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Abstract: The variable optical properties of chromophoric dissolved organic matter (CDOM) under
the complicated dynamic marine environment make it difficult to establish a robust inversion
algorithm for quantifying the dissolved organic carbon (DOC). To better understand the main factors
affecting the relationship between the DOC and the CDOM when the Changjiang diluted water
(CDW) interacts with the marine currents on the wide continental shelf, we measured the DOC
concentration, the absorption, and the fluorescence spectra of the CDOM along the main axis and
the northern boundary of the CDW. The sources of DOC and their impacts on the relationship
between the optical properties of the DOC and CDOM are discussed. We reached the following
conclusions: There are strong positive correlations between the absorptive and fluorescent properties
of the DOC and the CDOM as a whole. The dilution of the terrestrial DOC carried by the CDW
through mixing with saline sea water is the dominant mechanism controlling the characteristics of
the optical properties of the CDOM. CDOM optical properties can be adopted to establish inversion
models in retrieving DOC in Changjiang River Estuary. It is concluded that the introduction of extra
DOC from different sources is the main factor causing the regional optical complexity leading to the
bias of DOC estimation rather than removal mechanism. As whole, the input of polluted water from
Huangpujiang River with abnormally high a(355) and Fs(355) will induce the overestimation of DOC.
In the main axis of CDW, the impact from autochthonous DOC input to the correlation between DOC
and CDOM can be neglected in comparison with conservative dilution procedure. The relationship
between the DOC and the CDOM on the northern boundary of the CDW is more complicated, which
can be attributed to the continuous input of terrestrial material from the Old Huanghe Delta by the
Subei Coastal Current, the input of materials from the Yellow sea by the Yellow Sea Warm Western
Coastal Current, and the input of materials from the Changjiang Basin by the CDW. The results of
this study suggest that long-term observations of the regional variations in the DOM inputs from
multiple sources in the interior of the CDW are essential, which is conducive to assess the degree of
impact to the DOC estimation through the CDOM in the East China Sea.

Keywords: Changjiang outflow region; chromophoric dissolved organic matter; optical properties;
dissolved organic carbon; relationships

1. Introduction

As the third longest river in the world, the Changjiang River delivers 0.5–0.8% of the
riverine dissolved organic carbon (DOC) to the global oceans [1], exerting a significant
influence on the carbon budget and the marine eco-environment of the East China Sea (ECS)
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and the western Pacific Ocean. The accurate estimation of the DOC flux into the ECS and its
temporal variations is critical to determining whether the Changjiang Estuary is a carbon
sink or a carbon source, and to clarifying its significance to the global carbon balance. In the
past few decades, in order to obtain the DOC content using satellite remote sensing with
large-scale coverage and real-time monitoring capabilities, significant efforts have been
devoted to establishing inversion algorithms for the DOC based on the optical properties
of the chromophoric dissolved organic matter (CDOM). However, to date, no feasible
algorithm has been developed that is universally valid and applicable to the Changjiang
Estuary. The correlation between the CDOM and the DOC in the Changjiang Estuary has
been reported to vary significantly depending on the location, spatial scale, season, and
tides [2–5]. The variable DOC composition has been concluded to be one of the main factors
impairing the stability of the relationship between the DOC and the CDOM [6,7]. For exam-
ple, the mutual linear correlation between the DOC and the CDOM could easily collapse in
places with significant phytoplankton production [6,8]. Furthermore, the nonconservative
behavior of the DOC is related to the abnormal introduction of DOC into or removal of
DOC from the estuary and the adjoining sea area. The release of DOC from the pore water
during the disturbance or resuspension of the bottom sediments has been demonstrated to
be one of the extra DOC inputs, i.e., in addition to the riverine-sourced DOC [8,9]. Recently,
sporadic precipitation was reported to be one of the main DOC material sources in coastal
sea water [10]. Conversely, microbial degradation [11] and photo bleaching [12,13] are
two of the main DOC removal mechanisms. The extra input or removal of DOC not only
changes the DOC content, but it also introduces different DOC species and/or selectively
removes DOC species, which leads to the variable relationship between the DOC and
the CDOM. However, in most studies that have focused on the estuary, more effort was
devoted to understanding the impact of the estuarine effects on the conservative behavior
of the DOC and to determining the feasibility of an inversion algorithm for determining the
DOC from the CDOM [14]. Concerning the amount of terrestrial DOC and its geochemical
behaviors on the wide continental shelf when encountering saline oceanic currents and the
impacts on the marine ecological system, studies of the changes in the DOC content and
species after the Changjiang diluted water (CDW) enters the ECS need to be performed.
In addition, due to the continuous decrease in the suspended sediment flux transported
by the CDW, the potential sediment compensation via erosion of the submarine delta and
from the Old Yellow River Delta [15] may change the composition of the material flowing
into the ECS. Therefore, it is valuable to observe the land-source DOC behavior and to
identify the main factors affecting its distribution, species, and optical properties over the
entire continental shelf during land–sea interactions.

