conditions. By comparing the red and blue lines in Figure 3

we can see the extent to which LIP represents absolute reward

value. Consider first the data from monkey A in Figure 3A. The

solid red and blue traces (T1 choices) separate with very short

latency following presentation of the reward cues at 250 ms. Thus

the LIP population rapidly encodes the absolute value of T1,

producing elevated firing rates when a high value target is

presented within the RF. Following their initial separation, the red

and blue traces converge briefly near the beginning of the motion

epoch, but then separate again for the duration of the trial.

Qualitatively, then, except for a brief interval near the onset of the

motion stimulus, LIP neurons from monkey A encode a signal

concerning the absolute value of the reward available in the RF

throughout the trial. Note that this representation of absolute

value is present for T2 choices as well (dashed traces).

Figure 3B shows a similar pattern of activity for the LIP

population recorded from monkey T. Even though LIP activity in

monkey T does not respond as rapidly or robustly as in monkey A,

all major features of the absolute value signal observed in monkey

A are replicated in monkey T: 1) the effect of absolute value begins

during the reward cue period, 2) greater absolute value is

represented by higher firing rates, 3) the effect is maintained until

the end of the trial and 4) the effect is present for T2 choice trials

as well. A minor difference is that the absolute reward signal does

not ‘‘disappear’’ at any point in the trial for monkey T. It is

interesting that absolute reward value exerts a substantial effect on

LIP activity even though it exerts little if any effect on choice

(Fig. 2). We will consider this point further in the simulations and

in the Discussion.

Representation of Relative Value: Qualitative Description
As revealed by the behavioral data, the relative reward value of

the two targets exerts a substantial impact on choice behavior. We

first examine the effect of relative value on LIP by comparing

neuronal responses in the HH and HL reward conditions. In these

conditions, the value of T1 is constant (high value) while the value

of T2 differs (high in HH, low in HL). Thus, any LIP modulation

between these two conditions indicates a relative effect of T2 value

on the response to the high value target present in the RF.

Figures 4A and 4B depict LIP responses for monkeys A and T,

respectively, to the HH (red traces) and HL (black traces) reward

conditions. The format of these figures is identical to Figures 3A

and 3B, and the red curves are the same as in Figure 3.

In Figure 4A, the black and red traces separate late in the

reward cue epoch, with the average firing rate being higher for the

HL condition (arrow). This difference indicates that on average,

LIP neurons respond more strongly to a target in the RF (T1)

when it has a larger value relative to that of the T2 target. This

‘‘relative value’’ signal is present throughout most of the motion

epoch but disappears early in the delay epoch, after the choice has

presumably been determined. The same dynamics are evident

both for T1 and T2 choices (solid and dashed lines, respectively).
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A similar pattern of activity is present for the population data

from monkey T, illustrated in Figure 4B. As for monkey A, the

relative reward signal emerges late in the reward cue epoch (black

arrow), with average firing rate being higher for larger relative

value. For monkey T, however, the relative reward signal fades

more rapidly than for monkey A. Additionally, for T1 choices, the

relative reward signal inverts during the second half of the motion

epoch and remains inverted throughout the delay epoch. This

inversion is not present for T2 choices, however.

We can acquire a second look at the effects of relative reward by

comparing the LL and LH reward conditions. As in the previous

comparison of HH and HL trials, the value of T1 is identical (low)

for the LL and LH conditions. The two conditions differ only in

the value of T1 relative to the value of T2, which is equal in the LL

condition but low in the LH condition. Again, any modulation of

LIP activity between these two conditions comprises a signal of

relative reward value.

Figures 5A and 5B compare average LIP responses in the LL

(blue traces) and LH (green traces) conditions for monkeys A and

T, respectively. Note that the blue curves in these figures are the

same as the blue curves in Figures 3A and 3B. The data for

monkey A show an effect of relative reward similar to that seen in

Figure 4A. The green trace drops below the blue trace during the

reward cue epoch (black arrow), indicating again that average LIP

firing rates fall as the relative value of the target in the RF

decreases. The green and blue traces converge again during the

motion period and remain together throughout the delay period,

indicating a diminished representation of relative reward. As

shown in Figure 5B, the effect of relative reward is similar,

although weaker, in monkey T (black arrow).

Quantifying LIP Dynamics: Absolute Value, Relative
Value, Motion Coherence and Choice

As is evident from the qualitative evaluation above, LIP

population responses are highly dynamic, representing behavior-

ally relevant variables to differing degrees at different times during

the trial. To quantify these trends we applied a multiple-variable,

linear regression model to LIP activity over a sliding temporal

window as described in Methods. For each LIP neuron we applied

the model (equation 3) to the average firing rate over a 50 ms

window that was progressively slid, in 1 ms intervals, across the

duration of a trial. This generated a time vector of coefficients

(bcoh, bt1 and bt2 and bchoice) for each neuron describing the

influence of each factor on the mean firing rate at successive time

points. Because the values of the different variables were scaled

appropriately (21 to +1), comparison of the coefficients provides

an accurate comparison of the effects of each variable on the firing

rate of LIP neurons.

Figures 6A and 6B plot the mean regression coefficients (6

s.e.m.) across neurons, for bcoh (black), bt1 (red), bt2 (blue) and

bchoice (green) as a function of time for monkeys A and T

respectively. The same basic trends are evident in the two

monkeys, although the coefficients are smaller and more variable

in monkey T. The smaller coefficients in monkey T result from the

lower overall firing rate modulation (see Figs. 3–5); the greater

variance results partly from the smaller sample size (monkey A:

n = 51; monkey T: n = 31) and partly from greater intrinsic

variability between neurons in this animal.

The quantitative data confirm the general impressions derived

from qualitative inspection of the average firing rates in Figures 3–5.

The first variables to be reflected in the dynamics of LIP firing rates

are the absolute reward value of the target in the RF (bt1) and the

value of the target outside the RF (bt2), which indicates the effect of

‘‘relative reward’’ on firing rate. The effect of T1 value (red curve)

rises with very short latency (,100 msec for monkey T; even faster

for monkey A); the effect of T2 value (blue curve) arises more slowly,

but is clearly present in both animals by the time of onset of the

motion stimulus. The sign of bt2 is predominantly negative because

a high reward value for T2 decreases the probability of a T1 choice,

and thus decreases the firing rate of the LIP neuron. For both

animals, a small but significant reversal in the sign of bt2 is present

later in the trial—during the delay period for monkey A and late in

the motion period for monkey T. Notably, both data sets also

exhibit a significant but small effect of bt1 (absolute reward)

throughout the delay period, in contrast to the report of Dorris and

Glimcher [32]. This is a significant observation that we will consider

further in the Discussion.

