
Neural alterations in opioid-exposed infants
revealed by edge-centric brain functional
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Prenatal opioid exposure has been linked to adverse effects spanning multiple neurodevelopmental domains, including cogni-
tion, motor development, attention, and vision. However, the neural basis of these abnormalities is largely unknown. A total of
49 infants, including 21 opioid-exposed and 28 controls, were enrolled and underwent MRI (43+ 6 days old) after birth, in-
cluding resting state functional MRI. Edge-centric functional networks based on dynamic functional connections were con-
structed, and machine-learning methods were employed to identify neural features distinguishing opioid-exposed infants
from unexposed controls. An accuracy of 73.6% (sensitivity 76.25% and specificity 69.33%) was achieved using 10 times
10-fold cross-validation, which substantially outperformed those obtained using conventional static functional connections
(accuracy 56.9%). More importantly, we identified that prenatal opioid exposure preferentially affects inter- rather than in-
tra-network dynamic functional connections, particularly with the visual, subcortical, and default mode networks.
Consistent results at the brain regional and connection levels were also observed, where the brain regions and connections as-
sociated with visual and higher order cognitive functions played pivotal roles in distinguishing opioid-exposed infants from
controls. Our findings support the clinical phenotype of infants exposed to opioids in utero and may potentially explain the
higher rates of visual and emotional problems observed in this population. Finally, our findings suggested that edge-centric
networks could better capture the neural differences between opioid-exposed infants and controls by abstracting the intrinsic
co-fluctuation along edges, which may provide a promising tool for future studies focusing on investigating the effects of pre-
natal opioid exposure on neurodevelopment.
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Abbreviations: AAL= automated anatomical labelling atlas; ACC= accuracy; ACCU= accumbens; AG= angular gyrus;
AMYG= amygdala; AUC= area under the curve; BOLD=blood oxygenation level dependent; CV= cross-validation;
DAN=dorsal attention network; dFC= dynamic functional connection; DMN= default mode network; eFC=
edge-centric functional connection; FA= flip angle; FC= functional connection; FD= framewise displacement; FDR=
false discovery rate; FOpC= frontal operculum cortex; FOrC= frontal orbital cortex; FP= fronto-parietal network; HCP
= Human Connectome Project; HIP=hippocampus; IC= insular cortex; ICA= independent component analysis; ITGa=
inferior temporal gyrus, anterior division; ITGp= inferior temporal gyrus, posterior division; ITGt= inferior temporal
gyrus, temporooccipital part; LASSO= least absolute shrinkage and selection operator; LG= lingual gyrus; LN= limbic
network; MNI=Montreal Neurological Institute; MTGa=middle temporal gyrus, anterior division; MTGp=middle
temporal gyrus, posterior division; MTGt=middle temporal gyrus, temporooccipital part; OFG= occipital fusiform
gyrus; OUD=opioid use disorder; PhGa= parahippocampal gyrus, anterior division; PhGp=parahippocampal gyrus,
posterior division; POE= prenatal opioid exposure; PP= planum polare; ROC= receiver operating characteristics; ROI=
region of interest; rs-fMRI= resting state functional MRI; SEN= sensitivity; SENSE= sensitivity encoding; sFC= static
functional connectivity; SmGp= supramarginal gyrus, posterior division; SMN= sensorimotor network; SN= subcortical
network; SPE= specificity; STGa= superior temporal gyrus, anterior division; SVM= support vector machine; TE= echo
time; TFCp= temporal fusiform cortex, posterior division; TOF= temporal occipital fusiform cortex; TP= temporal
pole; TR= repetition time; VAN= ventral attention network; VN= visual network; WLCC=weighted local clustering
coefficients

Graphical Abstract

2 | BRAIN COMMUNICATIONS 2022: Page 2 of 14 W. Jiang et al.



