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Prediction of Genetic Alterations in Oncogenic Signaling
Pathways in Squamous Cell Carcinoma of the Head and Neck:

Radiogenomic Analysis Based on Computed
Tomography Images
Linyong Wu, MM,* Peng Lin, MD,* Yujia Zhao, MM,* Xin Li, MD,† Hong Yang, MD,* and Yun He, MM*
Objective: This study investigated the role of radiomics in evaluating the
alterations of oncogenic signaling pathways in head and neck cancer.
Methods: Radiomics features were extracted from 106 enhanced com-
puted tomography images with head and neck squamous cell carcinoma.
Support vector machine–recursive feature elimination was used for feature
selection. Support vector machine algorithm was used to develop
radiomics scores to predict genetic alterations in oncogenic signaling path-
ways. The performance was evaluated by the area under the curve (AUC)
of the receiver operating characteristic curve.
Results: The alterations of the Cell Cycle, HIPPO, NOTCH, PI3K, RTK
RAS, and TP53 signaling pathways were predicted by radiomics scores.
The AUC values of the training cohort were 0.94, 0.91, 0.94, 0.93, 0.87,
and 0.93, respectively. The AUC values of the validation cohort were all
greater than 0.7.
Conclusions: Radiogenomics is a new method for noninvasive acquisi-
tion of tumor molecular information at the genetic level.
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C ancer is a global disease that accounts for millions of new
cases each year; different cancer types are attributed to cer-

tain genetic information alterations that result in uncontrolled cell
proliferation.1 The development of different types of cancer is a
complex process that involves the accumulation of multiple inde-
pendent genetic alterations that may lead to the dysregulation of
the cell signaling pathways.2 Cell cycle progression, apoptosis,
and cell growth are the most common regulatory genetic alter-
ations in the oncogenic signaling pathways.3–5 However, the dys-
regulation of these genetic alterations may lead to the occurrence
and progression of cancers.6,7 A literature search conducted by the
researchers found an increasing number of studies on oncogenic
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signaling pathways since 1979, especially in the last 5 years. Some
high-quality studies have demonstrated that these genetic alter-
ations in the signaling pathways can function as potential bio-
markers that are related to specific targeted therapy and
prognosis of tumors.8,9 Pathway dysregulation can be associ-
ated with sensitivity to targeted therapeutic agents in the path-
way, and these oncogenic pathway characteristics can be used
in the formulation of opportunities for targeted therapeutic
agent use.2 However, the degree of alterations, mechanisms,
and coexistingmutually exclusive mode of the signaling pathways
vary among different tumors or tumor types. Therefore, the ef-
fective monitoring of genetic alterations in oncogenic signaling
pathways is of great importance to identify potential targeted
therapy options.

Head and neck squamous cell carcinoma (HNSC) is the most
common pathologic type of head and neck cancer,10 affecting ap-
proximately 550,000 people worldwide each year and causing ap-
proximately 300,000 deaths.11 Head and neck squamous cell
carcinoma is classified by location: oral cavity, oropharynx, nasal
and paranasal sinus, nasopharynx, and larynx or hypopharynx,
with the lower pharynx having the worst prognosis. It is the accu-
mulation and development of a variety of epigenetic variations,12

including genetic alterations in the signaling pathways. Patients
who have undergone surgery, radiation, chemotherapy, and
targeted therapies have had varying responses. The genetic alter-
ations in the pathway of HNSC are associated with the progno-
sis.13 The acquisition of information on oncogenic pathway
alterations is mainly dependent on high-throughput DNA se-
quencing technology. However, the high cost and high technical
requirements hinder its clinical promotion. In addition, these alter-
ations are mainly obtained after tumor resection, which may cause
some more appropriate treatment options to be missed. Although
preoperative biopsy can be obtained through postoperative punc-
ture biopsy, the results may not be satisfactory because of the lack
of tumor puncture tissue and tumor heterogeneity.14 Therefore, the
exploration of a preoperatively effective monitoring system for
oncogenic pathway alterations may provide more evidence for
the selection of individualized treatment regimens.

Radiomics is an emerging artificial intelligence technology
that realizes numerical quantitative characteristics of information
contained in images through computer assistance and deeply eval-
uates the potential pathological alterations of tumors by analyzing
the features related to the research objects, thus providing an ob-
jective basis for clinical decision making.15,16 At present,
radiomics performs well in HNSC diagnosis, therapeutic effect,
and biological behavior change, among others.17–19 The above-
mentioned studies and others havemainly analyzed the correlation
between radiomics features and potential molecular features.
However, for HNSC, the association between radiomics features
and genetic variation should be further studied by comprehensively
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analyzing the radiomics features in an information path–centric
rather than in a gene-centric manner.