Following onset of the motion stimulus, the effects of motion

coherence (bcoh, gray curve) and behavioral choice (bchoice, green

curve) arise—essentially simultaneously given the time resolution

of our analysis—with a latency of approximately 200–250 msec, as

reported previously [22,49,51,52]. Thus the decision appears to

begin forming in the system as soon as evidence about the direction

of stimulus motion is present in LIP. Interestingly, the effect of

motion coherence abates near the end of the motion period and is

completely absent during the delay period. Under the conditions of

our experiment, therefore, information about stimulus seems to be

discarded once the decision is formed, consistent with previous

observations by Roitman and Shadlen ([22]; their Figs. 7B and 7C).

As the effects of coherence and target value diminish during the

delay period, the effect of choice continues to grow, reaching its

peak immediately before the operant saccade. For both monkeys,

the peak effects of choice near the end of the trial are nearly equal to

the peak effects of absolute value near the beginning.

Quantitatively, our coherence effects, although highly signifi-

cant, are smaller than those reported in previous studies of LIP.

Shadlen and Newsome [49] reported that a range of coherence

from 0% to 51.2% modulated LIP activity by 2.7 spikes/sec for T1

choices and 4.2 spikes/sec for T2 choices. Based on our regression

model of LIP activity (Equation 3; bcoh), we calculate that the

range of coherences employed in our study (0%–48%) modulated

LIP activity by 2.0 spikes/sec in monkey A and by 0.78 spikes/sec

in monkey T. (Because we fit the data with a single model (eq. 3),

we did not obtain separate estimates for T1 and T2 choices).

Roitman and Shadlen [22] reported substantially larger modula-

tions for the same coherence range: 13.2 and 5.2 spikes per second

for T1 and T2 choices, respectively (their Fig. 7B).

Possible Effects of Eye Movements
The operant saccades to T1 or T2 targets can vary slightly from

trial to trial in latency, amplitude, velocity and accuracy. Thus it is

possible that these small variations in saccade parameters might

account for the change in neural response we have associated with

absolute value, relative value, and motion coherence. To assess this

possibility, we extended our linear regression model to incorporate

various parameters of the operant saccade. For each trial, we

calculated five parameters from the stored eye position traces: latency,

amplitude, accuracy, maximum speed and duration. We included

these factors, along with factors for absolute value, relative value,

motion coherence and choice, in an extended regression model given

by equation 4 (Methods). We fitted this model, and the original model

as well (equation 3), separately to the mean firing rate during three

trial epochs: reward cue (250–500 ms), motion (500–1000 ms), and

late delay (1000–1550 ms). For all epochs in each monkey, the

average values of bcoh, bt1, bt2 and bchoice were unaffected by

inclusion of the saccade parameters in the regression model (paired

t-test, p.0.05). Coefficient values sometimes changed significantly for

individual experiments after including the saccade parameters in the
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model, but the direction of the change was not systematic (values

could increase as well as decrease) and changes occurred rarely

(reward epoch bt1: 4.87%, bt2: 3.65% of cells; motion epoch bt1:

4.87%, bt2: 3.65%, bcoh: 6.09%, bchoice: 24.29% of cells; delay epoch

bt1: 7.35%, bt2: 10.9%, bcoh: 1.21%, bchoice: 8.5% of cells). We

therefore conclude that variation in saccade metrics does not explain

the response modulation accompanying variations in T1 value, T2

value and motion coherence.

Do Individual LIP Neurons Integrate Sensory and Value
Information

The data in Figure 6 show that LIP neurons, on average, are

influenced simultaneously by several variables—absolute value,

relative value and motion coherence—and that the relative

influence of these variables changes dynamically during the trial.

The averaged data presented thus far, however, do not address the

issue of whether these variables are similarly mixed at the level of

single neurons, or whether population multiplexing emerges from

averaging across neurons which are individually more selective.

To address this issue, we analyzed data within the late motion

(750–1000 ms) and early delay epochs (1000–1300 ms) to

determine how many neurons exhibited significant regression

coefficients for one factor alone, any two factors, or all three

factors. Figure 7A–B depicts the results for the two epochs; data

from monkeys A and T are shown in blue and red, respectively. In

the late motion epoch a substantial number of neurons in both

monkeys were influenced by only one factor, but a roughly equal

number of neurons represented multiple factors simultaneously.

Figure 6. Quantifying the dynamics of absolute value, relative value, motion coherence and choice. A. Average regression coefficients
from monkey A. B. Same data for monkey T. Mean values (6sem) of bcoh (black), bt1 (red), bt2 (blue) and bchoice (green) coefficients as a function of
time. These coefficients represent the average effect of motion coherence, T1 value, T2 value, and choice on firing rate. They are fit by applying
Equation 3 to the average firing rate slid in 1 ms intervals across the duration of the trial. Window width = 50 ms.
doi:10.1371/journal.pone.0009308.g006
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By the early delay epoch, however, most neurons were influenced

by multiple factors. Evidently, the dynamic multiplexing of signals

in the average data is characteristic of single LIP neurons as well.

Relation to the Integrator/Accumulator Model of
Decision-Making

For the motion discrimination task with balanced rewards, both

psychophysical performance and neural activity in LIP have been

modeled by a process in which noisy information is integrated over

time [22,23,52]. In these models, temporally varying motion

information originating in visual area MT is accumulated by

competing pools of LIP neurons. In reaction time experiments, a

response is triggered when one of the accumulators reaches a

bound. In experiments in which the duration of the integration

period is fixed by the experimenter, as in the present study, two

possibilities have been discussed. According to the first [23,52], a

bound is still used, and the response is determined by the

accumulator that reaches the bound first. According to the second

(also considered by [11,12,15,23,42]) the state of the accumulators

continues to evolve until the go cue is presented, at which time the

accumulator with the largest activation is selected. We couch the

following discussion in terms of the first of these two possibilities,

returning to the second possibility below.

Applying the bounded integration model to the behavioral

paradigm of our experiment, as sketched in Figure 1, two pools of

LIP neurons, representing the leftward and rightward saccade

targets, would accumulate information from pools of leftward and

rightward direction selective neurons in MT. A decision would be

reached when the accumulated signal in one pool of LIP neurons

reaches the bound.