Introduction
Opioid use disorder (OUD) can lead to devastating health
problems in adults, including impacts on brain structure
and function. Structural and functional MRI in adult pa-
tients with OUD have revealed decreased brain volumes in
the frontal and temporal lobes, functional abnormalities of
the prefrontal cortex and temporal lobe,1 and altered func-
tional connectivity (FC) patterns at both the network- (reward
and executive control systems) and regional-level (prefrontal
cortex, amygdala, orbitofrontal cortex, cingulate cortex,
hippocampus, and thalamus).2–4 These aforementioned stud-
ies have provided valuable insights into how brain structure
and functionmay be altered in adultswith long-term exposure
to opioids. However, effects of opioid exposure on the devel-
oping brain in utero are less well-understood. Clinical mani-
festations of prenatal opioid exposure (POE) are
well-documented; in particular, the opioid epidemic has
yielded a �five-fold increase in the incidence of neonatal opi-
oid withdrawal syndrome.5 Later in development, prenatally
opioid-exposed children differ from unexposed children in
multiple neurodevelopmental domains, including cognition,
motor development, attention, and vision.6–11 However, al-
terations in brain structure and function that could underlie
these developmental consequences are just beginning to be in-
vestigated. Preclinical animal studies suggest a possible causal
relationship between POE and subsequent negative outcomes,
including decreased neurotransmitter levels,12–14 decreased
neurogenesis,15,16 increased apoptosis,17 and altered myelin-
ation18,19 in opioid-exposed rodents compared with controls.
In addition, impaired learning and memory has been found in
murine offspring exposed to opioids prenatally.20–23

In order to investigate the neural underpinnings of altered
neurodevelopment in infants with POE, non-invasive im-
aging approaches, particularly MRI, have been used.
Altered brain microstructural and structural features in
POE infants using MRI have been reported, including de-
creased fractional anisotropy in the major white matter
tracts,24 and altered volumes in multiple brain regions
when compared to controls.25 Furthermore, the use of rest-
ing state functionalMRI (rs-fMRI) has enabled the investiga-
tion of altered FCs and networks resulting from prenatal
drug exposure.26,27 Nevertheless, there have been only two
prior studies reporting altered FCs in prenatal opioid-
exposed infants. We recently reported that the brains of
POE infants exhibited smaller network volumes, particularly
in the primary visual network, and different network topolo-
gies from controls, particularly in visual and executive
control networks.28 In addition, Radhakrishnan et al.29 re-
ported significant differences in connectivity between an
amygdala seed to several cortical regions in POE infants.
While these studies revealed potential neural FC alterations
in POE infants, they are largely based on a static FC matrix
calculated using the entire rs-fMRI scan.26–29 Static FCs are
believed to reflect ‘core connections’ of the brain functional
networks, but do not account for adaptive ‘dynamic’ brain
functional organization.30,31 Alternatively, dynamic FC

(dFC)methods reflect intrinsic brain properties with a neural
origin and capture subtle changes in neural activity patterns
underlying cognition and behaviour.30,32–34 In particular,
based on dFC, a large-scale edge-centric network, which
has also been referred to as a high-order network to distin-
guish it from traditional static FC networks, has led to a
higher sensitivity (SEN) for detecting disease-related func-
tional abnormalities when compared to the traditional static
FC.35–37

In this study, we aimed to (i) differentiate POE infants
from unexposed controls using an edge-centric high-order
FC classifier and (ii) extract POE-related neural features as-
sociated with canonical networks supporting sensory and
cognitive functions that may be affected by POE. We hy-
pothesized that the edge-centric high-order network patterns
would improve our ability to differentiate infants with POE
from controls when compared to static FCs, and could po-
tentially reveal the underlying neural abnormalities asso-
ciated with POE infants at regional, connection, and
network levels.

Materials and methods
A total of 49 infants, including 21 prenatal opioid-exposed
and 28 controls born at≥37 weeks gestation without other
medical problems were recruited from Cincinnati Children’s
Hospital, birth hospitals in the Greater Cincinnati area, or
through community research advertisements. POE status
was determined by maternal history and/or maternal urine
toxicology screen at the time of delivery andwas further con-
firmedwith neonatal toxicology screen (meconium or umbil-
ical cord). Lack of POE in controls was also confirmed
by negative maternal urine toxicology screens at time of de-
livery (done universally in our area birth hospitals) as well as
history. Additional information including drug exposure,
maternal socioeconomic status (including education, em-
ployment, and income) and race, pregnancy and birth
history, was collected by review of infant medical records
or/and by maternal questionnaire at the time of MRI. This
study was approved by the Institutional Review Boards at
Cincinnati Children’s Hospital, Good Samaritan Hospital,
and St. Elizabeth Hospital. Written informed consent was
obtained from a parent or guardian prior to any study
procedures.