The objective of this studywas to explore the relationship be-
tween radiomics features based on computed tomography (CT)
images and alterations in the most common oncogenic signaling
pathways in patients with HNSC. Predictive radiomics scores for
preoperative noninvasive assessment of signaling pathway alter-
ations were developed to effectively stratify patients with HNSC
for individualized precision therapy.

METHODS

Image Cohort
The CT imaging data of 211 HNSC tumors were obtained

from The Cancer Imaging Archives.20 The images were obtained
from 7medical units: Ontario Cancer Institute, University of Pitts-
burgh, University of North Carolina, MD Anderson Cancer
Center, Vanderbilt University Medical Center, Johns Hopkins
University, University of Miami, and Barretos Cancer Hospital,
which further excluded the following images: (1) nonenhanced
images, (2) images without the target part, (3) postoperative
images, (4) images whose target lesions were affected by
artifacts more than 50%, (4) controversial images of target
lesions, and (5) images that were more than 3 mm thick. Finally,
113 cases were included for image analysis. In addition, from
the previous analysis of the comprehensive oncogenic signaling
pathway status of The Cancer Genome Atlas pan-cancer project,
a binary change matrix of the oncogenic signaling pathway
status was obtained. This matrix plotted the alterations spectrum
of 10 common oncogenic signaling pathways across 33 cancer
types.21 Genetic alterations included the definition of gene
duplication, the location of repetitive mutations, known functional
gene fusion/rearrangement, and epigenetic silencing. If one or
more genetic information in the tumor sample was changed, it
was considered that the tumor sample was considered to have
changed in the specific oncogenic signaling pathway.22 In this
study, a total of 106 patients with HNSC with both CT images
and alterations in the oncogenic signaling pathways were included
(Fig. 1). Six of the most common oncogenic signaling pathway
FIGURE 1. Flowchart of image cohort.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
alterations were predicted and evaluated, namely, Cell Cycle,
HIPPO, NOTCH, PI3K, RTK RAS, and TP53. Figures 2A and B
summarized the alterations in the 6 oncogenic signaling pathways.

Image Preprocessing and Feature Extraction
In the ITK-SNAP software (Version 3.8.0),23 2 radiologists

with 5 years of CT diagnosis experience delineated the region of
interest of the HNSC layer by layer. All discrepancies were re-
solved by consensus, and the regions of interest were saved for
subsequent analysis. Feature extraction was carried out using the
Intelligence Foundry software (Version 1.3, GE Healthcare) by
mainly extracting 1022 features and generating a data set: 122
original (first-order statistics, shape descriptors, texture classes,
gray-level co-occurrence matrix, gray-level run length matrix,
and gray-level size zone matrix), 468 co-occurrence of local an-
isotropic gradient orientations (CoLIAGe), and 432 wavelets + lo-
cal binary pattern (WLBP), (Figs. 2C, D). The software was based
on the Python environment to develop according to the algorithms
provided by the Pyradiomics software package.24 The features
were defined according to the imaging biomarker standardization
initiative.25 Each data set of the oncogenic signaling pathways was
randomly split into 2 cohorts, namely, training cohorts and valida-
tion cohorts, according to the alterations and nonalterations of the
oncogenic signaling pathways in a ratio of 7:3. The training cohort
was intended for the development of the radiomics scores,
whereas the validation cohort was applied to verify the robustness
and reliability of the radiomics scores. To improve the comparabil-
ity of data between images, the min-max normalization method
was applied to normalize the 2 cohorts.26 The formula
was X = (X − Xmin)/(Xmax−Xmin).

