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Antibody-secreting cells (ASCs) play a fundamental role in humoral immunity. The aberrant function of ASCs is related to a
number of disease states, including autoimmune diseases and cancer. Recent insights into activated B cell subsets, including
naïve B cell to ASC stages and their resultant cellular disturbances, suggest that aberrant ASC differentiation occurs during
autoimmune diseases and is closely related to disease severity. However, the mechanisms underlying highly active ASC
differentiation and the B cell subsets in autoimmune patients remain undefined. Here, we first review the processes of ASC
generation. From the perspective of novel therapeutic target discovery, prediction of disease progression, and current clinical
challenges, we further summarize the aberrant activity of B cell subsets including specialized memory CD11chiT-bet+ B cells that
participate in the maintenance of autoreactive ASC populations. An improved understanding of subgroups may also enhance
the knowledge of antigen-specific B cell differentiation. We further discuss the influence of current B cell therapies on B cell
subsets, specifically focusing on systemic lupus erythematosus, rheumatoid arthritis, and myasthenia gravis.

1. Introduction

Autoreactive antibody-secreting cells (ASCs) refer to short-
lived proliferating plasmablasts (PBs) and nonproliferating
plasma cells (PCs), with distinct expression profiles, cell mor-
phologies, and a lifespan from B cell lineages [1]. Autoim-
mune diseases such as systemic lupus erythematosus (SLE)
[2], rheumatoid arthritis (RA) [3], and myasthenia gravis
(MG) [4] are characterized by T cell hyperactivity and the
overproduction of autoantibodies by ASCs, leading to highly
activated differentiation to ASCs. For instance, the majority
of autoantibodies causing MG are antiacetylcholine receptors
(AChR) and AChR+CD21+ B cells in MG patients positively
correlate with anti-AChR antibody production by ASCs in
the serum [5], suggesting that hyperactivated antigen-
specific B cell differentiation to ASCs represents a precursor
of autoreactive ASCs. Other antigen-specific B cells, such as
ANA+ lgG+ switched cells and IgG+ PBs, are elevated in
SLE and further support the highly connected differentiation
to ASCs [4]. In SLE patients, next-generation sequencing
(NGS) has shown higher naïve to ASC and IgD− memory
to ASC connectivity [6].

This highly activated process of differentiation to ASCs is
believed to be induced by the disruption of tolerance check-
points, which promotes survival of autoreactive ASCs with
increasing quantities of autoantibodies [7–9]. Through the
detection of B cells that recognize nuclear antigens (ANA+

B cells) using flow cytometry, the checkpoints between tran-
sitional/naïve and naïve/memory cells have been identified in
SLE and healthy individuals but naïve ANA+ compartments
are defective in SLE [10]. While the numbers of ANA+ IgG
PCs have been shown to increase, no changes have been
found in ANA+ transitional, naïve, or switched/unswitched
memory B cells in SLE [4], the exact tolerance checkpoints
limiting the entrance of autoreactive ASCs are unknown.
Challenges in this area include aberrant B cell groups with
unknown phenotypes and unknown relationships to ASCs
following differentiation in autoimmune diseases. Second,
PCs such as pre-PCs, early PCs, short-lived PCs, and long-
lived PCs fail to provide precise markers [11], increasing
the difficulty in clarifying ASC origin and differentiation.
Third, the phenotypes of autoreactive B cells with altered B
cell receptor (BCR) repertoires [6, 8] are poorly understood,
and pathogenic antibodies generated by different clones of
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autoreactive B cells may exhibit heterogeneity of effector
mechanisms.

Current biological agents targeting B cells including
rituximab have been trialed in autoimmune diseases, which
to date have shown only limited success, failing to deplete
and prevent the replenishment of aberrant ASCs. The reasons
for the lack of therapeutic efficacy include memory B cell-
mediated relapse [12, 13], some unaffected subsets in periph-
eral blood [13–17] and in tissue [18, 19], unaffected factors
such as BAFF and CD59 [18], and some autoantibody-
producing B cell clones protected from rituximab-mediated
cytotoxicity [20, 21]. Improving our knowledge of abnormally
expanded autoimmune-associated subsets can enhance our
understanding of ASC differentiation and explain therapeutic
failures. This may reveal more effective targeted therapies and
provide potential biomarkers that are appropriate for both
diagnostic purposes and prediction of outcome.

We therefore revisited the normal processes of ASCs and
conclude possible mechanisms that lead to abnormalities in B
cell homeostasis. The existence of specific homing receptors
in distinct subpopulations and different activation thresholds
amongst the different stages of B cells were used to identify
autoimmune-associated subsets [22]. We further summarize
the current identified groups and discuss their potential roles
as biomarkers for the prediction of organ damage, disease
activity, and the influence of current B cell therapy.