In this study, we collected samples from two sections: the main axis and the northern
boundary of the CDW, combining with a section in the southern branch of the Changjiang
River as reference. The DOC content, CDOM optical properties, and salinity of each sample
were measured. A combination of excitation–emission matrix fluorescence spectroscopy
(EEMS) and parallel factor analysis (PARAFAC) was used to determine the compositions
and sources of the fluorescent materials in these samples. The relationships between the
optical properties of the DOC and the CDOM and the salinity were analyzed using linear
regression. Based on the optical properties of the CDOM and their ability to reflect the
DOC content and species, we attempted to answer the following three questions. (1) What
is the main mechanism determining the relationship between the optical properties of
the DOC and the CDOM in the CDW after it travels beyond the mouth of the estuary?
(2) What are the main differences in the relationships between the DOC and the CDOM
along the main axis and within the northern boundary of the CDW? (3) What type of input
or removal procedures cause the differences in the relationships between the DOC and the
CDOM along the main axis and within the northern boundary of the CDW?

The results of this study deepen our understanding of the different mechanisms
affecting the DOC content, species, and distribution and the intrinsic factors determining
the optical properties of the CDOM in the Changjiang outflow region under the conditions
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of this complicated marine environment, which is essential to establishing a feasible
algorithm for regionally inverting the optical properties of the DOC from the CDOM. These
results will also help to identify the material sources of the dissolved organic matter (DOM)
in this sea area.

2. Materials and Methods
2.1. Hydrodynamic Environment and Sampling

The ECS is one of the world’s largest marginal seas and contains a wide continental
shelf. The spatial and temporal distributions of the substances in the ECS are caused by
the comprehensive effects of multiple sources of terrestrial material and complex hydro-
dynamic oceanic processes. The migration route and magnitude of the CDW determines
the transportation, diffusion, and mixing of the materials in the ECS. Usually, the main
axis of the CDW migrates southeastward in winter and is variable in summer due to the
flood discharge, topographic effects, wind stress, and other factors experienced when
encountering the saline Taiwan warm current (TWC). When the TWC intrudes into the
inner shelf of the ECS along the 50 m isobaths at the mouth of the Changjiang River, the
CDW changes its migration route from southeastward to eastward, or even toward the
northeast (around 122.5◦ E) [16,17]. The large amount of terrestrial sediment transported
by the CDW in the bottom layer has developed a huge modern tongue-shaped underwater
delta, which extends southeastward. This delta can be disturbed and resuspended, and
can have a significant impact on the formation of the maximum turbidity zone (MTZ).

In this study, nine water samples were collected along the main axis of the CDW and
seven water samples along the northern boundary of the East China Sea (referred to as
sections PN and F, respectively, in this study) during the “973” Spring Voyage in 2011 (the
stations are marked in blue in Figure 1). Seven water samples from the southern branch of
the Changjiang River were collected in August 2011 (referred to as section XM, marked in
red in Figure 1).
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Figure 1. Diagram showing the hydrodynamic environment (in spring) and the sampling stations (modified from [18–20]).
CDW: Changjiang diluted water; SCC: Subei coastal current; TWC: Taiwan warm current; YSWC: Yellow Sea warm current;
YSWCC: Yellow Sea western coastal current; ZCC: Zhejiang coastal current. Section PN begins in the Zhoushan sea area
and ends in the Ryukyu Islands, running across the continental shelf of the ECS with water depths ranging from ~100 m to
>1000 m. Section PN represents the main axis of the CDW, and it vertically converges with the Kuroshio Current. Section F
represents the northern boundary of the CDW, and it is the interface between the ECS and the Yellow Sea. Nine stations
(PN01–PN09) with a regular spacing of 42.9 ± 3.3 km were sampled along section PN. Seven stations (F01–F07) with
an average spacing of 46.1 ± 9.3 km were sampled along section F. In addition, section XM represents the riverine end
member. Seven stations were evenly distributed (with an average spacing of 13.8 ± 3.5 km) along the southern branch of
the Changjiang River, which has an oligohaline environment.
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The fan-like area between the PN and F sections is influenced by the estuarine mixed
water (caused by the transition between the fresh CDW and the saline sea water) from
either the Subei Coastal Current (SCC), the Yellow Sea Warm Western Coastal Current
(YSWCC), and the Yellow Sea Warm Current (YSWC) from the north [14,19] or from
the coastal upwelling off the Zhejiang coast [21]. The convergence of these different
currents results in a complicated hydrodynamic environment in the area of 123–123◦30′ E.
A large number of smaller organic particles agglomerate, form larger aggregates, and
sink at a faster rate in this area, producing sea snow [20], which inhibits most of the
materials transported by the CDW from traveling beyond 123◦ E. The rich nutrient supply
in this area fosters the most important fishing area (i.e., the Zhoushan fishing area) in
China (122–130◦ E, 29–33◦ N) [22,23]. Due to the scientific significance of the effects
of the interaction between the continental shelf and the open ocean water masses on
the biogeochemistry and ecology, from the last century onward, continuous long-term
observations have been performed in the two sections and in the neighboring sea area
by Chinese, Japanese, and Korean researchers to investigate the decadal, interannual,
and seasonal variations in the hydrodynamics [24], sedimentation [25], marine ecology,
sea water chemistry [26,27], land–sea interactions [28], and particularly, the carbon flux
and cycle [29]. These previous studies have provided fruitful and precious information
that has deepened our understanding of global climate change [30,31], episodic climate
events (e.g., typhoons), and the impact of climate on the development of estuarine hypoxia
events [32,33].