The accumulation process is schematized by the cartoon of

Figure 8A. This trace illustrates an idealized average firing rate for

one pool of LIP neurons under balanced reward conditions. LIP

activity departs from steady state shortly following the onset of the

motion stimulus (time 0), integrating incoming motion information

until a bound (dashed line) is reached. Under balanced reward

conditions, the two accumulators compete on equal footing (the

other accumulator is not shown), and the outcome of the decision

process is therefore determined by the relative strength of the

Figure 7. Reward and motion information are multiplexed at the single neuron level. The bars depict the percentage of neurons that are
modulated significantly by one, two or three model parameters: T1val, T2val or coherence. A. Data from the second half of the motion epoch. B. Data
from the early delay epoch. Red bars: monkey A. Blue bars: monkey B.
doi:10.1371/journal.pone.0009308.g007

Figure 8. Possible mechanisms underlying the effect of
imbalanced payoffs on behavioral choice. A. Idealized LIP activity
as a function of time during the motion epoch for one spatial location.
Time zero indicates the initiation of the motion stimulus. In the model,
motion evidence supporting a decision accumulates until it reaches a
bound indicated by the dashed lines. B. ‘‘Two-stage’’ mechanism. In the
first stage, information about payoff size establishes the initial offset of
the accumulator, which, in the imbalanced payoff conditions (HL and
LH), is biased in favor of the spatial location of the high payoff target. In
the second stage, motion information accumulates to a fixed bound, as
in A. C. ‘‘Drift rate’’ mechanism. The accumulator offset is identical for
all payoff conditions, but payoff information is incorporated into the
drift rate of the accumulation process, again biasing the process in favor
of the high payoff target. D. Payoff information affects neither the
offset nor the drift rate, but rather exerts its effect through adjustment
of the decision bound. HL = high-low reward condition (large payoff
target in the LIP response field; small payoff target in the opposite
hemifield). LH = low-high reward condition (small payoff target in the
LIP response field).
doi:10.1371/journal.pone.0009308.g008
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motion input to the two LIP accumulators plus stochastic

variability in the sensory evidence and in the accumulation

process itself. In the unbalanced reward conditions (HL and LH),

decisions are biased strongly toward the higher value target (Fig. 2),

but the neural mechanisms underlying this behavioral bias are

unknown.

Figures 8B–D illustrate three possible mechanisms suggested by

Diederich and Bussmeyer [1] that could account for the choice

bias in the unbalanced reward conditions. The first possibility

(Fig. 8B) is that the reward cue produces an offset in the initial

value of the accumulator, granting a relative advantage to the

accumulator corresponding to the high value target. In the HL

condition, for example, the high value target is in the RF of the

LIP pool under study, and the offset is thus positive relative to the

other accumulator, which is in the LH condition (compare the

black and green traces). The accumulator with the positive offset

will therefore tend to reach the bound sooner, resulting in more

choices of the RF target in the HL condition. Conversely, the RF

target will be at a relative disadvantage in the LH condition (green

trace), resulting in more choices of the non-RF target. A second

possibility (Fig. 8C) is that the reward information has no effect on

the starting point of the accumulation process, but rather affects

the drift rate of the diffusion process by contributing an additional

input to the accumulator when the high value target is in the RF

(black trace) and/or a negative input to the accumulator when the

low value target is in the RF (green trace). An effect of payoff

information on drift rate would increase the slope of the

accumulator activation curve for the HL condition and/or

decrease the slope for the LH condition. Both effects would

increase the likelihood of a choice of the high value target. A third

possibility (Fig. 8D) is that the reward information affects the

bound, not the state of the accumulators. Thus the bound would

be lowered when the high value target is positioned in the RF (HL

bound, Fig. 8D) and raised when the low value target is in the RF.

These potential mechanisms, of course, are not mutually exclusive,

nor are they exhaustive.

Our LIP data allow us to evaluate contrasting predictions of the

first two candidate mechanisms. Figure 9 illustrates data from

monkey A and monkey T that are directly analogous to the

idealized traces for the HL and LH conditions in Figure 8B–C.

These data are for T1 choices and appeared previously in Figures 4

and 5; the key elements of the data are reproduced here for ease of

comparison, focusing on the motion presentation epoch (time

500–1000) when the accumulation process actually occurs. For

both monkeys, it is clear that the traces are offset with the expected

sign during the first 200 milliseconds of the motion epoch,

confirming the prediction of the ‘‘offset’’ mechanism illustrated in

Figure 8B.

The data in Figure 9 do not conform to the prediction of the

‘‘drift rate’’ mechanism in Figure 8C. In fact, the slope appears

shallower for the HL condition compared to the LH condition.

However, these traces are averaged across all motion coherences

for each animal (T1 choices only). The HL traces are thus

enriched in low coherence stimuli compared to the LH traces

because of the strong behavioral bias toward T1 choices in the HL

condition. In the LH condition, there are fewer T1 choices overall,

and these T1 choices tend to occur when the motion information

is sufficiently strong (high positive coherences) to override the

reward bias. Strong positive coherences will drive the accumula-

tion process more rapidly than weaker coherences, leading to the

slope effect observed in Figure 9.

To factor out the effect of coherence on the accumulation

slopes, we first normalized firing rates within each stimulus

condition (signed coherence) before averaging across trials to

Figure 9. Unbalanced rewards results in an offset to the starting point of the accumulation process. A. Average LIP firing rate (6sem) as
a function of time for the HL (black) and LH (green) reward conditions (monkey A, T1 choices only). Activity is averaged across all coherences. The
black and green curves are replotted from Figs. 4A and 5A (respectively), expanding the horizontal scale to emphasize the interval at and following
the onset of stimulus motion (time 500). B. Equivalent data for monkey T. Traces are replotted from Figs. 4B and 5B.
doi:10.1371/journal.pone.0009308.g009
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obtain PSTH’s for each reward condition (see Methods for details).

To visualize the normalized data, we then averaged the resulting

PSTH’s for a given coherence across the population of neurons for

the HL and LH reward conditions. Figures 10A and 10B show the

results of this analysis for +48% coherence, which resulted in T1

choices on nearly every trial for both monkeys (Figs. 2C and 2D).