Support Vector Machine Radiomics
Scores Development

To avoid overfitting and redundancy problems, the Spearman
correlation coefficient was used to remove the high correlation
features of the training cohort with a threshold of 0.75. Af-
terward, the remaining radiomics features were further submitted
to the support vector machine–recursive feature elimination
(SVM-RFE) for analysis, and the features for the development
www.jcat.org 933
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FIGURE 2. Alteration information of the oncogenic signaling pathways and radiomics features in HNSC. A, Histogram analysis of the status of
6 oncogenic signaling pathways. B, Up-set plot of the coexpression of oncogenic signaling pathways in 106 samples. C, Classification of 1022
radiomics features. D, Correlation clustering heatmap of 1022 features (Spearman test). Figure 2 can be viewed online in color at www.jcat.org.
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of the radiomics scores were selected.27,28 Finally, the SVM clas-
sifier developed the radiomics scores based on the above selected
features to distinguish the altered state of the oncogenic signaling
pathways.29,30 To address the problem of small sample size, 5-fold
cross validation was used to screen for the best performance of the
radiomics scores. The radiomics score for each patient was calcu-
lated. An independent validation cohort developed radiomics
scores through the SVM classifier with the same features to verify
the applicability and reliability of the predicted scores. There were
synergistic and mutually exclusive modes of action between the
oncogenic signaling pathways.31 Therefore, the correlations be-
tween the radiomics scores of each oncogenic signaling pathways
were analyzed. To evaluate the performance of the radiomics
scores in classifying the alterations of the oncogenic signaling
pathways, the receiver operating characteristic curve (ROC), area
under the curve (AUC), and accuracy were applied. Figure 3 sum-
marized the radiogenomics analysis development processes.

Statistical Analysis
SPSS23.0 and R language were used for statistical analysis.

The age and radiomics scores were expressed as median [inter-
quartile range (IQR)]. Sex, histologic type, alcohol history, patholog-
ical grading, stage, Cell Cycle, HIPPO, NOTCH, PI3K, RTK RAS,
and TP53 were expressed as cases (percentage). Mann-Whitney U
test was used to compare the differences in the radiomics scores of
the training cohort or validation cohort between alterations and
nonalterations in the oncogenic signaling pathways. Chi-square
test was used to evaluate the difference between alterations and
nonalterations in the oncogenic signaling pathways at different
clinical stages. The Pearson correlation coefficient was used to an-
alyze the relationship between the radiomics scores of each
934 www.jcat.org
carcinogenic signaling pathway. P < 0.05 for the difference was
statistically significant.
RESULT

Baseline Data and Oncogenic Pathway Alterations
of Patients

This study included 106 patients with HNSC, aged 24 to
87 years; the mean age was 60 (53–68) years; there were 79 males
(74.53%); and 73 patients had alcohol history (68.87%). In terms
of pathological types, there were 8 mouth floor cancers, 38 laryn-
geal cancers, 17 oral cavity cancers, 26 oral tongue cancers, 8 ton-
sil cancers, and 9 other types of cancers. In terms of pathological
grading, there were 12 cases of G1, 64 cases of G2, 29 cases of
G3, and 1 unknown case. In terms of clinical stages, 5 cases were
stage I, 16 cases stage II, 23 cases stage III, and 62 cases stage IV.

The alterations of the 6 oncogenic signaling pathways in the
image cohort were as follows: 85 Cell Cycle alteration patients
(80.19%) and 21 Cell Cycle nonalteration patients (19.81%); 38
HIPPO alteration patients (35.85%) and 68 HIPPO nonalteration
patients (64.15%); 43 NOTCH alteration patients (40.57%) and
63 NOTCH nonalteration patients (59.43%); 44 P13K alteration
patients (41.51%) and 62 P13K nonalteration patients (58.49%);
46 RTK RAS alteration patients (43.40%) and 60 RTK RAS
nonalteration patients (56.60%); and 82 TP53 alteration patients
(77.36%) and 24 TP53 nonalteration patients (22.64%). The de-
tailed baseline information is summarized in Table 1. Because
of the different stages of tumor progression, the relationships be-
tween alterations in the oncogenic signaling pathways and clinical
stages are shown in Table 2. Except for the training cohort, the
© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
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FIGURE 3. Flowchart of radiogenomics analysis. Figure 3 can be viewed online in color at www.jcat.org.