The sampling in the PN and F sections was performed during the same period. The
first sample in the PN section (22 March 2011) was collected only 2 days after the first
sample was collected in the F section (20 March 2011). The longest storage time was
10 days, which is much shorter than the decay half-lives of the different fluorescence
components [34], so distinct changes in the absorption intensity due to storage time were
minimized [35]. All of the surface seawater samples collected for the DOC and CDOM
optical measurements were collected at a water depth of 2 m. At each sampling station,
250 mL aliquot subsamples were filtered using a GF/F filter (47 mmφ) (combusted at
450 ◦C for 24 h in a muffle furnace, then prepackaged in clean aluminum foil) and were
stored in the dark at −20 ◦C in precleaned polypropylene narrow-mouth buckets. The
frozen samples were thawed and allowed to reach room temperature after the samples
were transported to the laboratory. A 60 mL subsample was filtered through a 0.2-µm
Nuclepore polycarbonate membrane (soaked in 10% HCl for 15 min and then rinsed with
distilled water three times before the filtration) before the CDOM optical measurements.
Another 30 mL subsample was used for the DOC concentration measurements. The filtered
samples were preserved in 60-mL brown glass bottles, which were precombusted at 450 ◦C
for 6 h in a muffle furnace before use [8,29,36].

2.2. Methods
2.2.1. Absorption Spectroscopy Analysis

The CDOM absorption spectra were measured over the 200–800 nm range with a 1 nm
increment using a UV–visible spectrophotometer (Shimadzu UV-2550) and a 10 cm quartz
cuvette. Ultrapure Milli-Q water was used as the reference. Each sample was scanned
three times [37]. The data were corrected to remove the scattering effects and baseline
fluctuations by subtracting the value at 700 nm from each spectrum. The CDOM absorption
coefficients were obtained using Equation (1) [38]:

a(λ) = 2.303× D(λ)/L (1)

where λ is the wavelength, L is the cuvette path length, a(λ) is the absorption coefficient at
wavelength λ, and D(λ) is the optical density at wavelength λ.

Sg is the exponential slope of the CDOM absorption spectra, which can be determined
using Equation (2):

a(λ) = a(λ0)eSg(λ0−λ) + k (2)
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where λ0 is a reference wavelength (nm) (440 nm in this study); and the data were fitted
over the range of 300–500 nm. k is an additional background parameter that allows for any
baseline shift or attenuation unrelated to the CDOM [39].

2.2.2. Fluorescence Spectroscopy Analysis and PARAFAC Analysis

The fluorescence spectra of the CDOM were measured using a Hitachi F-7000 fluores-
cence spectrophotometer (Hitachi High-Technologies, Tokyo, Japan). The excitation wave-
length was 200–450 nm, with a 5 nm interval. The emission wavelength was 250–600 nm.
A 1 nm interval was used to obtain the fluorescence spectra. The three-dimensional
fluorescence spectrum of Milli-Q ultrapure water was subtracted to remove the Raman
scattering of the pure water. Quinine sulfate (0.01 mg L−1) was used for the fluorescence
calibration [40,41].

Parallel factor analysis (PARAFAC) was conducted using the DOMFlour toolbox in
Matlab2008a. PARAFAC was employed to analyze the fluorescence and compositional
properties of the CDOM [42,43].

2.2.3. DOC Measurements

The DOC concentration was measured using a Shimadzu TOC-VCPH total organic
carbon analyzer (Shimadzu Co., Japan, temperature: 680 ◦C) [44]. The high-temperature
catalytic oxidation (HTCO) method was used to convert the DOC into CO2, which was
then quantitatively measured using a nondispersive infrared detector. Each sample was
analyzed twice, with a typical deviation of <2%. Then, the DOC concentration was deter-
mined from the average value. KHC8H4O4 was used as the carbon standard. Standard
ocean water with a known DOC was used as a reference. Instrumental and procedural
Milli-Q water blanks were analyzed each day.

2.2.4. Measurements of Chlorophyll-a, Suspended Sediments, and Salinity

The chlorophyll-a (Chl-a) concentration was measured following the standard fluo-
rometric protocol [45]. Each frozen Whatman GF/F filter was extracted using 90% ace-
tone, and the resulting fluorescence was measured using a Turner Designs Fluorometer
(Model 10). This instrument was calibrated annually using a commercially available Chl-a
standard (Sigma).