On the horizontal axis, the trials are aligned to the time of the ‘dip’

measured for each neuron (see Methods). On the vertical axis, all

firing rates begin at zero at the dip, as described in Methods. Thus

the curves illustrate the accumulation process for the HL (black)

and LH (green) reward conditions from the time of the dip to the

end of the measurement window (defined in Methods). The basic

result is clear and somewhat surprising, even though the data are

noisier for monkey T (due in part to the smaller number of

neurons contributing to the analysis). The traces for the two

reward conditions are indistinguishable for the first 200 millisec-

onds following the dip, contradicting the prediction of the drift rate

mechanism in Figure 8C. Similar trends are evident when the data

are averaged across all positive coherences as illustrated in

Figures 10C and 10D. The slope for HL still becomes shallower

than the slope for LH, but only toward the end of the motion

integration period. To confirm this impression statistically, we

measured the slope of the LIP PSTH’s in the HL and LH

conditions for each neuron, after averaging traces like those in

Figures 10A and 10B across all positive coherences for each cell

(see Methods). During the first 200 milliseconds following the dip,

there was no significant difference in the distribution of slopes in

the HL and LH conditions for either monkey (paired t-test,

p.0.05 for both monkeys). When slopes were calculated across the

entire motion integration period (as defined in Methods), however,

the distributions differed significantly between the HL and LH

conditions in both monkeys, with slopes being shallower in the HL

condition (paired t-test, p,0.002 for monkey A, p,0.02 for

monkey T).

The evidence in Figures 9 and 10 provides direct support for the

view that the hypothesized LIP accumulator starts higher in the

HL condition than in the LH condition, and that the drift rate of

the accumulators is initially unaffected by the reward condition. As

we shall discuss more fully below, the shallower slope for the HL

condition toward the end of the integration period is consistent

with the presence of an integration bound, which is reached

sooner in the HL than in the LH condition. With this

encouragement, we conducted mathematical analysis and simula-

tions that we now describe to determine whether a bounded

integration model can account for our experimental data—both

behavioral and physiological.

Mathematical Analysis and Simulation
For several reasons, the analysis above points toward a bounded

integration model, with relative reward affecting the starting point

Figure 10. Rate of accumulation for the unbalanced reward conditions. A–B. Normalized firing rates (6sem) for a single motion condition
(+48% coherence), averaged across the population of neurons from monkey A and monkey T, respectively. All data are from trials ending in a T1
choice. C–D. As in A–B, but averaged across all positive coherences. The HL condition is depicted in black, the LH condition in green. Time zero is the
time of the initial ‘‘dip’’ in firing rate following onset of the motion signal, identified separately for each neuron (see Methods).
doi:10.1371/journal.pone.0009308.g010
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of the integration process. However, the behavioral data pose an

immediate challenge to the bounded integration model. The

presence of the bound renders an integration process imperfect

because it limits the amount of information accumulated, and this

can produce distortion in the pattern of behavioral results. This

distortion is most obvious if we consider the HH vs. LL conditions

in the data for monkey A. These data indicate that the

accumulators start closer to the bound in HH than they do in

the LL condition. In that case, the bound is reached sooner on

average in the HH condition; less information is therefore

integrated, with the result that behavioral performance should

be less accurate. Yet there is no difference in the behavioral

performance between the HH and the LL conditions (Fig. 2).

To address this issue, we must consider two distinct possible

sources of variability in the decision process. The first of these—

and the one generally receiving the greater emphasis in the

literature—is moment-by-moment noise in the input to the

accumulators. Let us consider an accumulator model with two

accumulators racing to a decision bound. One can characterize

the input to each accumulator by the following simple equation:

Equation 5:

a tð Þ~a t{1ð Þza Czswg tð Þ

where a(t) represents the activation of the accumulator at time t, a is

an integration rate parameter (it also indicates the sensitivity to

stimulus), C represents the coherence such that positive values excite

the accumulator, g(t) represents a sample of noise from the standard

normal distribution taken at time t, and sw is a scale factor

representing the standard deviation of the within-trial, moment-by-

moment noise in the integration process. For our case, we are

considering a situation in which there are two accumulators, one for

each alternative. Equation 5 applies to the accumulator corresponding

to the neuron recorded in the physiological experiment. For the other

accumulator, C is replaced by –C, so that values exciting one

accumulator are inhibiting the other. For such an accumulator model,

the distortions discussed above arise and preliminary simulations (not

shown) resulted in very poor fits to the behavioral data.

While some models include only the moment-by-moment

variability discussed above, others include a second source of

variability, namely between-trial variability in the strength of the

sensory evidence reaching the accumulators. This idea was first

employed by Ratcliff [5] in accounting for human behavioral data,

and has since been incorporated in many other models, including

the LATER model, which has been used to account for correlation

between the slope of activation in FEF and latency of eye

movement responses [18,53,54]. In our case, we capture between-

trial variability in the motion-dependent input signal to the

accumulators by assuming that the value of C is perturbed, for the

duration of a whole trial, by a sample from the standard normal

distribution scaled by sb (the between-trial standard deviation

parameter), so that the integration equation becomes:

Equation 6:

a tð Þ~a t{1ð ÞzaC0zswg tð Þ

where C’ = C + sbg, represents the perturbed value of C. For the other

accumulator we replace C’ with –C’, so that the same perturbation

affects the input to both accumulators. Importantly, we do not ascribe

this between-trial variability to any particular cortical area or

processing stage. It may originate in the motion output of MT (due,

for example, to the stochastic stimuli employed in these experiments)

or to any additional stage of the pathways linking MT to LIP.

A consequence of between-trial variability is that the accuracy of

the outcome of the information integration process is less dependent

on the duration of integration. It can be shown that the mean of the

accumulated sensory information is a simple linear function of t,

Equation 7:

m tð Þ~aC t

while the standard deviation in the accumulated information after

t seconds is given by

Equation 8:

s tð Þ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2sb

2t2zs2
wt

q

As a result the signal-to-noise ratio can be expressed:

Equation 9:

snr~
aCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2sb
2z

s2
w

t

r

Two points follow from this equation. First, if between-trial

variability is high relative to within-trial variability, the signal-to-

noise ratio can easily be dominated by the between-trial variability.

Second, as time goes by, the relative importance of within-trial

variance decreases. Thus, if between-trial variability is relatively

high, as long as the accumulation process starts far enough from the

decision bound, starting even further from the decision bound can

make very little difference in the accuracy of behavioral choices.

Based on this insight, our bounded integration model incorporates

the assumption that between-trial variability is relatively high.

Simulation Model Details
We simulate data from monkey A, for whom we have the largest

and cleanest data set. As we shall see, it is possible to provide a

good qualitative fit to the data from this monkey within the

framework of the ideas described above. After considering monkey

A, we will return to consider the data from monkey T, which is

both noisier and more perplexing in certain ways.