2. Generalities during ASC Differentiation

2.1. Immature B Cells.Under normal conditions, immature B
cells are generated in the bone marrow (BM), except for B1
cells that are produced in the fetal liver [23]. Those with auto-
reactive receptors undergo clonal deletion and sufficient
receptor editing to enable effective tolerance [24]. Multireac-
tive BCRs exist when leaving the BM, although they remain
unresponsive to antigenic stimulation [25].

2.2. Naïve B Cells. Surviving immature/transitional B cells
enter the spleen, lymph nodes, or other lymphoid tissues
and develop into naïve B cells. Generally, naïve B cells can
be divided into B1 cells, marginal zone (MZ) B cells, and fol-
licular (FO) B cells. FO B cells are the most common [26].

2.3. Activated B Cells. Activated B cells can differentiate in
either a T-independent (TI) or a T-dependent (TD) manner.

In TI responses, all B1 cells, MZ B cells, and FO B cells are
activated and differentiate into PBs, although these cells show
differential responsiveness to antigens, cytokines, or costimu-
lation [27–29]. FO B cells show limited functionality during
ASC differentiation in the absence of T cells compared to
B1 and MZ B cells [27]. The reasons for these differences
include alterations in TLR amongst the subgroups [28, 30]
and low Mzb1 (pERp1) expression of FO B cells [31]. Mzb1
is required for ASC formation in TI [31]. This is highly
expressed in B1 and MZ B cells, and its silencing impairs
ASC differentiation in TI responses [31]. Since long-lived
PCs also exist in T cell-deficient mice after immunization
with LPS, TI also induces the formation of PCs [32, 33].

In TD responses, both FO B cells and MZ B cells show
functionality [34]. Following activation, both undergo
somatic mutations of the variable portion of expressed anti-
bodies to alter and improve antigen specificity and affinity
through extrafollicular responses and GC formation [1].
The generated PBs lack the ability to form PCs, and many
undergo apoptosis. Extrafollicular growth typically occurs in
the medullary cords of lymph nodes and in the T zone-red
pulp border of the spleen, with low-levels of hypermutations
observed [35]. GC reactions are enhanced by activation-
induced cytidine deaminase (AID) [35] and result in the for-
mation of plasma and memory B cells. PCs generated via
thesemethods produce high affinity, class-switched immuno-
globulins. Memory B cells can be found in both blood and
lymph tissue with lower activation thresholds [36] and rap-
idly differentiate into ASCs. PCs are home to BMs through
CXC-chemokine receptor 4 (CXCR4) and continuously
produce antibodies in the absence of antigenic stimulation,
providing immediate protection [1]. CD19 niches provide
external survival signals and are of great importance to PC
survival [37] (Figure 1).

3. Potential Mechanism of B Cell Subset
Alterations and Failure of Therapy

3.1. Mechanism of Self-Tolerance. In BM stage, immature B
cells undergo clonal deletion or receptor editing to complete
central tolerance, eliminating 20%~50% of self-reactive
clones [38]. Additional peripheral tolerance includes anergy
that occurs prior to entering the mature naïve B cell compart-
ment [38, 39]. Specifically, BCR, TLR, and cytokines govern
both normal and self-reactive antibody responses to antigens
[40]. In autoreactive immature and transitional B cells, the
BCR/TLR pathway increases AID to establish tolerance
[41]. Further differentiation through GC or extrafollicular
stimulation is dependent on initial BCR affinity and antigen
density [42]. However, the nature of BCR, TLR, and cytokine
interactions remains unclear.

3.2. Relevant Extrinsic and Intrinsic Factors Sustain
Alterations in B Cell Subsets. Autoimmune diseases exhibit
abnormal central tolerance with unusual BCRs [43]. Unlike
central tolerance in the BM stage, the breakdown of periph-
eral tolerance can be adverse [24] and additional signals are
required to overcome regulatory constraints of peripheral
tolerance.

Extrinsic factors leading to the disruption of B cell
tolerance include the deficient clearance of apoptotic cells
by macrophages and neutrophils [44], hyperactivity of
Th-cells, alterations in dendritic cells [45–48], extrinsic cyto-
kines such as BAFF, IFN-γ, and IL-21 [9, 49–52], TLR stimu-
lation [50, 53, 54], and survival niches for long-lived PCs
[37]. Relevant intrinsic factors include changes in major his-
tocompatibility complex (MHC) class II [55], BCR signaling
responses [56–58], and TLR responses [59, 60]. These factors
in addition to deficient Breg cells [61, 62] and abnormal of
extrafollicular germinal centers (GC) formation [6, 63] result
in alterations to B cell subsets highly connected to autoreac-
tive ASCs (Figure 2).
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3.3. Autoreactive PCs and Memory B Cells in Tissues: Difficult
Therapeutic Targets. CXCR3, a chemokine receptor, is
associated with migration into bone marrow and/or inflamed

tissue, and the majority of B cells in healthy individuals lack
CXCR3 expression [64]. However, in disease states, PCs are
present in the tissue due to inflammatory factors including
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Figure 1: B cells differentiate into ASCs. Differentiation of B cell subsets can be T cell-dependent or T cell-independent. Some PBs develop
from immature or naïve B cells and can regulate IL-10 secretion. TD responses include GC reactions and extrafollicular GCs. Activated naïve
B cells can develop in a T cell-independent manner while FO B cells have limited functionality. PCs in BM are conventionally derived from
PBs produced following GC reactions.
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factors with impaired Breg inhibition and aberrant extrafollicular GC formation in disease states.