The suspended sediments (SS) were measured gravimetrically using preweighed
cellulose acetate membrane filters (47 mm diameter, 0.45 µm pore size).

The salinity was measured using a precalibrated conductivity, temperature, depth
(CTD) sensor unit (Sea-Bird Electronics, SBE-917 plus).

3. Results and Discussion
3.1. DOC Distribution

The DOC concentrations ranged from 0.771 to 2.644 mg L−1, with an average of
1.172 ± 0.52 mg L−1. This is in the same range as those of domestic estuaries, such as the
Pearl Estuary [46–48], but this range is much lower than those of overseas coastal regions,
e.g., the Orinoco River Estuary, the coastal areas of the Southern Baltic Sea, and the Gulf of
Mexico estuaries [49–51], as shown in Table 1.
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Table 1. Comparison of the a(355) and Sg values of the chromophoric dissolved organic matter
(CDOM) from several estuaries around the world.

Research Areas a(355) (m−1) Sg (nm−1) Salinity (‰) References

Changjiang Estuary (summer) 0.1–3.2 0.017–0.020
(300–650 nm) 0–32.0 [52]

Changjiang Estuary (spring) 1.152–8.715 0.0034–0.014
(380–800 nm) / [53]

Changjiang Estuary (summer) 0.20–0.73 / 0.2–25.3
[54]Changjiang Estuary (summer) 0.20–0.77 / 0.3–29.5

Changjiang Estuary (spring) 0.10–2.82 0.017–0.020
(300–500 nm) 0.12–29.4 [3]

Changjiang Estuary (winter) 0.11–1.20 0.008–0.018
(275–295 nm) 18.7–34.9

[8]

Changjiang Estuary (summer) 0.23–1.91 0.012–0.025
(275–295 nm) 4.0–33.6

Pearl River Estuary
(November) 0.24–1.93 0.0138–0.018

(300–500 nm) 0–32.49 [55]

Pearl River Estuary (June) 0.34–1.40 / 0–34.96 [47]

South of the
North Sea
(February)

Scheldt
Estuary

0.97–4.30
a(375)

0.0167–0.019
(350–500 nm) 0.7–29.6

[56]
Belgium

coastal sea
0.20–1.31

a(375)
0.0110–0.020
(350–500 nm) 29.8–33.6

Chesapeake
Bay

River end
member 2.2–4.1 0.0163–0.019

(280–650 nm) 0–35.0 [57]

coast 0.4–1.1 0.0178–0.022
(280–650 nm)

Mississippi Estuary
(summer) 1.2–4.2 / / [49]

Amazon Estuary (winter) 0.14–3.12 / / [58]
Georgia coast 0.06–1.20 / / [59]

Northern Gulf of Mexico 3.96–17.52
a(350) / 0–37.0 [60]

Southern Beaufort Sea 0.018–1.08
a(440)

0.015–0.023
(350–500 nm) 0–35.0 [61]

Section XM (August 2011) 2.476–3.742 0.0176–0.018 0.18–0.20
This studySection PN (March 2011) 0.046–0.207 0.0143–0.023 31.31–34.5

Section F (March 2011) 0.115–0.253 0.025–0.0318 30.72–33.9
Note: a(355) and a(375) represent the CDOM absorption coefficients at 355 nm and 375 nm, respectively.

Overall, the DOC decreased from the inner estuary to the offshore area (Figure 2).
In particular, the DOC values were 0.773–0.952 mg L−1 and 0.771–1.022 mg L−1 and the
salinity values were 30.725–34.48‰ and 30.725–33.891‰ in sections PN and F, respectively.
DOC decreased gradually with increasing salinity in both sections, and section F had
a slightly higher average DOC (0.887 mg L−1) than section PN (0.821 mg L−1). As a
comparison, the riverine section XM had a very low salinity (average of 0.185‰) and
a much higher DOC (average of 1.909 mg L−1). Abnormally high DOC was observed
at stations XM04 and XM05. Negative correlation between the DOC and salinity was
observed in section XM if stations XM04 and XM05 are not considered.
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Figure 2. Relationship between the dissolved organic carbon (DOC) and salinity. Distinct positive
correlations were observed for the inclusive dataset and the datasets of the respective three sections,
even though there was no medium salinity dataset.

3.2. CDOM Absorption Properties
3.2.1. Absorption Spectrum

The absorption spectra of all of the samples decrease exponentially with increasing
wavelength. A distinct blue shift is observed in the wavebands where an obvious decay
occurs from 400 nm at station XM01 with a salinity of 0.18‰ to 300 nm at offshore station
PN09 with a salinity of 34.5‰. The samples can be divided into two groups based on the
slopes of the curves and the wavebands with the maximum attenuation, which is in good
agreement with the salinity gradients of the three sections (Figure 3).
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Figure 3. Absorption spectral curves for the chromophoric dissolved organic matter (CDOM) in all
three sections. There are distinct differences between the slopes of the dataset for section XM and
those of sections PN and F.