MRI imaging acquisition
and preprocessing
All infants were scanned during sleep without sedation on a
Philips 3 T Ingenia scanner with a 32-channel receive head
coil in the Imaging Research Center at Cincinnati
Children’s Hospital. Infants were placed in the Med-Vac
vacuum bag (CFI Medical Solutions, Fenton MI) with ear
protection when in the scanner. Resting state fMRI was ac-
quired using an axial gradient echo-planar imaging sequence
with simultaneous multi-slice excitation (multi-band).
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Imaging parameters were as follows: repetition time
(TR)= 1011 ms; echo time (TE)= 45 ms; flip angle (FA)=
54°; resolution= 2.25× 2.25× 2.25 mm3; 60 contiguous
slices; multi-band factor= 6; 500 time-series volumes and
scan time 8 min 37 s. Structural MRI sequences included a
sagittal magnetization prepared inversion recovery 3D
T1-weighted gradient echo sequence (shot interval=
2300 ms, RE= 7.6 ms, TE= 3.6 ms, inversion time=
1100 ms, FA= 11 degrees, resolution= 1× 1× 1 mm3, ac-
celeration (sensitivity encoding (SENSE)= 1 in plane and
2.0 through plane (slice) phase encode, scan time 3 min
6 s) and an axial 2D T2-weighted fast spin echo sequence
(TR= 19100–19500 ms, TE= 166 ms, resolution= 1×1×
1 mm3, acceleration (SENSE)= 1.5 in plane phase encode,
scan time 3 min 50 s). A board-certified paediatric neurora-
diologist reviewed all structural images to confirm no clinic-
ally relevant abnormalities.

An in-house infant-specific fMRI pipeline was used to pre-
process rs-fMRI data.38–40 This pipeline shares some com-
mon steps with the Human Connectome Project (HCP)
pipeline (https://github.com/Washington-University/
Pipelines), including head motion correction, aligning
rs-fMRI images to T1-weighted image space, and band-pass
filtering (0.01–0.08 Hz) and several additional unique steps
tailored to infant FC MRI.41 Brain tissue segmentation was
first conducted to generate tissue labelling maps (each voxel
was assigned as grey matter, white matter, or cerebrospinal

fluid) using a multi-site infant-dedicated computational
toolbox, iBEAT V2.0 Cloud (http://www.ibeat.cloud).42

The tissue labelling maps were used to register to the
Montreal Neurological Institute (MNI) template space
(ICBM_152_t1_tal_nlin_sym09c, without cerebellum),
minimizing the registration difficulties associated with age-
dependent signal intensity and low tissue contrast in
anatomical images.38,39 Furthermore, using an independent
component analysis (ICA) approach to derive independent
components, unsupervised deep-learning methods were per-
formed to detect and regress noise-related components.41

All preprocessing steps, including resampling, band-pass fil-
tering, and denoising, were conducted in each subject’s na-
tive space. The subjects with a mean Power framewise
displacement (FD) larger than 0.5 mm were excluded.43

Constructing eFC
Fig. 1A shows the steps to construct edge-centric FC (eFC)
matrices.36 The preprocessed functional data was parcel-
lated into 112 regions of interest (ROIs, Supplementary
Table 1) using the Harvard–Oxford atlas. The atlas in the
standard MNI space was warped to each subject’s native
space to extract regional averaged blood oxygenation level
dependent (BOLD) signals. A sliding window approach
using window lengths ranging between 50 and 120 TRs
with a 10-TR increment and a step size of 1 TR for the sliding

Figure 1 Schematic of eFC-based classification and discriminative feature identification for prenatal opioid-exposed infants.
(A) The construction of eFC and (B) the classification of prenatal opioid-exposed infants and the identification of discriminative features with
nested 10-fold CV which consisted of inner and outer layers. The inner 10-fold CV was used to optimize the predictive model by feature selection
and the optimal model was used to generate the results of the left-out samples in an outer 10-fold CV.
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window was employed. An FC matrix was calculated for
each slidingwindowusing Pearson’s correlation among pairs
of ROI signals. The lower triangle of the FC matrix (112×
(112–1)/2= 6216 edges) was extracted from each window.
By concatenating all sliding windows, a vector with a length
of 6216×Nwindow whereNwindow is the number of windows
obtained for each subject. To reduce the eFC dimension, we
further concatenated edge time series across all subjects
along the windows [6216× (Nwindow×Nsubjects)] and a clus-
tering approach was employed to group synchronized edge
time series into clusters.

Using this method, the edges assigned to the same cluster
possessed a similar temporal pattern of variation across all sub-
jects. Subsequently, the mean cluster time series (Ncluster×
Nwindow) of each subject was calculated by averaging the edges
assigned to the same cluster. Finally, eFC (Ncluster×Ncluster) of
each subject was obtained by calculating the Pearson’s correl-
ation of different averaged cluster time series. In an eFC net-
work, each node represents an edge-centric cluster involved
in highly synchronized dFCs, while each edge represents the
interactionbetweeneachpairof clusters, reflectingahigh-order
brain functional organization. Of note, in order to obtain opti-
mal classification, we adopted a series of window sizes from
50–120 TRs with a step of 10 TRs, and a series of clusters
from 100–800 clusters with a step of 100. Additional details
are provided in the next sub-section.