3Journal of Immunology Research



CXCL10, VCAM-1, and IP-10 [65] and their interaction with
CXCR3 [64]. Thymic lymphocytes produce AChR autoanti-
bodies in MG patients either spontaneously or in response
to mitogen stimulation [66], suggesting an involvement of
autoreactive ASCs in tissues of unknown origin. In addition,
TLR4+CXCR4+PCs undergo significant infiltration into
tissues of SLE patients and correlate with the severity of
nephritis [67].

AChR-specific CD27+ memory B cells are also present in
the hyperplastic MG thymus, with unknown specificity [68].
Excluding classical memory B cells, unique peripheral mem-
ory cells have been identified in tissues. CD11chiT-bet+ B
cells are present in nephrotic kidneys, with upregulated che-
mokine receptors for recruitment to inflamed tissues, such as
CCR9 [69]. In addition, circulating CD19hiCXCR3hi memory
B cells are elevated in SLE and associated with poor clinical
outcomes in response to rituximab (RTX) treatment [70],
which may also be associated with tissue migration of mem-
ory B cells.

4. Peripheral B Cell Subset Alterations
Associated with ASC Differentiation

Patients with autoimmune diseases show abnormalities
during differentiation, with B cell subsets undergoing a wide
range of alterations, including transitional B cells, B1, MZ,
FO B, and memory B cells giving rise to ASCs, though differ-
ent stages show preferential responses. In autoimmune dis-
eases, these stages show specific extrinsic and/or intrinsic
abnormalities. The clinical significance of these cells is dis-
cussed in Table 1.

4.1. B1 Cells. B1 cells localizing to the body-cavity serosa
either secrete natural antibody spontaneously (B-1a) or
respond to TI antigens (B-1a and B-1b) [91]. B1 cells are
present in lymphoid organs and blood [91]. Griffin and col-
leagues defined the phenotypes of circulating human B1 cells
as CD20+CD27+CD43+CD70- [92], although this remains
controversial.

ASCs from this group play important roles in the produc-
tion of protective antibodies, serving as major sources of nat-
ural IgM [93]. B1 cells can further differentiate into PCs in
BM [94]. The pathophysiological functions of B1 cells in
human autoimmune diseases require elucidation. Murine
studies have proposed that elevated B1 cells are related to
defects in macrophage clearance and represent a source of
autoantibodies [95]. CD11b+ B1 cells increase in the periph-
eral blood of SLE patients, in which higher CD86 expression
is observed, and T cell activity is enhanced [96]. This indi-
cates that B cell subsets are activated and promote immunity.
Although Murakami and colleagues reported that the elimi-
nation of B-1 cells alleviates clinical responses in autoimmune
mice [97], its clinical relevance in patients with autoimmune
diseases remains unclear.

4.2. Transitional B Cells. Transitional B cells belonging to the
immature B2 B cell subset are key players in autoimmune
diseases [9]. CD19+IgMhiIgD+CD24hiCD38hi transitional B
cells are elevated in SLE but are almost absent in healthy

controls [6, 9, 72, 98]. Blair and colleagues reported that
the majority of CD19+CD38hiCD24hi B cells are
IgMhiIgDhiCD5+CD10+CD20+CD27-CD1dhi, which func-
tion as regulatory cells [99]. Their regulatory capacity
is impaired in SLE [99]. Some B cells using other
markers also include transitional B cells [71]. Kosalka and
coworkers reported that immature/early-transitional B cells
(CD27-IgD+CD21-) are elevated [71]. CD21low subsets
(immature and activated B cells) are particularly expanded
and correlate with lupus nephritis activity [71].

Studies in SLE patients and animal models show that
transitional B cells cause the early loss of B-tolerance since
a greater percentage of ANA+ cells in naïve or new
emigrant/transitional B cells are observed in SLE [4, 10, 100].

Cytokines, including BAFF and IFN, mediate transitional
B cell abnormalities in SLE. Elevated BAFF expression con-
tributes to transitional B cell expansion [40, 101], and target-
ing BAFF can recover the normal function of transitional B
cells, promoting negative selection of activated autoreactive
B cells [10, 102]. IL-6-producing transitional B cells survive
in a type I IFN-dependent manner and positively correlate
with disease activity in SLE [72]. Dieudonné and colleagues
further emphasized the function of IFN by demonstrating
that IFN stimulation combined with CD19 downregulation,
and impairment of TLR9 responses disturb transitional B
cells, resulting in the expansion of ASCs in SLE [9].