Our model shares many features with the LIP portion of the model

presented by Mazurek et al [23], but we do not directly simulate the

sensory inputs from MT. Rather, we simply consider the input to the

accumulators to have both within and between trial variability as

indicated above. Our simulation incorporates the following features:

(1) The starting point of each of the two accumulators is affected

by both relative and absolute reward. In our simulations, the

starting point of the T1 accumulator is initialized to the

empirically observed activation level at the time the motion

stimulus begins to affect activation (the ‘‘dip’’), approximately

200 msec after motion onset. The starting value assigned to

the T2 accumulator is based on the empirically measured T1

values, assuming that the values for T2 are symmetric to those

measured for T1: (T2 HL = T1 LH, T2 LH = T1 HL; T2

LL = T1 LL, T2 HH = T1 HH).

(2) The information accumulation process is affected by both within-

and between-trial variability and also by an urgency signal. The

activation of the T1 accumulator is updated according to:

Equation 10:

a tð Þ~a t{1ð ÞzbzaC0zswg tð Þ

Where, as previously discussed, C’ is equal to the stimulus
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coherence C perturbed by a sample of Gaussian noise with

standard deviation sb. For the T2 accumulator, C’ is replaced with

–C’. Within-trial, moment-to-moment Gaussian noise with

standard deviation sw is added independently to each of the two

accumulators. The parameter b is a positive constant reflecting an

overall tendency for activation to increase during the motion

period, corresponding to the ‘‘urgency’’ signal of Mazurek, et al.

[23] and other investigators. (See the caption of Figure 11 for

parameter values.)

(3) Information integration occurs for a period of time equal

to the duration of the motion stimulus unless the bound

is reached before the end of the integration period (see next).

In comparing the simulation to data, we treat integration

as beginning after a 200 msec propagation delay, so that

the simulated processing interval corresponds to the period

from 200 to 700 msec post stimulus onset approximately.

(4) Integration is bounded, so that when the activation of one

accumulator reaches the bound value h, integration of

sensory information in both accumulators ceases. The

bound is viewed, not as an upper limit on neural activity,

but as an internal benchmark on activation, such that when

this benchmark is reached, the process of integration

ceases, affecting both accumulators equally. Although

integration ceases when the bound is reached, the

influence of the urgency signal continues until the end of

the trial.

(5) The behavioral choice is assigned to the accumulator whose

activation value is highest at the end of the motion period. In

Figure 11. A model account of the neural and behavioral observations in Monkey A. A. Empirically observed behavioral data from
monkey A (left) and simulated behavioral results (right) of the competing accumulator model described in the text. Four colors indicate the four
reward conditions: HH (red), LL (blue), HL (black; LH (green). B. Empirically observed physiological data from monkey A (left) and simulated
physiological results (right) for the imbalanced reward conditions. Solid lines indicated trials ending in T1 choices; dashed lines illustrate trials ending
in T2 choices. Color code is the same as in the top panels. C. Empirically observed physiological data from monkey A (left) and simulated
physiological results (right) for the balanced reward conditions. Solid and dashed lines, and the color code, are the same as in the preceding panels.
Parameter values used in the reported fits are as follows: b = 10; a = 0.5; sb = 14; sw = 1, h= 22. Values are in units of seconds and Hertz.
doi:10.1371/journal.pone.0009308.g011
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cases where the bound is reached, the winning accumulator

always corresponds to the accumulator that reached the

bound and caused integration to cease.

(6) Parameter values were estimated according to the following

procedure. Parameters a and sb were first approximated by

selecting values that permitted a good fit to the behavioral

data ignoring the effect of the bound and of the within-trial

variability sw, which has a negligible effect after 500 msec of

integration. These approximate values could be directly

estimated without the need to run the simulation. Estimation

of the urgency signal, b, and the activation bound value, h,

required searching the parameter space via simulation.

Simulation results reported in the figure were based on

25000 simulated trials for each of the 52 combinations of

stimulus and reward conditions.

Simulation Results
Figure 11 shows the results of the simulation (right column),

along with the comparable psychophysical and neural data from

Monkey A (left column). The model captures several important

features of both the behavioral and neural data. We begin with a

consideration of the behavioral performance: The probability of a

T1 choice as a function of coherence is identical in the HH and LL

conditions (Fig. 11A), even though the accumulation process starts

at a higher level in the HH than in the LL condition (Fig. 11C); the

choice curves for HL and LH conditions are simply shifted to the

left or right compared to either the HH and LL curves, in the

simulation as in the behavioral data. These patterns are expected

based on our analysis above. The high between-trial variability in

the drift parameter is the dominant source of variability affecting

the choice outcome, so that the outcome is relatively immune to

the location of the bound. In essence, the slopes of the behavioral

curves depend on the ratio of the parameters a and sb, and the

bound on integration has relatively little importance.

The relative positions of the curves along the x-axis reflect the

difference in the starting values of the accumulators, which persists

throughout the integration period. Ignoring the bound, and taking

the choice to be determined by the accumulator that is more active at

the end of the motion period, the magnitude of the shift can be

directly calculated from the ratio Sd/s(500), where Sd is the difference

in the starting points of the accumulators (Sd = S1–S2) and s(500) is

the standard deviation of the difference in activation of the two

accumulators at the end of the motion period, see Equation 8. Once

again, because of the high between-trial variability, the presence of

the bound and the within-trial variability has a negligible effect on

behavior, with the result that the curves are simply shifted left or

right by an amount determined by the above ratio.

Because the bound does not impact behavior, an alternative

account of the behavioral data would be to suppose that there is no

bound on the integration process, and that the monkey simply

chooses the most active accumulator at the time he receives the

signal to respond. We would not rule out such an account, and we

consider such a possibility further in the Discussion. However,

including a bound on integration helps us to account for many

features of the physiological data, which we now consider:

1) For trials ending in T1 choices, the model captures the

negative acceleration (i.e. saturation) of the slopes of the

neural activation curves near the end of the motion

integration period (Fig. 11 B and C). This negative

acceleration reflects the effects of reaching the decision

bound, which occurs on many but not all trials. For the

activation bound parameter value that was used in the

simulation, one of the two accumulators reaches a bound on

approximately 70% of the trials on average, although the

fraction increases with the absolute value of the stimulus

coherence C and when the direction of motion is congruent

with reward bias. The bound is reached at different times on

different trials, accounting for the gradual flattening of all

four activation curves for T1 choices.