3.2.2. a(355)

The absorption coefficient at a specific wavelength λ (e.g., 355, 375, or 440 nm) is
usually adopted to quantify the CDOM, since the CDOM component contains a variety
of mixtures and its concentration is difficult to measure directly. In this study, a(355) was
selected to make our results comparable with other research results (see Table 1). The
XM section shows highest a(355) ranging from 2.476–3.742 m−1. An extraordinarily high
a(355) value (3.742 m−1) was observed at station XM04. A significantly low a(355) value
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was observed in the PN section (average of 0.107 m−1 varying from 0.046–0.207 m−1) and
F section (average of 0.178 m−1 varying from 0.115–0.253 m−1). The a(355) value was
slightly higher in section F than in section PN.

The a(355) value in this study is similar to those reported in previous studies in the
Changjiang Estuary, as well as those in the Pearl Estuary, but it is much lower than those of
most of the world’s major estuaries (see Table 1).

We noticed that the a strong negative linear correlation between the salinity and
a(355) was observed for both sections PN and F and for the entire dataset (Figure 4). It is
noteworthy that abnormally high a(355) values are observed at XM04 and XM05 stations
with high DOC.
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3.2.3. Sg

Sg has been demonstrated to be useful in distinguishing the composition and sources
of the CDOM. The Sg depends strongly on the chosen wavelength interval and less strongly
on the method used to determine the parameter [39]. Usually, Sg is fitted over a range
of 300–500 nm, and steeper slopes indicate materials with lower molecular weights or
decreasing aromaticity [62]. Most of the CDOM in the river was contributed to by terrestrial
materials with higher aromatization, which are resistant to degradation. As a result, the
riverine CDOM has a lower Sg, and the marine water has a higher Sg.

In this study, an exponential model of the CDOM absorption spectrum was established:

a(λ) = a(440)e0.0213×(440−λ) (3)

Sg varied from 0.014 to 0.032 nm−1, with a mean of 0.021 nm−1. Stable, low Sg values
were observed along section XM, ranging from 0.0176 to 0.0180 nm−1. There were relatively
higher Sg values along both sections PN and F, with large fluctuations, ranging from 0.0143
to 0.023 nm−1 and from 0.025 to 0.0318 nm−1, respectively. It should be noted that the Sg
values in section F were higher than those in section PN.

Overall, the Sg increased with increasing distance from shore (Figure 5), and exhibited
a trend opposite that of the a(355) and DOC, which is consistent with previous findings
(Table 1) [3,63,64].
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Figure 5. The distributions of the Sg values obtained in this study. Sg increases with increasing
salinity, which is opposite to the correlation between a(355) and salinity (Figure 4).

3.3. CDOM Fluorescence Properties
3.3.1. Fluorescence Intensity Fs(355)

The total fluorescence intensity of the CDOM in this study was characterized by the
fluorescence intensity of Fs(355) at an excitation wavelength of 355 nm with emission
spectrum recorded at 450 nm (Ex/Em = 355/450 nm) [48,58,61]. The Fs(355) values of
sections PN and F were 0.301–1.767 quinine sulfate units (QSU) (average of 0.905 QSU) and
1.45–2.01 QSU (average of 1.39 QSU), respectively, and there was a decreasing trend along
both sections. In contrast, section XM had the highest average Fs(355) value (21.294 QSU),
with values ranging from 18.107–32.181 QSU. Stations XM04 and XM05 had abnormally
high Fs(355) values. A strong correlation between Fs(355) and salinity was observed for
the whole dataset and for PN and F sections, respectively (Figure 6).
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Moreover, Fs(355) exhibited similar distribution patterns to a(355) along sections PN
and F, and along XM section as well (Figure 7), which was consistent with the results of
previous studies [2,65].
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Figure 7. Relationship between Fs(355) and a(355). (a) Entire dataset for all three sections; (b):
dataset for sections PN and F. Strong positive correlations between Fs(355) and a(355) were found in
sections PN and F.

3.3.2. CDOM Excitation–Emission Matrix Spectroscopy (EEMS)

Three fluorescence components, including C1 (humic-like component), C2 (protein-like
component), and C3 (protein-like component), were extracted from all 23 samples using
PARAFAC (Figure 8, Table 2), which is similar to the method used in previous studies conducted
in this area [66]. C1 has a maximum excitation/emission at 240/456 nm. This is similar to the
traditionally defined humic-like fluorescence peak A ((230–260)/(380–460) nm), which primar-
ily originates from terrestrial sources. C2 has a maximum excitation/emission at 280/328 nm,
which was confirmed to be tryptophan-like fluorescence peak T ((270–280)/(320–350) nm).
Tryptophan-like peak T can be derived from both allochthonous and autochthonous
sources [67,68]. C3 has a maximum excitation/emission at 230/366 nm, resembling a
combination of peak N (280/370 nm) and peak T. Peak N is believed to represent labile
materials produced as a result of biological production [69,70].