4.3. MZ B Cells. Following the transition of B cells, some
remain in the spleen and develop into MZ B cells. MZ B cells
become PBs following antigen presentation and rapidly pro-
duce high levels of IgM in a TI manner [103]. MZ B cells are
present in human peripheral blood [104]. Although it is
unclear whether this population is expanded in patients with
autoimmune diseases, MZ B cells contribute to autoreactive
clones and their numbers correlate with autoantibody pro-
duction [105]. They can be rescued by BAFF to undergo
expansion [40].

4.4. FO B Cells. FO B cells are the largest set of mature B cells
following the transitional stage. They circulate freely in the
spleen and lymphoid organs, forming an important part of
the adaptive immune response, particularly TD responses
[26]. TD responses include short-lived PB formation through
extrafollicular responses and GC [1].

CD24-activated naïve B cells with a CD19hiCD21−-
CD38lowIgMlowCD23− phenotype increase in SLE but are
absent in healthy controls [6]. These cells exhibit high clonal
lineage with ASC populations [6], suggesting that aberrant
subsets preferentially undergo differentiation. Increasing
ANA+ and anti-dsDNA+ naïve B cells in SLE patients suggest
defective selection at the transitional stage [10], though
Suurmond and colleagues reported normal tolerance
checkpoints in immature and naïve B cells with increasing
total IgG1 PCs [4]. Further studies are now required to
explore the exact composition of FO B cells contributing
to autoimmune ASC.

4.5. Memory B Cells.Memory B cells reflecting autoimmune-
associated reactivation are important as these cells possess
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lower activation thresholds for sustaining autoreactive ASCs
with variable responses to therapy. Memory B cells exhibit
heterogeneity in SLE, and homogeneous groups are difficult
to establish. Usually, immunoglobulin isotopes including
IgM, IgD, and CD27 are used to discriminate different mem-
ory B cells [106] including CD27+IgD+, CD27+IgD−, and
CD27−IgD− (DN) types. In disease states, different activation
markers or clusters of differentiation markers are observed in
a range of disease states. Some CD27−/low memory B cells
increase in number, including CD11chiT-bet+ B cells,
CD21−B cells, and spleen tyrosine kinase++ (Syk) memory-
like B cells. The phenotypes defined by CD11chi, CD21, and
Syk have overlapping populations, and also overlap with
the groups defined by CD27 and IgD [75, 107]. These subsets
overlap but are unique. CD11chi B cells are often character-
ized by the expression of CD21−/low in disease states [25,
73, 86], while Golinski e al. revealed that less than 10% of
CD11c+ B cells were CD21−/low in healthy individuals [108].
CD27−Syk++ memory-like B cells are 64:2 ± 20:9% of
CD27−CD21− B cells and 67:4 ± 8:0% of CD27−IgD−CD95+

B cells [75].

4.5.1. CD11chiT-bet+ B Cells. The number of CD11chi B cells
is related to disease activity, anti-dsDNA levels, and ASC fre-
quency in SLE [73]. Nearly all CD11chi cells express T-bet in
SLE but with lower T-bet expression in healthy individuals
[73]. T-bet is required for the generation of CD11chi cells
[109]. In vitro, CD11chi B cells do not spontaneously produce
IgG, but are poised to become ASCs and produce the major-
ity of autoantibodies [73]. CD11chi B cells are CD21-CD23-

BAFFR (BAFF receptor)hi, TACI (transmembrane activa-
tor and CAML interactor)in, BCMAlo (B cell maturation
antigen) and are largely CD27lowCD38low with switched or
unswitched types [73]. The expansion of CD21−CD11c+ B
cells in RA patients supports this finding [86].

CD11chi B cells possess aberrantly high expression of
IL-21R and low expression of CD27 and CD40, which
explains their highly activated IL-21 signaling and low
threshold for differentiation into ASCs [73]. IL-21 signaling
is not unique to SLE naïve B cells and can lead to CD11c
expression in healthy donors [73]. CD11chi B cells not only
contribute to the ASCs but also have important function in
GC action for antibody-affinity maturation [110].

4.5.2. CD21-/low B Cells. Compared with CD21+B cells,
CD21-/low B cells have higher numbers of polyreactive
clones in both RA patients and healthy donors [25]. In
healthy donors, Thorarinsdottir and coworkers reported
that circulating CD21-/low B cells were primarily memory
B cells and that CD21-/low B cells were less frequent than
CD21+B cells with 25% CD27+ B cells [111]. Lau and col-
leagues reported that cells in healthy humans undergo active
GC reactions with variable gene mutations [112]. Further
transcriptional analysis supports the theory that cells are pre-
disposed for differentiation into ASCs after the GC stage,
with higher levels of Blimp-1 and T-bet compared with clas-
sical memory B cells in healthy donors, especially for CD27+

CD21-/low B cells [112].