TABLE 1. Baseline Data and Oncogenic Pathway Alterations of Patients

Characteristics Total (N = 106), n (%) Characteristics Total (N = 106), n (%)

Median age (IQR), y 60 (53–68) Cell Cycle
Sex Alterations 85 (80.19)
Male 79 (74.53) Nonalterations 21 (19.81)
Female 27 (25.47) HIPPO

Histologic type Alterations 38 (35.85)
Mouth floor 8 (7.55) Nonalterations 68 (64.15)
Larynx 38 (35.85) NOTCH
Oral cavity 17 (16.04) Alterations 43 (40.57)
Oral tongue 26 (24.53) Nonalterations 63 (59.43)
Tonsil 8 (7.55) P13K
Other 9 (8.49) Alterations 44 (41.51)

Alcohol history Nonalterations 62 (58.49)
Yes 73 (68.87) RTK RAS
No 33 (31.13) Alterations 46 (43.40)

Pathological grading Nonalterations 60 (56.60)
G1 12 (11.32) TP53
G2 64 (60.38) Alterations 82 (77.36)
G3 29 (27.36) Nonalterations 24 (22.64)
GX 1 (0.94)

Stage
I 5 (4.72)
II 16 (15.09)
III 23 (21.70)
IV 64 (60.38)
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TABLE 2. Relationship Between Alterations in the Oncogenic Signaling Pathways and Clinical Stages

Training Cohort Validation Cohort

Pathways Stage I/II Stage III/IV P Stage I/II Stage III/IV P

Cell Cycle Alterations 14 45 1.00 2 24 1.00
Nonalterations 4 11 1 5

HIPPO Alterations 3 24 0.14 1 10 0.59
Nonalterations 12 35 5 16

NOTCH Alterations 9 21 0.35 1 12 1.00
Nonalterations 9 35 2 17

P13K Alterations 1 30 0.01 4 9 0.84
Nonalterations 12 31 4 15

RTK RAS Alterations 5 27 0.19 2 12 1.00
Nonalterations 12 30 2 16

TP53 Alterations 11 46 1.00 6 19 0.97
Nonalterations 3 14 1 6

Wu et al J Comput Assist Tomogr • Volume 45, Number 6, November/December 2021
alterations of the P13K pathway varied in different stages, and
there were no differences in other pathways in different stages.
Support Vector Machine Radiomics Scores:
Predicting Alterations in Oncogenic Signaling
Pathway States

Based on the SVM-RFE, to decrease the redundancy feature
set and formulate the best child set to predict the pathway alter-
ations, among the 1022 radiomics features of the training cohort,
the top 26, 24, 21, 61, 15, and 12 features for developing the
radiomics scores were finally chosen for the Cell Cycle, HIPPO,
NOTCH, PI3K, RTK RAS, and TP53 pathways, respectively. Figure 4
summarizes the specific conditions of the features. Two original,
5 CoLIAGe, and 3 WLBP features were found to play a role in
the development of radiomics scores with more than 2 oncogenic
signaling pathways.

Table 3 shows the distribution of the radiomics scores in the
training and validation cohorts. Surprisingly, there were significantly
different radiomics scores across all training cohorts (P < 0.0001).
Unfortunately, in the validation cohort, there were no differences in
the radiomics scores of Cell Cycle and TP53. The performance
FIGURE 4. Features in developing the radiomics scores. A, Classification
5 CoLIAGe, and 3 WLBP features played a role in developing the radiom
Heatmaps for developing the features: Cell Cycle (C), HIPPO (D), NOTC
of the heatmaps represents the range of normalized feature expression va
are represented by “A,” and nonalterations are represented by “N.” Figu
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of the radiomics scores in predicting the status of the oncogenic
signaling pathways is summarized in Figures 5 and 6. The AUC
values of the training cohort of Cell Cycle, HIPPO, NOTCH,
PI3K, RTK RAS, and TP53 were 0.94 [95% confidence interval
(CI), 0.87–1.01], 0.91 (95% CI, 0.84–0.98), 0.94 (95% CI,
0.87–1.00), 0.93 (95% CI, 0.86–0.99), 0.87 (95% CI,
0.79–0.95), and 0.93 (95% CI, 0.85–1.02), respectively, whereas
the accuracy was 0.93, 0.88, 0.95, 0.89, 0.77, and 0.95, respec-
tively. The AUC values of the validation cohort were 0.74 (95%
CI, 0.54–0.95), 0.77 (95% CI, 0.61–0.93), 0.81 (95% CI,
0.63–0.98), 0.76 (95% CI, 0.57–0.95), 0.71 (95% CI,
0.51–0.92), and 0.72 (95% CI, 0.49–0.95), respectively, whereas
the accuracy was 0.75, 0.72, 0.75, 0.69, 0.69, and 0.81, respec-
tively. Through the analysis of the correlation between the
radiomics scores of the 6 oncogenic signaling pathways, it was
found that the Cell Cycle and RTK RAS (r = −0.20, P = 0.04)
and the NOTCH and TP53 (r = 0.26, P < 0.01) pathways had sig-
nificant correlation (Fig. 7).