Differentiating POE infants from
normal controls
Wedeveloped a nested 10-fold cross-validation (CV) support
vector machine (SVM) using least absolute shrinkage and se-
lection operator (LASSO) feature selection to differentiate
POE from controls (Fig. 1B) using eFC. The weighted-graph
local clustering coefficients, which quantified high-order lo-
cal connectivity or ‘cliqueness’ of a given eFC network,44,45

were obtained by computing the probability of the neigh-
bours of a given vertex that are also connected to each other.
The weighted-graph local clustering coefficients were used to
extract features from each e FC network.44,45 For each clus-
ter, we obtained one value presented as the weighted-graph
local clustering coefficient.We chose thismeasure to decrease
the feature dimensions fromNcluster×Ncluster toNclusterwhile
retaining the local connectivity characteristics. These local
clustering coefficients were used as inputs of the following
classifier.

To determine the optimal model for differentiating POE
from controls, nested 10-fold CV was employed. For each
outer 10-fold CV, the dataset was randomly separated into
10 subsets where nine subsets were used for training while
the remaining one dataset was used for testing. The above
procedures were repeated 10 times and the mean area under
the curve (AUC) of receiver operating characteristics, accur-
acy (ACC), SEN, and specificity (SPE) were used to deter-
mine the performance of the model.46

The classification ACC was related to the window lengths
and number of clusters (Supplementary Fig. 1). A

representative example of the eFC differences between POE
infants and controls using a window length of 50 TRs and a
step size of 10 TRs were showed in the supplement materials
(Supplementary Table 2). To optimize the combination of the
window lengths (window length: 50–120 TRs and a step size:
10 TRs) and number of clusters (100–800 clusters with a step
of 100), we used the inner 10-fold CV methods. The model
that yielded the best classification performance (the largest
ACC) with 10-fold CV was chosen as the optimal model to
predict the test samples in the outer 10-fold CV (Fig. 1B).
For each inner 10-fold CV, we used the LASSO method to se-
lect the crucial eFC features under each combination of sliding
window and cluster of the training datasets, so as to reduce
possible feature redundancy and improve the classification
performance and model robustness.47 The selected features
were used to train the SVM model that was then used to pre-
dict the testing samples of the inner 10-fold CV.

In this study, a soft-margin SVM was chosen to classify
high-dimensional data, which identified the maximal margin
between two groups while allowing some misclassifica-
tions.48 Such a soft margin method has been well-validated,
extensively used and demonstrated superior performance
evenwith a small sample size.34,35,49 Herein, we used a linear
kernel with a hyperparameter C= 134,50,51 and other hyper-
parameters were kept as defaults to make the model more ro-
bust,35 including insensitivity= 0 and an eInsensitive loss
function.34,50,51

Identification of POE specific neural
substrates
In order to identify specific neural substrates capable of dis-
tinguishing POE from controls, a tracing back method was
employed based on the eFC classifier to derive quantitative
features from three levels, namely connection-wise, region-
wise, and network-wise contributions such that the potential
POE-related neural alterations at the FC, regional, and net-
work levels could be discerned. Specifically, in the linear
SVM, a hyperplane was created by using support vectors to
maximize the distance between the two classes. The obtained
weights represent the vector coordinates orthogonal to the
hyperplane.The absolute valueof their coefficients in relation
to each other can be used to determine feature importance for
the data classification task.52 Based on the absolute coeffi-
cients of feature importance in linear SVM,we derived quan-
titative effects of POE at the aforementioned three levels.

Connection-wise contributions
The normalized weight of each cluster was calculated to as-
sess the discriminative ability of distinguishing POE infants
from controls. Specifically, throughout the entire classifying
processes, i.e. 10 times 10-fold CV, the number of appear-
ances of a given cluster was recorded. The occurrence rate
was then calculated as the number of appearances of a given
cluster divided by the total classifying number 100 (10× 10
for 10 times 10-fold CV). Subsequently, the normalized
weight was defined as the average SVM weight multiplied
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by the occurrence rate of each cluster across the outer 10-fold
CV with 10 repetitions, Fig. 1B (i.e. the average SVMweight
× the frequency of each cluster/100). The greater the normal-
ized weight of a given cluster is, the stronger this cluster con-
tributes to discriminate the two groups.36 Since each cluster
involved many low-order or basic FCs, we traced back and
summed up all normalized cluster-weights related to each ba-
sic FC (edge), reflecting the ‘connection-wise contribution’.