In disease states, CD21-/low B cells exhibit abnormalities
and aberrant expansion in RA [25] and in SLE producing
autoantibodies without somatic hypermutation [6] and
higher naïve B cell composition [25]. The requirements
for differentiation in the pathological state partly result
from expanded naïve cell compositions. In RA patients,
CD21-/low B cells exhibiting differential responses to BCR,
CD40, or TLR9 are significantly expanded; the majority
of which express autoreactive antibodies. The cells fail to
proliferate or activate through BCR and/or CD40 [25]. At
the transcriptional level, B cell activation, trafficking, and
proliferation decrease, while the expression of integrins,
including ITGAX, which encodes CD11c, increases [25].

4.5.3. CD27+IgD+ B Cells and CD27+IgD- B Cells. Sev-
eral groups have reported that non-witched memory
(CD27+IgD+) B cells decrease in SLE [6, 71, 77, 78, 80, 113]
and RA [88], with increases in class-switched memory
(CD27+IgD-) B cells [6, 71, 78–80].

For nonswitched memory (CD27+IgD+) cells, homoge-
neous patient cohorts have been assessed in quiescent SLE
patients [79]. A decrease in nonswitched memory cells with
no increase in other types was observed [79]. The quiescent
SLE patients with a low frequency of B cells had lower levels
of CD45, which may result from the reduced differentiation
to ASCs and tissue homing [113]. IgD+CD27+IgM+ memory
B cells have a significantly lower association with disease
activity and autoantibody concentrations [77, 78]. The cells
overexpress CD95, CD80, CD86, CXCR3, and CXCR4 [77],
suggesting they contribute to tissue homing. Rodriguez-
Bayona and colleagues reported that the phenotype of IgD+-

CD27+IgM+ memory B cells was consistent during both
active and remission stages [77]. Their origin remains
unclear but may arise from B1 and MZ B cells [78, 104].

The numbers of class-switched memory (CD27+IgD-) B
cells increase in SLE [79]. These cells express higher CXCR3
in SLE compared with healthy controls and RA patients, with
lower CXCR5 expression [114], which may explain why they
are less susceptible to therapy. CXCR5+CXCR3− B cells lead
to a B cell class switch through the combined stimulation of
BCR and TLR [114], suggesting that class-switched memory
B cells originate from CXCR5+ IgM memory B cells. In
in vitro studies, lower thresholds were observed due to
enhanced CXCR3 expression when stimulated with either
CD40L, soluble BAFF, or IL-21, in addition to BCR and
IFN-γ [79, 80].

4.5.4. CD27−IgD− B Cells. Double-negative (CD27−IgD−)
memory B cells (DN) represent another class of isotype-
switched cells. In healthy individuals, their numbers are small
with a higher proportion of IgM memory cells [98], suggest-
ing that they are activated in disease states.

DN cells can be expanded and express somatically
mutated VH genes [76]. Their frequency correlates with
renal involvement, disease activity, and specific autoanti-
bodies, while RA shows no differences [76]. They lack the
expression of FcRH4, with higher mutation rates and recircu-
lation in the peripheral blood compared with CD27- (CD27
negative) memory B cells [76, 77, 98, 115]. This suggests
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higher activation rates after the GC stage. However, Jacobi
et al. observed disease-specific activity and serologic abnor-
malities with CD27-IgD-CD95+ memory B cell subset, as
opposed to CD27-IgD- memory B cells [74]. While increasing
numbers of double-negative cells are not consistently corre-
lated with anti-dsDNA [74] and the lack of CD27 expression
impairs their binding to T cells, their relationship with ASCs
requires additional research. DN cells express higher levels of
activation markers (CD86, HLA-DR), chemokine receptor
CXCR3, and CD71 [74, 113], suggesting an association with
aberrant extrafollicular differentiation. Jenks et al. defined
CXCR5−CD21−CD11c+ DN cells derived from CXCR5−

CD21−CD11c++IgD+CD27− naïve B cells due to additional
differentiation to circulating PCs through the extrafollicular
activation pathway [107].

4.5.5. CD27-Syk++ Memory-Like B Cells. SYK, a key element
of BCR signaling, is critical for B cell antibody TI/TD
responses and memory B cell survival [116]. CD27-Syk++

memory-like B cells are expanded in SLE, with CD19++-

CD20++CD38- phenotypes, primarily CD21- [75]. The main
difference with DN or CD95+ DN B cell subsets is that more
than half of CD27−Syk++ B cells express IgD [75]. In in vitro
studies, these cells are produced via stimulation with inter-
feron-γ, lipopolysaccharides, or tumor necrosis factor α,
showing elevated p-Syk expression and differentiation into
CD27++ IgG secreting cells [75]. Thus, these cells represent
the precursors of autoimmune ASC in SLE [75].