DISCUSSION
In this study, the relationship between the HNSC radiomics

features and the alterations in the oncogenic pathway states was
features in the development of radiomics scores. B, Two original,
ics scores with more than 2 oncogenic signaling pathways. C–H,
H (E), P13K (F), RTK RAS (G), and TP53 (H). The ruler on the right
lues [0,1]. Status of oncogenic signaling pathways: the alterations
re 4 can be viewed online in color at www.jcat.org.
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TABLE 3. Radiomics Scores for the Training Cohort and the Validation Cohort

Pathways Training Cohort Validation Cohort

Nonalterations Alterations

P

Nonalterations Alterations

PMedian (IQR) Median (IQR) Median (IQR) Median (IQR)

Cell Cycle −1.00 (−1.00 to 0.48) 1.84 (1.00 to 3.10) <0.0001 0.88 (−7.83 to 2.10) 2.03 (1.24 to 2.03) 0.07
HIPPO −1.00 (−1.20 to −0.82) 0.40 (−0.33 to 1.00) <0.0001 −0.88 (−1.31 to −0.52) −0.31 (−0.74 to 0.27) 0.01
NOTCH −1.18 (−2.15 to −1.00) 1.00 (0.96 to 1.57) <0.0001 −0.75 (−2.40 to 0.01) 1.59 (0.24 to 1.94) 0.00
PI3K −1.00 (−1.33 to −0.88) 0.86 (0.38 to 1.00) <0.0001 −0.48 (−1.07 to 0.13) 0.35 (−0.70 to 0.87) 0.01
RTK RAS −0.93 (−1.07 to −0.40) 0.16 (−0.42 to 0.79) <0.0001 −0.82 (−1.22 to −0.41) −0.20 (−0.69 to −0.03) 0.04
TP53 −0.10 (−2.42 to 0.34) 2.54 (1.30 to 4.97) <0.0001 0.80 (−1.16 to 2.53) 2.32 (1.37 to 3.08) 0.08
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systematically analyzed, which could be used as a noninvasive
preoperative evaluation method. In addition, the radiomics scores
developed were verified by an independent validation cohort,
which showed moderate evaluation performance. This study con-
stitutes an exploratory study of radiogenomics in predicting the
molecular level of HNSC.

Carcinogenic signaling pathways are widespread in cells.
They are important for cell division, growth, and apoptosis.
Sanchez-Vega et al21 used TCGA data to analyze the mechanisms
and patterns of somatic alterations in 10 typical pathways in 9125
tumors, moving away from the traditional use of the gene-centric
approach and opting for the pathway-centric technique. The above
study results further explored the relationship between the status
of oncogenic signaling pathways and the radiomics features in this
study. To the authors' knowledge, this study was the first compre-
hensive analysis of the association between the radiomics features
and the oncogenic pathway phenotypes of HNSC. The radiomics
scores were used to evaluate the 6 oncogenic signaling pathways
of HNSC that changed most frequently: Cell Cycle, HIPPO,
FIGURE5. Prediction performance of SVM radiomics scores in the trainin
potential for predicting alterations in the Cell Cycle (A), HIPPO (B), NOT
Figure 5 can be viewed online in color at www.jcat.org.

© 2021 The Author(s). Published by Wolters Kluwer Health, Inc.
NOTCH, PI3K, RTK RAS, and TP53. The disorders in these
pathways have been confirmed to be closely related to the occur-
rence and development of cancers. For example, Poma et al32 sug-
gested that the HIPPO pathway affects the overall survival of head
and neck cancers and could be a candidate for the development
and testing of YAP1 inhibitors. Meanwhile, Grilli et al33 found
that the activation of the NOTCH pathway was more related to
the prognosis of patients with HNSC, revealing that the NOTCH
pathway in HNSC had an inhibitory effect rather than a carcino-
genic effect. Marquard et al34 demonstrated that the PI3K signal-
ing pathway was significantly upregulated in HNSC to enhance
radiotherapy resistance and cytostatic resistance. Therefore, this
study was mainly based on the radiomics features of CT images
to unveil the imaging markers related to the genetic information
of HNSC.