Table 2. Characteristics of the chromophoric dissolved organic matter (CDOM) components deter-
mined using the parallel factor analysis (PARAFAC) model in this study and comparison with the
results of previous studies.

Ex/Em (nm) Coble [71,72] (Ex/Em (nm)) References (Ex/Em (nm))

C1 240/456
peak A: 230–260/380–460;

humic-like component

C3: 270 (360)/478 [69]
C4: 250 (360)/440 [67]
C8: 250 (380)/416 [72]
C1: 270 (365)/453 [40]

C1: ≤250 (335)/428 [73]

C2 280/328
peak T: 270–280/320–350;
protein-like component

C5: 280(240)/368 [69]
C7: 280/344 [67]

C7: 240 (300)/338 [72]
C4: 280/318 [68]

C6: 250(290)/356 [74]
C4: 275/328 [73]

C3 230/366
combination of peak N (280/370)
and peak T (270–280/320–350);

protein-like component

C5:280(<240)/368 [69]
C4: 250 (320)/370 [72]

C5: 285/362 [68]
C2: ≤250(300)/368 [73]
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Figure 8. Excitation–emission matrix fluorescence spectroscopy (EEMS) contour plots and loadings of each component
determined using parallel factor analysis (PARAFAC). Three fluorescence components, including the humic-like component
(Comp1), the protein-like component (Comp2), and the protein-like component (Comp3), were extracted using PARAFAC.

3.3.3. Fluorescent Components

As is shown in Figure 9, the fluorescence intensities of components C1, C2, and C3
were much lower along sections PN and F than along section XM.

Along sections PN and F, all three components exhibited similar patterns: decreasing
with increasing salinity. It should be noted that the intensity of C1 was relatively steady
throughout section XM, whereas C2 and C3 varied consistently, and both increased abruptly
at stations XM04 and XM05.
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to the offshore area.

4. Discussion

Relationships between the DOC and the optical properties of the CDOM and the
possible impact factors in different sections were analyzed in this study. The analysis
of variance (ANOVA) statistics were utilized to determine whether the changes in the
DOM composition were statistically significant. The F values of the one-way ANOVA of
the Fs(355) (F > 70.67, p = 8.57 × 10−10), DOC (F > 73.68, p = 5.94 × 10−10), and a(355)
(F > 295.75, p = 1.4 × 10−15) values are all greater than 1, indicating that the differences in
the three sections were statistically significant. The following discussion is based on the
results of the ANOVA statistical analysis.

4.1. Relationship between CDOM and DOC

The low production of soil organic matter due to the low vegetation coverage in the
Changjiang Basin is the most likely reason for the low DOC in Changjiang Estuary. In
addition, the high concentrations of suspended particles in the Changjiang River and in the
estuary are another important mechanism for the removal of DOC through adsorption [75].
It is notable that the low DOC is consistent with the low a(355). Strong correlations between
the a(355) and DOC were observed in sections PN and XM. However, a weaker positive
correlation was observed in section F (Figure 10).
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Fs(355) shows strong correlations with DOC for the whole dataset and for the three
sections respectively (Figure 11). Particularly, the correlation between the Fs(355) and DOC
in F section was better than that between the a(355) and DOC, but it was still lower than
those in sections PN and XM (Figure 10). The weaker correlations between the a(355),
Fs(355), and DOC in section F may be due to the more complicated material composition
supplied by multiple sources and to the different abilities of a(355) and Fs(355) to represent
the diverse DOC species [76]; however, further investigation is needed to clarify this issue.
Usually, terrestrial CDOM absorbs light strongly in the ultraviolet band due to the tannins
and lignin constituents [77]; whereas marine CDOM has few aromatic rings, and its ability
to absorb light is weak in the 355 nm band [78,79]. Thus, the a(355) value has advantages
in terms of reflecting terrestrial CDOM [80]. Additionally, it should be noted that with
the abnormally high DOC, a(355) and Fs(355) at station XM04 and XM05 will impact the
reliability of their correlations.

The correlations between the fluorophores and the DOC were further analyzed to
explore the potential ability of the fluorescence intensities of the different fluorophores to
represent the DOC content and species. In this study, the correlations between the DOC and
the fluorescence intensities of the three fluorophores differed in the three different sections
(Figure 12). (1) There was a strong correlation between C1 and the DOC for the entire
dataset and in each section. The correlation coefficients along of the three sections decreases
in the following order: XM > PN > F. Since C1 represents the humic-like component, the
strong correlation between C1 and the DOC found in this study indicates the dominant
control of the terrestrial materials in the study area and the decreasing impact of the
terrestrial materials along the three sections. (2) The correlations between the protein-like
components (C2 and C3) and the DOC vary along the three sections. A stronger positive
correlation between C3 and the DOC was observed along section PN, which may indicate
that biological production is one of the most important components of the DOC along
section PN [69,70]. However, C2 and the DOC exhibit a stronger correlation along section
F due to the more abundant input of bacteria-derived DOM and interstitial water through
resuspension [80].
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4.2. DOC Source Analysis

To obtain deeper insights into how the variable DOC component affects the relation-
ships between the CDOM and the DOC, the possible DOC material sources that may
introduce extra DOC and change the main DOC constituents along the three different
sections were investigated.