4.6. ASCs. Autoreactive ASCs produce autoantibodies and
can be used to predict disease progression. The increasing
number of ASCs not only is responsible for pathogenic auto-
antibody production but also is associated with accelerated
autoimmune disorders [117]. Long-lived PCs in the absence
of antigen stimulation represent autoreactive immunological
memory cells that secrete pathogenic autoantibodies, but
direct studies of autoreactive PCs in humans are challenging
since they represent rare and inaccessible cells. The exact
origin and pathways of differentiation remain difficult to
establish since the markers are unclear [11]. Although it is
generally considered that autoreactive ASCs originate from
TD responses, elevated MZB1 levels in SLE suggest the
contribution of TI responses [118].

In the MuSK MG group, Stathopoulos and coworkers
reported that autoreactive ASCs produce MuSK antibodies
during relapse [90]. In AChR MG patients, CD19−CD138+

ASCs significantly increase and strongly correlate with follic-
ular helper T cell frequency in MG patients, while the fre-
quency of follicular helper T cells (FTh) was associated with
disease activity [85]. Patients of generalized MG have a
higher proportion of CD19−CD138+ ASCs than clinical
forms of ocular MG [85]. In addition, IL-6 and IL-21 which
are important to GC activity [119] are increased in the serum
[85]. Blocking of IL-21 signaling decreases antibody produc-
tion [85], suggesting that the function of FTh is in aiding B
cell differentiation to CD19−CD138+ ASCs in an IL-21-
dependent manner.

In SLE, ASCs were expanded in the peripheral blood
[6, 120]. Using single-cell analysis, ASCs display lower fre-

quencies of SHM and higher mutation frequencies in
hypervariable CDR [6]. IgM+ ASCs are elevated in SLE
patients; a small proportion of which are derived from newly
activated naïve B cells [6], suggesting the importance of
antigen-driven selection when differentiating towards ASCs
and the importance of precursor identification.

4.6.1. TLR4+CXCR4+ PCs. TLR4+CXCR4+ PCs are expanded
in the blood and renal tissue of SLE [67]. Their non-Ki-67
expression suggests they are nondividing cells and that their
frequency correlates with disease activity and renal damage
in SLE [67]. In in vitro studies, TLR4 inhibitors cause
decreased anti-dsDNA IgG secretion [67], suggesting the
importance of TLR4 signaling and their contribution to
autoantibody production.

4.6.2. HLA-DRhiCD27hi PBs. Circulating HLA-DRhiCD27hi

PBs are elevated in SLE [81]. Compared with CD27++-

CD20-CD19dim cells, HLA-DRhiCD27hi PBs show a closer
correlation with lupus and anti-dsDNA levels [81]. HLA-
DRhi PBs are also present in BM and contribute to PC forma-
tion in disease states [81]. Further analysis of the chemokines
and relevant survival molecules is now required.

4.6.3. RP105- B Cells. RP105 is a B cell surface molecule of
TLRs associated with B cell proliferation and death [121].
Korganow and colleagues reported that RP105-CD86+ and
RP105-CD38+ cells are persistently elevated in SLE, even in
quiescent phases [113]. The frequency of RP105- B cells cor-
relates with disease activity in SLE [84]. RP105- B cells cannot
be divided into classically categorized B cells and belong to
neither GC B cells nor memory B cells but display a highly
activated CD95+CD86+CD38+IgD-IgMlo phenotype [83].
In vitro studies in which autoantibodies and polyclonal
immunoglobulins have been produced, implying the influ-
ence of ASC composition [83, 84].

Compared with healthy individuals, RP105- B cells dem-
onstrate increasingly higher relative ratios of BCMA/BAFF-R
expression in SLE [82], suggesting that RP105- B cells are
dependent on BAFF/APRIL when differentiating into ASCs.
The exact mechanisms of these pathways now require further
elucidation (Figure 3).

5. Influence of B Cell Targeting Therapy

Currently, belimumab therapy for SLE and rituximab for
RA are approved by the US Food and Drug Administra-
tion [122, 123]. Rituximab is recommended for clinical use
for severe or MuSK MG [124, 125] and SLE in refractory-
and corticosteroid-dependent forms of kidney or central
nervous system involvement or severe autoimmune throm-
bocytopenia [126]. Here, we discuss their effects on different
B cell subgroups and their association with clinical efficacy
(Table 2).