2) In the model as in the data, the neural activation curves for

T1 choices in the HL and LH conditions converge

noticeably but not completely during the motion integration

period (Fig. 11B, compare the solid green and solid black

curves). The difference in the T1 activation curves is due in

part to the different mixture of coherences contributing to

T1 choice trials as discussed above in conjunction with

Figure 10, and also to the fact that activations tend to reach

the T1 bound, and thus stop growing, sooner (and more

often) on average for HL than for LH choices. Convergence

to exactly the same level would be expected if the bound was

reached on all T1 choice trials. In the model, however, the

bound is not actually reached on all trials (point 4 above); on

these trials the decision is simply cast in favor of the

accumulator with the highest activation level (point 5 above).

Thus the T1 activation curves in the model tend toward

convergence in the HL and LH conditions without actually

reaching the same level.

3) In both the model and the data, the HL and LH activation

curves converge for T2 choices as well (Fig. 11B). The same

factors that affect convergence of the T1 choice curves are

also in play in the T2 choice curves.

4) In the model, there is a subtle trend toward convergence of

the HH and LL curves for T1 choices (Fig. 11C); this effect

is due to the fact that accumulation terminates at the bound

for the T1 accumulator sooner on average (and on a higher

number of trials) in the HH condition. The effect is subtle

because the initial offset between the HH and LL curves is

smaller than between the HL and LH curves, resulting in a

smaller difference in termination times, and because there is

no difference in the mix of coherence values terminating in

T1 choice for the HH and LL conditions. In the data, the

HH and LL curves are similar in shape for T1 choices, as in

the simulation; the difference between the curves seems

slightly smaller toward the end of integration than at the

beginning. While the effect in the data is unlikely to be

statistically reliable, the subtlety of the effect in the

simulation is such that a statistically reliable effect in the

data would not be expected.

5) The model reproduces the rising slope of the accumulation

curves for T2 choices near the end of the motion period in

all four reward conditions (Fig. 11B and C, dotted curves).

This is due to the ‘‘urgency’’ signal represented by

parameter b in Equation 10, which continues to affect

activation in the model after integration stops. The urgency

signal captures the intuition that a premium exists on

reaching decisions within a finite time, even on low

coherence trials when evidence may accumulate very slowly

[23]. Thus both accumulators are driven toward their

bounds at a slow but steady rate throughout the trial,

independent of evidence accumulation. This factor is less

apparent earlier in the trial, where activations reflect both

the stimulus effect and the urgency signal.

Overall, the simulation captures both the behavioral data and

most of the main features of the physiological data from monkey

Decision Signals in LIP

PLoS ONE | www.plosone.org 17 February 2010 | Volume 5 | Issue 2 | e9308



A. Thus, for this monkey at least, the behavioral and physiological

findings appear to be consistent with the hypothesis that reward

affects the starting point of an integration process that is subject to

high between-trial variability and that employs a decision bound

placed such that it is reached only on a subset of trials.

We now consider briefly whether the model described here can

account for the data from monkey T. As indicated earlier, several

features of monkey T’s data are consistent with monkey A’s data

and thus with the model: 1) both absolute and relative reward

effects are present (Figs. 4–6), 2) the offset in the starting point of

the accumulation process is clear (Fig. 9B), and 3) the dynamics of

the accumulation process are similar to monkey A once the effects

of coherence are controlled for (Fig. 10). The most perplexing

aspect of monkey T’s data is seen most clearly in Figure 4. The

firing rate trace for the HH condition (solid red curve) is initially

lower than the trace for the HL condition (solid black curve),

consistent with the relative reward effect. About 200 msec into the

motion viewing period, however, the traces reverse order, with

average firing rate becoming higher for the HH condition, and the

reversal holds for the duration of the trial. This crossover would

not be expected in our model; as in the data and the simulation of

monkey A, we would expect the curve from the HH condition to

converge toward, but not cross, the curve for the HL condition.

The cross-over is anomalous, not only from the point of view of the

bounded integration model, but also from the point of view of the

overall pattern of findings, in which high relative reward of the RF

target is typically associated with greater LIP activity.

A variety of approaches might be taken to account for this

perplexing result from monkey T. For example, the data could be

explained if we relax the assumption that the integration bound is

kept the same across all of the reward conditions. If the bound

were adjusted upward in the HH condition, keeping it low (and

approximately constant) in all of the other reward conditions, the

model might then provide a reasonably good approximate account

of all facets of monkey T’s data. We emphasize that this is only one

possible account, and we do not specifically wish to advocate for it.

We mention it only to make the point that there is at least one way

to explain the anomalous results seen in Figure 4 with a bounded

integration framework.

Discussion

We examined the dynamics of neural activity in LIP while

rhesus monkeys performed a 2AFC motion discrimination task

under conditions of equal and unequal payoffs signaled at the

beginning of the trial. As reported previously [42], psychophysical

performance was indistinguishable during the two balanced

reward conditions (HH and LL), but imbalanced rewards (HL

and LH) biased the monkeys’ choices strongly toward the target

associated with the higher reward. Thus the absolute value of the

target in the RF did not affect choices in our paradigm, whereas

the relative value of the RF target affected choices substantially. The

coherence of the visual stimulus also exerted a strong effect on

choices, as evidenced by the well-formed psychometric functions in

Figure 2.

In the Introduction we posed four questions about neural

processing in LIP to be addressed in these experiments, two

descriptive and two mechanistic. At the descriptive level, we find

that single LIP neurons reflect all three variables that we

manipulated—absolute value, relative value and coherence—in

addition to the well-known representation of behavioral choice

(e.g. [51]). The neural representation of these variables was

dynamic, with each variable influencing average firing rate in a

stereotyped sequence at the population level (Fig. 6). Upon

presentation of the reward cue, LIP neurons responded rapidly to

the absolute value of the target in the response field, with higher

value targets generating higher firing rates. Within 200 ms, this

neural representation of absolute value was modulated by the

value of the target outside the response field, creating a

representation of the relative value of the RF target. Importantly,

the representation of relative value was most pronounced at the

start of the motion epoch, consistent with a mechanistic effect of

biasing the starting point of the motion integration process (see

below). As the motion epoch developed, however, the represen-

tation of both relative and absolute value faded and the effects of

motion coherence and behavioral choice emerged. The represen-

tation of choice quickly dominated LIP responses and persisted

through the time of the saccade. Interestingly, the representation

of absolute value persisted in reduced form until the end of the

trial, even though it exerted no effect on the psychometric

functions. The signals we observed in LIP were typically

multiplexed at the single neuron level; a large proportion of

neurons in both animals were influenced by multiple variables,

especially in the early delay period (Fig. 7).