Particularly, Section XM is dominated by terrigenous materials, and therefore, it has
the highest DOC concentration and a(355), Fs(355), and C1 values and the lowest Sg
values [53,80]. However, the abnormal increases in the DOC, a(355), Fs(355), C2, and
C3 observed at stations XM04 and XM05 suggest sewage input from the Huangpu River
(Figure 13(a1,a2)). Due to the rapid development of industry and agriculture in recent
years, the water quality of the Huangpu River, which is an important tributary of the
Changjiang Estuary, has deteriorated, and contains a great deal of organic matter, leading
to the intensified autochthonous production of DOM [81,82]. This polluted water could
have migrated to stations XM05 and XM04 or even further upstream after it flowed into
the Changjiang River during high tides. The abnormally high DOC and CDOM optical
properties due to the input from Huangpujiang River should be cautious, which may
introduce overestimated DOC if they are used for DOC retrieval models’ construction.
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ing to the intensified autochthonous production of DOM [81,82]. This polluted water 
could have migrated to stations XM05 and XM04 or even further upstream after it flowed 
into the Changjiang River during high tides. The abnormally high DOC and CDOM op-
tical properties due to the input from Huangpujiang River should be cautious, which 
may introduce overestimated DOC if they are used for DOC retrieval models’ construc-
tion. 
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Usually, C3 is associated with biological production [83], but the covariation in C3
and C2 along section XM mostly suggests that C3 contains tryptophan-like peak T (derived
from an allochthonous source), which was noted by Hong et al. [84] in the Jiulong River
watershed, and has been verified by its correlation with the tryptophan-like component.

Along section PN (Figure 13(b1,b2)), the a(355) and C1 vary consistently with the
DOC, suggesting the predominance of the terrestrial materials carried by the CDW and
that the diffusion of the CDW is the basic hydrodynamic process. However, C2 and C3 vary
differently than C1. They decrease gradually (similar to C1) at the first four stations, but
they increase unexpectedly at stations PN05 and PN06. This is accompanied by abnormal
increases in the Chl-a concentration from 0.75 µg L−1 at station PN04 to 1.29 µg L−1 at
station PN05 and to 1.09 µg L−1 at station PN06. Because they are protein-like fluorescence
components, C2 and C3 are usually attributed to autochthonous production during the
exponential growth of phytoplankton [67]. Usually, high chlorophyll-a concentrations are
observed in the Changjiang Estuary, especially in spring when the TWC converges with
the saline water on the continental shelf [85], which promotes the aggregation of marine
autochthonous substances. Thereafter, in addition to the terrestrial materials carried by
the CDW, autochthonous DOM is also a main source of the DOC along section PN. The
regional occurrence of marine autochthonous substances could be one of the main factors
impairing the conservative behavior of the DOC along section PN.

Along section F (Figure 13(c1,c2)), C1 continuously decreases from station F01 to sta-
tion F03, and it abruptly increases at station F04. Station F04 is located in the southwestern
part of a cyclonic eddy to the southwest of Jeju Island, where materials from both the
Changjiang Basin and the Old Huanghe Delta settle to the bottom [86]. This unexpected
sustained increase in C1 at certain stations may suggest the input of additional terrestrial
materials at station F04, except for the materials from the Changjiang Basin carried by
the CDW.

Similar to C1, C2 and C3 decrease at the first few stations and then gradually increase
starting at station F04. This may suggest the mitigation of the influence of the protein-like
component (peak T) carried by the CDW runoff and the enhancement of the impact of the
autochthonous marine materials, which are stimulated by the convergence of the SCC and
the CDW.

An unexpected maximum for component value of C2 was observed at station F07,
which is consistent with its abnormally high DOC concentration. Station F07 is located in
an area where complex currents exchange materials and mix, the rich nutrients support
plankton blooms, and the biological activities and degradation of biological debris produce
protein-like fluorescence peaks [87]. Furthermore, there is an upwelling system to the south
of Jeju Island (125◦30′ E–127◦ E), which contains rich nutrients, and the frequent resus-
pension of bottom sediments has been observed [88]. The release of sediment interstitial
water and/or sediment resuspension could cause the higher fluorescence intensity of the
tryptophan and tyrosine in the bottom water [87], thus inducing an increase in the intensity
of the protein-like C2 and the DOC in the surface sea water during upwelling. However, an
abrupt decrease in the a(355) value was observed at this station, suggesting the weakness
of using a(355) to represent marine CDOM and the weak influence of the terrestrial DOC.