5.1. Anti-CD20 Monoclonal Antibodies. CD20 is a 33 kD
protein expressed by all mature B cells, except for plasma B
cells. Rituximab (RTX), ofatumumab, and ocrelizumab are
monoclonal therapeutic anti-CD20 antibodies considered
treatments for autoimmune diseases [127].
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RTX is recommended for patients who are refractory
to standard therapy in RA [128], severe or MuSK MG
[124, 125], and SLE [126]. The depletion of precursor cells
that differentiate into autoimmune ASCs is considered the
cause of effective treatment [129]. Except for the effect on
antibody secretion, RTX mediates trogocytosis of human B
cells by producing and releasing IL-6 in vitro and has no
effect on tumor necrosis factor α, IL-1β, interferon-γ, or
IL-10 [130]. In RA, patients have higher levels of IL-6
after 6 months of therapy and high IL-6 levels are also
good predictors for RTX response [131, 132]. Third, the
few remaining and/or regenerating B cells exhibit incom-
plete deficiency in costimulatory molecule expression, thus
having impaired antigen presentation function [133, 134].

Following their depletion, immature and transitional B
cells can be detected for several months [135] and B cell
reconstitution is observed. The efficacy of rituximab in auto-
immune diseases is mediated by decreased rates of PC syn-
thesis and improved selection for autoreactivity by receptor
revision. Numbers of PBs and PCs decrease indirectly after
one year of RTX therapy in SLE [136] and 16 months of
RTX therapy in RA [137]. Good and shorter clinical
responses after RTX therapy are associated with a sustained
decrease in anti-dsDNA antibodies for SLE [21, 138, 139]
and in anti-CCP autoantibodies for RA [131, 140, 141]. How-
ever, the clinical efficacy of RTX varies amongst individual
patients. Lacking CD20 expression [142], stem cells, PCs,
and PBs are unaffected in some studies [143, 144], and higher
PB counts are associated with relapse in 26 weeks in SLE
[145]. In tissues of RA patients, unaffected long-lived PCs
are also found [18]. In SLE, some patients with peripheral
ASCs suppressed have a continuously high anti-dsDNA titer,
suggesting the presence of autoantibody-producing long-
lived PCs [145]. In addition, a high frequency of memory B

cells is also associated with poor clinical responses to RTX
[13]. Muto and colleagues have reported that the repopula-
tion of IgD-CD27- and IgD-CD27+ memory B cells is associ-
ated with disease activity during relapse after anti-CD20
treatment [12]. Lazarus and colleagues suggested using ther-
apies other than RTX in SLE patients with high levels of
IgD−CD27− memory B cells and low anti-dsDNA antibody
levels [138]. RTX alone may not be sufficient to delete
autoreactive clone.

5.2. Anti-CD22 Monoclonal Antibodies. CD22 is a trans-
membrane protein that regulates adhesion and inhibits BCR
signaling [146]. CD 22 is expressed on themajority of develop-
ing B cells except for plasmablasts and plasma cells [147].

Epratuzumab is a humanized antibody directed against
CD22 [148], inhibiting B cell proliferation and maturation
and reducing production of proinflammatory cytokines includ-
ing IL-6 and TNF-α [16, 147, 149]. Although phase IIb studies
have shown improvements [150], recent phase III data reveal
no differences compared with standard therapy without epra-
tuzumab in SLE [151, 152]. Post hoc analysis of open trials of
SLE patients with primary SS demonstrates that anti-SSA levels
were consistently reduced after epratuzumab treatment [153].
Additional research is required to fully explore responsive clin-
ical subgroups and relevant mechanisms.

Immature B cells, transitional B cells, naïve B cells, and
limited memory B cells are affected [16, 154]. CD27+ mem-
ory B cells are less affected, partly due to low CD22 expres-
sion [16] and lower binding with epratuzumab [147]. In an
in vitro study, epratuzumab binding leads to the expression
of CD62L, decreased β7 integrin, and increased β1 integrin,
and the primary effect is observed on CD27- B cells [147].
The unaffected CD27+ memory B cells may contribute to
the failure of the therapy.

Immature B 
cell

Transitional B cell
(CD19+CD38hiCD24hi)

FO B cell

B1 cell
(CD20+CD27+CD43+CD70−)

CD11b+ B1 cells

Central and 
peripheral tolerance

Central
tolerance 

MZ B cell

Peripheral
tolerance

Activated B cell

GC action 

Memory B cell ASC

ASC

ASC
ASC

IgMhiIgD+ transitional B cells
immature/early-transitional B-
cells(CD27−IgD+CD21−) 

ANA+ and anti-
dsDNA+naïve B 
cells
CD21−/low B cells

CD19hiCD21−CD
38loIgMloCD23−

CD19−CD138+ASCs 

TLR4+CXCR4+PCs
HLA-DRhighCD27high

plasmablasts
RP105− B cells
MuSK-specific 
CD27hiCD38hi B
cells

CD11chiT-bet+ B cells 
CD21−/low B cells 
CD27+IgD+memory B 
cells 
CD27+IgD-memory B 
cells
CD27−IgD−memory B 
cells 
CD27−Syk++memory
−like B cells

Unswitched IgM+ASCs

Figure 3: Differentiation of aberrant ASCs and the involved subgroups. From immature B cells to ASCs, B cell subgroups show expressional
changes in autoimmune diseases. Unique autoimmune-memory phenotypes include CD11chi B cells.
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5.3. Targeting ASCs with Proteasome Inhibitors. CD19+ ASCs
in the BM or spleen and CD19− BM ASCs in BM have a
similar capacity to contribute to immunological memory
[155]. Both contribute to the failure of current therapeutic
approaches.