Most of these descriptive observations have precedents in the

existing literature. Modulation of LIP visual responses by absolute

reward level has been reported previously [30,40,41], as have the

effects of relative reward [30,32,34], motion coherence

[22,49,51,52,55] and behavioral choice [30,51]. A single point

of conflict with the previous literature is our observation that a

dramatic effect of absolute reward is evident at the onset of the cue

period and persists at a reduced level until the end of the trial. This

effect is evident in the comparison of HH and LL conditions in the

average PSTH’s of Figure 3 (for both T1 and T2 choices) as well as

in the regression results of Figure 6. In contrast, Dorris and

Glimcher [32], using a two-alternative, forced-choice ‘‘inspection

game’’, reported that LIP activity represents relative value only,

with no difference in firing rate observed between blocks of trials

with standard vs. double reward size (their Fig. 10). Dorris and

Glimcher thus concluded that LIP encodes the ‘‘relative subjective

desirability’’ of different spatial locations.

It seems likely that the effect of absolute reward is more salient

in our data because our behavioral paradigm required an explicit

evaluation of payoff size on every trial due to the random

interleaving of reward conditions. In the behavioral paradigm used

by Dorris and Glimcher, overall reward size was kept constant

throughout an entire block of trials; the variable that the monkey

needed to judge from trial to trial was the likelihood of being

‘‘inspected’’ by the computer opponent, with the consequence of

receiving no reward at all. In contrast, successful harvesting in our

paradigm depended strongly on accurate evaluation of the

constantly changing payoffs associated with each possible choice.

The presence of the absolute reward effect in our data indicates

that—in the context of our behavioral paradigm—LIP activity at

any one spatial location does not, by itself, completely specify the

value of that location relative to other locations. Nor does it

completely specify the probability of choosing a particular option

on a given trial (e.g. [34,56]). More generally, however, we agree

with Dorris and Glimcher and with Sugrue et al. that relative

value is easily calculated from neural activity in LIP; it simply

requires a comparison of activity at the two locations in LIP

representing the choice targets (see below).

Mechanism of the Effect of Payoffs on Behavioral Choice
The most important insight provided by our study concerns the

mechanistic basis of the effect of unequal payoffs on behavioral

choice. In a psychophysical and modeling study of the effect of

payoffs on discrimination near sensory threshold, Diederich and
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Busemeyer [1] examined the predictions of three possible

mechanisms. Their ‘‘two-stage processing hypothesis’’ corresponds

approximately to the cartoon in Figure 8B. This hypothesis

postulates a first-stage accumulator that accrues information about

the relative payoffs of the two choices, which results in an offset to

the starting points of the two sensory accumulators (second stage).

Their ‘‘drift-rate change hypothesis’’ corresponds to the cartoon in

Figure 8C, in which payoff information exerts its effects via the

rate of accumulation of sensory information in the diffusion

process, and their ‘‘bound-change hypothesis’’ corresponds to the

cartoon in Figure 8D. Diederich and Busemeyer found that the

two-stage processing hypothesis accounted best for their psycho-

physical data, suggesting that payoff information influences

choices through an offset in the starting point of the sensory

accumulation process. This conclusion is consistent with the

microstimulation data of Hanks and colleagues [27], which

suggests that artificial activation of LIP during the motion

discrimination task influences the initial offset of the neural

accumulators.

Our electrophysiological data strongly support the offset

mechanism proposed by Diederich and Busemeyer and by Hanks

and colleagues, directly demonstrating the hypothesized offset at

the initial point of accumulation of sensory evidence (the ‘‘dip’’—

Fig. 9; Fig. 11B and C). In addition, our data argue strongly

against the drift-rate change hypothesis, showing that the initial

rates of accumulation are nearly identical for the HL and LH

conditions, and that the eventual direction of divergence (LH slope

steeper than HL) is opposite to the prediction of the drift-rate

change hypothesis (Fig. 10).

Because we used a fixed-interval psychophysical procedure, not

a reaction time procedure, we are unable to evaluate directly the

predictions of the bound-change hypothesis. However, our

simulations showed that a bound-change is not necessary to

account for our data, at least for the case of monkey A, the monkey

from who we have the largest and cleanest data set. The primary

features of this data set, both behavioral and neural, can be

reproduced by a simple model that incorporates 1) a payoff-driven

offset in the starting point of accumulation, 2) intra- and inter-trial

noise in the input to the accumulators, and 3) the assumption that

accumulation ceases and a decision is made when either

accumulator reaches a stationary bound. It should be noted that

there may be other ways to account for the data from monkey A

that omit a bound from the model. In our fixed-interval task, for

example, accumulation could continue until the end of the

stimulus period, and the decision could be reached from a simple

comparison of the values of the two accumulators. Although

further simulations would be required to verify this, it is likely that,

with additional assumptions, such an approach could account for

many aspects of data.

Our simulations make sense of several otherwise puzzling

aspects of our behavioral and neural data. First, the simulations

defuse any concern about the presence of an absolute reward

signal during the critical motion and early delay periods. At first

blush, the absolute reward signal seems worrisome because

behavioral decisions appear to be based solely on the relative

value of the two targets (Fig. 2). The presence of an irrelevant

absolute reward signal during the critical time of decision

formation might lead one to doubt whether LIP neurons actually

contribute to the primary process of decision formation. Our

simulations of the results from monkey A, however, nicely

reproduce both the behavioral data (Fig. 11A) and the absolute

reward effect (Fig. 11C), demonstrating that the two data sets are

compatible with the notion of bounded accumulation in LIP. In

the model, the absolute reward effect exerts little effect on

simulated behavioral choices because the absolute value signal is

present in both accumulators (T1 and T2) during the accumulation

process and thus grants no advantage to either accumulator. In

essence, the relative value that governs decisions results from the

relative activation of the two accumulators; any signal that is

common to both will have little or no effect on behavioral choices.

Second, the simulations rationalize the results of the otherwise

puzzling slope analysis of the T1 accumulator under the unequal

reward conditions (Fig. 10). Not only are these accumulation

slopes inconsistent with the drift-rate change hypothesis, they

actually trend in the opposite direction, with slopes rising more

steeply for the LH than for the HL conditions. The simulation

shows, however, that this is a logical result of the model

assumption that all accumulation ceases when the bound is

reached by either accumulator. Because the bound is reached

earlier on average and more often in the HL than the LH

conditions (for T1 choices), the HL curve saturates more strongly

than the LH curve, producing the tendency toward convergence.