5. Conclusions

In this study, the correlations between the optical properties of the CDOM and the
DOC were discussed for the whole dataset, the south branch of Changjiang River (XM
section), the main axis and the northern boundary of the CDW, i.e., sections PN and F,
respectively. Both the absorptive and fluorescent properties of the CDOM in these sections
and the possible sources of the extra DOC input were analyzed. The ability of the optical
properties of the CDOM to reflect the main intrinsic mechanism impairing the correlation
between the optical properties of the DOC and the CDOM in the CDW were investigated,
and it was found that in addition to the hydrodynamic environment, phytoplankton, and
microbial activities, the material sources may have a profound impact on the spatial CDOM
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and DOC variations and their correlations. Specifically, the following conclusions were
drawn based on the results of this study.

Essentially, DOC shows conservative behavior, and the dilution of terrestrial material
transported by CDW is dominant, controlling the DOC distribution features and the
CDOM optical properties correspondingly. No obvious removal of DOC was observed in
the three sections, however, extra inputs were observed in all three sections in different
ways, impacting the correlations between the CDOM and DOC. In particular, the polluted
water input from Huangpujiang River will produce overestimated DOC if data are used
without cautious screening. The sustained terrestrial material input in section F included
terrestrial materials from the Huanghe Basin, mainly from the Old Huanghe River Delta
transported by the SCC, and from the Yellow Sea transported by the YSWCC, besides from
the Changjiang Basin transported by the CDW. This may be one of the main factors causing
the differences in the correlations between the optical properties of the DOC and CDOM.
However, the degree of impact from the continuous material input from Huanghe River
Basin should be studied further. In the PN section, the impact of autochthonous DOC
input on the correlation between DOC and CDOM can be neglected in comparison with
the conservative dilution procedure on the main axis of CDW.

Both a(355) and Fs(355) were demonstrated to be promising indexes for reflecting the
DOC. However, it should be noted that a(355) worked well for the datasets, except for
section F, while Fs(355) exhibited a strong correlation with the DOC in section F. Fs(355)
was demonstrated to be a good indicator of the DOC concentrations of multiple source
materials. Moreover, compared with a(355) and Fs(355), the fluorescence components were
demonstrated to be powerful indicators of the different DOC species in complex estuary
environments.

This study revealed that for the introduction of different species of DOC in multiple
ways and for the different abilities of the CDOM absorptive and fluorescence properties to
reflect the DOC, there are significant differences in the relationships between the DOC and
the optical properties of the CDOM, even within the CDW. To establish a feasible inversion
algorithm for determining DOC from the optical properties of the CDOM, long-term
observations of the seasonal and annual variations in the DOC inputs from the different
sources in this area are necessary in order to consider the effects of the CDW discharge,
the magnitude of the currents, and even the wind stress. The optical properties of the
DOC input from the different sources also require further study, and chemical analysis
of different DOC species is a solution to provide insights into the intrinsic mechanisms
determining the variable optical properties of the CDOM.

Author Contributions: Conceptualization, X.Z. and Y.D.; methodology, Z.M., L.B., J.C. and H.J.;
software, Y.D.; writing—original draft preparation, X.Z. and Y.D.; writing—review and editing, Y.D.
and S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the National Key Research and Development Program of China
(2018YFC1406600), which is supported by the Ministry of Science and Technology of the People’s
Republic of China; the National Natural Science Foundation of China (40706057, 41773005); the Key
Research and Development Program of Zhejiang Provence, China (2021C01017); and the Jiyang
College of Zhejiang A&F University (Grant No. RQ1911F11).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data contained in this paper are available from the authors.

Acknowledgments: We thank all of the R/V “DFH” crew for their support during the sample
collection, and Yunlin Zhang and Yongqiang Zhou of the Nanjing Institute of Geography and
Limnology, Chinese Academy of Sciences, for their assistance in extracting the CDOM EEMS using
PARAFAC and for fruitful discussions.

Conflicts of Interest: The researchers have no conflict of interest.



Sensors 2021, 21, 8450 18 of 21

Disclosures: XYZ: School of Earth Sciences, Zhejiang University, China, and Ocean Academy,
Zhejiang University, China; YD: Jiyang College of Zhejiang A&F University, China; ZHM: State Key
Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of
National Resources, China; LB: School of Earth Sciences, Zhejiang University, China; JYC: State Key
Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of
National Resources, China; HYJ: Laboratory of Marine Ecosystems and Biogeochemistry, the Second
Institute of Oceanography, Ministry of National Resources, China; MSC: School of Earth Sciences,
Zhejiang University, China.

Abbreviations

CDOM Chromophoric Dissolved Organic Matter
CDW Changjiang Diluted Water
chlorophyll-a Chl-a
DOC Dissolved Organic Carbon
DOM Dissolved Organic Matter
ECS East China Sea
EEMs Excitation Emission Matrix Fluorescence spectroscopy
HTCO High-Temperature Catalytic Oxidation
MTZ Maximum Turbidity Zone
PARAFAC Parallel Factor Analysis
SCC Subei Coastal Current
SS Suspended Sediments
TWC Taiwan Warm Current
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