Radiomics is a computer-aided technology that quantifies
the features of medical images, further builds predictive models
that are related to research purposes based on machine learning
algorithms, and provides information for clinical decision
g cohort. The ROC showed that the 6 radiomics scores hadmoderate
CH (C), PI3K (D), RTK RAS (E), and TP53 (F) signaling pathways.

www.jcat.org 937
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FIGURE 6. Prediction performance of SVM radiomics scores in the validation cohort. The ROC showed that the SVM scores had good stability
and reliability, as verified by the independent validation cohort. Cell Cycle (A), HIPPO (B), NOTCH (C), PI3K (D), RTK RAS (E), and TP53 (F).
Figure 6 can be viewed online in color at www.jcat.org.
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making.35,36 Radiomics technology has been applied in HNSC
diagnosis, efficacy judgment, and molecular-level correlation;
it can also be used as a noninvasive method to predict the potential
molecular phenotypes of tumors. For example, Katsoulakis et al20

analyzed imaging markers that identified the tumor human papillo-
mavirus status and biological characteristics of T cell infiltration,
contributing to patient risk stratification. Based on the radiomics
features of CT images, Bagher-Ebadian et al37 identified the fea-
tures and carried out characterization and prediction of human pap-
illomavirus status, with the differentiated AUC value reaching
0.878. These previous studies suggested that radiogenomics could
identify reliable radiobiomarkers with distinct molecular properties
that could be used to predict patient prognosis and, thus, identify pa-
tients who are sensitive to targeted drugs.

In this study, there were 6 radiomics scores developed to pre-
dict signaling pathway alterations based on 1022 imaging markers
of CT images. The discriminant performance of these scores sug-
gested a broad prospect for the preoperative noninvasive search
FIGURE 7. Correlation between the radiomics scores of the oncogenic si
oncogenic signaling pathways. Only the Cell Cycle and RTK RAS (r = −0.2
pathways had a significant correlation. Figure 7 can be viewed online in

938 www.jcat.org
for effective molecular pathways for radiotherapy drugs. The
radiomics features can not only quantify the visual image features
but also quantify the features that are at a subtle level that cannot
be detected by the naked eye, thus revealing the heterogeneity of
the tumor. In this study, the SVM-RFE feature selection algorithm
was used. Support vector machine–RFE is a widely used
dimension-reduction method for ranking independent variables
that are related to research. Support vector machine–RFE was
used to perform feature selection to develop the radiomics scores.
Unfortunately, the selected features failed to reach single digits.
The method of feature selection is not confined to SVM-RFE
only, as we can also explore other methods, such as random forest.
The SVM machine learning algorithm is a powerful classifier
whose purpose is to create a decision boundary between 2 catego-
ries that can predict labels based on one or more feature vectors.
The training cohort all showed high predictive performance,
whereas the validation cohort had AUC values of more than 0.7
in small case of sample size. The NOTCH validation cohort even
gnaling pathways. A, Correlation analysis of the radiomics scores of 6
0, P = 0.04) (B) and the NOTCH and TP53 (r = 0.26, P < 0.01) (C)
color at www.jcat.org.
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reached 0.81. We think these results were acceptable. Concur-
rently, the correlation analysis found a correlation between the
Cell Cycle and RTK RAS and between the NOTCH and TP53
pathways, suggesting existence of a mutual cooperation between
the oncogenic signaling pathways. The results also provided an
explanation for the combined targeted therapy. The evaluation
of signaling pathways in cancer genetic alterations and the use
of imaging markers and correlation studies to determine the
changes in the oncogenic signaling pathways may comprise a
new and efficacious method for the further exploration of
targeted therapy.

The limitations of this study were as follows. First, this was a
retrospective study, and the image cohort was limited. The sample
size of the validation cohort was small, so it needs to be prospec-
tively explored in a multicenter research. However, there are cur-
rently no conditions for further verification. Second, the manual
mapping of lesions was subjective and could be further developed
by a fully automatic algorithm. Finally, the significance of the
radiomics scores in the performance evaluation of targeted ther-
apy could be further explored.

In summary, this study revealed the correlation between the
alterations in the HNSC signaling pathways and the radiomics fea-
tures. In addition, the radiomics scores developed in this study
demonstrated higher-than-moderate performance in predicting
pathway alterations, which can constitute a new method for the
noninvasive acquisition of tumor molecular information at the ge-
netic level. Future studies are warranted to determine the efficacy
of radiogenomics in predicting cancer treatment by acting on the
oncogenic signaling pathways.
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