Bortezomib, a proteasome inhibitor, has been used in the
treatment of autoantibody-mediated autoimmunity, includ-
ing SLE [156–158], RA [159], and MuSK MG [160]. Further
studies are required to ensure safety, since murine studies
showed higher mortality rates after drug use [161]. The drug
effectively depletes both short-lived and long-lived PCs in the
peripheral blood and bone marrow by ∼50% including the
CD19- phenotype by inducing apoptosis [17] with decreasing
levels of pathogenic autoantibodies [156]. In addition,
fluctuations in anti-dsDNA antibody levels have been
observed in relation to each bortezomib cycle [17], sug-
gesting the dynamic depletion of autoreactive ASCs. How-
ever, precursor B cells remain unaffected, resulting in the
rapid repopulation of ASCs in the absence of bortezomib
[17]. Bortezomib withdrawal is accompanied by rapid
repopulation of short-lived PCs with increasing autoanti-
body levels [17].

5.4. Targeting B Cell Survival Factors. Blocking targets
include BAFF, its homolog APRIL, and their receptors
including BAFF-R, BCMA, and TACI. BAFF-R is expressed
on the surface of human peripheral B cell subsets excluding
PCs and centroblasts located in the dark zone of GCs [162]
while BCMA is expressed constitutively by long-lived plasma
cells and is important for their survival [163]. TACI is
expressed on activated B cells, MZ B cells, switched mem-
ory B cells, and PCs [164]. BAFF-R is the major receptor
molecule for BAFF-dependent response in the peripheral
blood [165], and the interaction of BAFF and BAFF-R is
required for the survival and late transition of MZ and
mature naïve B cells [105]. Relevant agents include beli-
mumab, tabalumab, atacicept, and blisibimod, which pri-
marily block BAFF.

Belimumab, an inhibitor of BAFF, is recommended for
those with active or flaring extrarenal disease in SLE [126].
Belimumab functions rapidly in the early developmental
stages of B cells, especially naïve B cells and transitional stages
[14]. Malkiel and colleagues elaborated that belimumab treat-
ment restored the censoring of ANA+ transitional B cells
through anergy [10]. In SLE, earlier longitudinal studies dem-
onstrated that inhibiting BAFF using belimumab selectively
reduced the total number of transitional and naïve B cells
with no effects on memory B cells [15]. CD11c+CD21− B cells
[14] and double-negative memory B cells [13, 14] contin-
uously declined with stable PBs [14, 15] and switched
memory B cells [13, 14], suggesting the importance of
unique memory B cells. PBs slowly decrease after 532 days
[13] or 18 months [14]. The level of anti-dsDNA autoanti-
bodies also decreased but only at an early stage [14]. Switch
and nonswitch memory B cells and PCs exhibit resistance
to belimumab therapy. While the lack of BAFF-R on PCs
may be one reason, it cannot be explained why switched
memory B cells can survive. These delayed clinical effects
require a longer therapeutic regimen.

6. Conclusions and Future Perspectives

Autoimmune diseases results from B cell hyperactivity and a
disturbance of ASC homeostasis. The development of multi-
chromatic flow cytometry has improved the identification of
aberrant B cells and promotes the expression of extrinsic
and/or intrinsic molecules. In this review, we have discussed
the normal progression towards ASCs (Figure 1), the poten-
tial mechanisms of imbalance (Figure 2), and potential B cell
subgroups that mediate autoimmune diseases (Figure 3).
Aberrantly activated B cells may further contribute to ASCs
and their extrinsic and/or intrinsic alterations (Table 1).

The limited success of current B cell therapies coupled
with the depletion of precursor B cells is key to the identifica-
tion of phenotypes of these heterogeneous pathological
groups. Technically, more effective identification methods
are required. Recombinant antibodies and mass cytometry
may aid the discrimination of subgroups.

Moreover, the relationship with autoreactive ASCs, their
differentiation, and their sensitivity to chemokine and hom-
ing molecules requires further understanding for the genera-
tion of long-lived PCs in tissues. Single-cell RNA sequencing
and serum proteomics to identify autoantibodies can provide
new insight into autoreactive ASC differentiation and iden-
tify the landscape of B cells in autoimmune diseases, includ-
ing additional peripheral tolerance checkpoints, distinct
distributions, gene expression analysis, the association
amongst subsets, and their underlying mechanisms of
differentiation.

In addition, the assessment of self-antigen reactivity of
the expanded groups coupled with the analysis of the differ-
ential response to therapy may provide more effective targets
for refractory groups.
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