Finally, the model accounts well for the behavioral observation

that performance is nearly identical under the HH and LL reward

conditions. One might have expected performance to be worse in

the HH condition because of the closer proximity of the initial value

of the accumulator to the sound, which should permit within-trial

noise in the accumulation process to exert a greater effect on the

final decisions. In our simulations, however, this effect is neutralized

by the presence of between-trial noise in the motion-dependent

input signal to the accumulators, which renders behavioral accuracy

relatively insensitive to the distance between the starting point and

the bound. Between-trial noise in the reliability of the motion-

dependent input signal may arise in part from the different patterns

of dots employed on each trial for a given motion coherence. The

value of our between-trial variability parameter is fairly large (twice

as large, for example, as the fitted value in Ditterich, 2006). Holding

all other features of our model constant, the value of this parameter

is rather tightly constrained by the data. It is difficult to know

whether this discrepancy should be a concern, given that our

experiment differed in many details from the one modeled by

Ditterich, and given that parameter values can differ substantially

between individual monkeys. A smaller value for between-trial

variability might fit our data if other features of the model were

adjusted. Whether such adjustments would lead to a better account

over all should be explored in further research.

As noted at the end of the results section, the clear picture

presented in the data from monkey A is not quite so clear in

monkey T. However, the data from monkey T exhibit most of the

same features observed in monkey A. Most importantly, both

absolute and relative reward effects are present in LIP activity at

the onset of the motion period, consistent with the idea that

reward shifts the starting place of an information integration

process. The cross-over of neural activity in the comparison of the

HL and HH conditions is unexpected, but can be accounted for

within the bounded integration theory if the bound were set higher

in the HH condition than in the other reward conditions.

Interpretations of LIP Activity
Substantial energy, both conceptual and experimental, has been

expended in seeking a general theory of LIP computation [57,58].

Early efforts attempted to distinguish between interpretations that

were rooted in sensory (attention) versus motor (intention)

perspectives [59,60,61,62]. Although this controversy inspired a

series of heroic experiments attempting to distinguish between

these perspectives, the effort was ultimately inconclusive, in part

because researchers could not agree on operational definitions of

the postulated cognitive processes. At a deeper level, however, the
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attempt to distinguish between visuospatial attention and intention

to move the eyes was probably doomed from the start because the

neural systems that mediate attention and intention are funda-

mentally inseparable. Evidence emerging in the last decade

suggests strongly that the neural structures that mediate orienting

movements of the eyes and head also mediate covert spatial

attention [63,64,65,66,67,68]. It now seems likely that covert

spatial attention (attending to a spatial location different from the

current direction of gaze) is an advanced adaptation of basic

oculomotor circuitry, and is thus unlikely to be cleanly separable

from internal preparation to move the eyes, no matter how heroic

the experimental design.

A similar problem may exist with more recent suggestions

[41,69,70] that reward and value effects that have been

documented in recent studies of LIP [30,32,34] should be

subsumed under the rubric of attention. Maunsell [69], for

example, has pointed out that studies in experimental animals

deliberately manipulate attention by enforcing reward contingen-

cies, and that studies of reward value rarely try to exclude the

possibility that the observed neural effects are actually the result of

attention covarying monotonically with reward value. It is thus

possible that ‘‘some studies of attention and reward might have

been looking at exactly the same neural signals’’ [69]. For

example, the biasing effects of unequal rewards demonstrated in

the current study could be easily interpreted as effects of attention.

Maunsell suggests experiments that might disentangle attention

and reward value, and some recent studies have attempted to do

just that [41,70]. We are open to the possibility of a clean

dissociation, but we are wary of the field again becoming

enmeshed in a controversy that is fundamentally irresolvable.

This danger is particularly acute if the notion of ‘‘value’’ is

extended (as it probably should be) beyond the promise of

immediate rewards to include acquisition of information pertinent

to acquiring rewards in the future (e.g. [71]). From an evolutionary

point of view, many of the phenomena that we refer to as attention

may have arisen from circuitry that originally implemented direct

reward-seeking behaviors, and these neural circuits may still

overlap considerably within our own brains, rendering clean

distinctions difficult at best.

We believe that a more promising way forward, adopted in this

and other recent studies, is the quantitative analysis of choice

behavior in rigorously controlled behavioral contexts (for reviews

see [26,72,73,74,75,76,77]). These studies attempt to encompass

within a single quantitative framework (signal detection theory and

its intellectual heirs) a rich array of well defined cognitive factors

that influence choice, including but not restricted to sensory

evidence, prior probabilities, reward value, and strategic interac-

tions with competitors. These studies have the cardinal virtue of

quantifying each proposed cognitive factor in terms of its impact

on choice, and defining each factor in formal equations or in

precisely specified simulations. Given these preconditions, scien-

tific investigation can progress naturally by the development of

new models that account demonstrably better for behavioral

choice and the underlying neural signals. This approach conforms

to Maunsell’s [69] call for ‘‘accurate descriptions of behaviorally

relevant information encoded in the brain,’’ and has the desirable

outcome that terminology becomes less important to the field than

quantitative understanding.

Perhaps the most general theory of LIP function that has come

forth in recent years is that LIP contains a ‘‘salience map’’ or

‘‘priority map’’ of space that encodes the potential behavioral

salience of each region of space [58,78,79]. Behavioral salience is

proposed to arise from bottom-up processes such as the sudden

appearance of a novel object [80,81] and by any internal analysis of

an object related to reward, arousal, choice, social significance

(top-down)—in short anything that an animal might find

significant either by natural inclination or by training [79].

Similarly, the output of the salience map can be used for any

behavioral purpose including covert attention, guidance of eye or

arm movements, etc. While intuitively congenial, the very

generality of this idea renders it necessarily qualitative. Different

behaviors will draw upon very different combinations of sensory

input, behavioral goals, reward potential, and social significance to

endow salience upon different regions of space. Thus quantitative

understanding of LIP function, as suggested above, is more likely

to arise from consideration of specific behavioral paradigms in

which relevant inputs can be specified precisely, possible neural

computations can be inferred from quantitative modeling of

behavioral data, and neural signals can be compared to the

internal computations postulated by the behavioral model [31,73].

From this point of view the notion of a salience map is a useful

heuristic for guiding inquiry, and most LIP data—including those

presented in this paper—are broadly consistent with the notion of

salience. But mechanistic understanding must ultimately emerge

from more precise consideration of specific behaviors.
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