Brain region-wise contributions
Based on the low-order FC’s weights, we determined the
weight of each brain region (ROI-wise contributions) by
summing the absolute values of the ‘connection-wise contri-
butions’ across all FC links that were connected to a given re-
gion.48 In this way, the ROIs with higher weights were
deemed to be more discriminative in distinguishing POE
from controls.

Network-wise contributions
To decide the network affiliation of each ROI, eight canon-
ical networks were adopted, including the seven networks
proposed by Yeo et al53 and a subcortical network (SN) by
Finn et al51 (See Supplementary Table 3). The seven cortical
networks included the fronto-parietal (FPN), ventral atten-
tion (VAN), default mode (DMN), dorsal attention
(DAN), sensorimotor (SMN), visual (VN), and limbic net-
work (LN). Each ROI was mapped to the network atlas
(both in MNI space) and the number of overlapping voxels
between each ROI and each network was calculated. The
network affiliation of each ROI was decided by the propor-
tion of overlapping voxels over the total voxel number of this
ROI (Noverloaping/Ntotal). Through this method, some regions
may be involved in two or three networks in different pro-
portions (See Supplementary Table 3).

Subsequently, we calculated network-level contributions
through intra-network, inter-network, and pairwise inter-
network POE-associated indices. The intra-network index
was calculated as an absolute sum of the connection-wise
contributions across all selected intra-network edges, while
the inter-network index was calculated by the absolute sum
of the connection-wise contributions across all edges con-
necting one network to all the other networks. If a dFC link
connected two networks, its connection-wise contribution
was divided by two for each network. To further investigate
the contribution of pairwise networks to the POE—brain as-
sociation, we calculated the sum of the connection-wise con-
tribution between each pair of networks, respectively.

Statistical analyses
Statistical analyses of demographic/clinical data were per-
formed using IBM SPSS Statistics 23. Descriptive statistics
for demographic variables were computed for the two
groups (opioid-exposed and controls). Two-sided t-tests
were conducted for the comparison of continuous variables
and Fisher’s exact test for categorical variables between
two groups. A P-value ,0.05 was considered significant.

In addition, two-sample t-tests were used for the group com-
parison of static FC strength between POE infants and con-
trols with false discovery rate (FDR) for correcting multiple
comparisons (P, 0.05) using MATLAB 2018b.

Validation
Permutation tests were used to assess the statistical signifi-
cance of the model’s discriminative ability.49,50 The classifi-
cation labels of the data were randomly permuted 5000
times, and the same SVM procedures with 10 times 10-fold
CV was then performed on every permuted set. We defined
the ‘real’ ACC as the ACC obtained by the classifier trained
on the real class labels. If the real ACC exceeded the 95%
(P, 0.05) confidence interval of the classifier trained on ran-
domly re-labelled class labels, the classifier was considered to
reliably learn the relationshipbetween thedata and the labels.

To further determine the effectiveness of the eFC-based
POE classification, the eFC-based results were compared to
that obtained using the traditional static FC method. The
main difference between the two approaches was that
Pearson’s correlation coefficients were calculated using
rs-fMRI signals among pairs of brain regions within the en-
tire scanning period and were used as the features for static
FC-based classification.49 We then tested the differences of
static FC strengths between groups using a two-sample
t-test (P, 0.05, FDR corrected). We also evaluated the
ACC, SEN, SPE, as well as AUC when the clustering coeffi-
cients of the static FC network were used as features.

Data availability statement
The data included in this study is a part of ongoing studies
and thus cannot be made publicly available at the present
time. Nevertheless, we have shared our codes for the analysis
of edge-centric functional networks through a repository
https://github.com/Windywom/Classification-based-on-
Edge-centric-FC.

Results
Of the 49 infants (21 opioid-exposed and 28 controls) with
completed MRIs, 10 infants were excluded due to excessive
motion (Power FD. 0.5 mm), leading to a final sample of 15
opioid-exposed and 24 control infants for data analyses. All
subjects were born at≥ 37weeks gestation andwere scanned
at approximately 6 weeks (43+6 days) after birth, minim-
izing the effects of the postnatal environment on brain con-
nectivity. Maternal smoking, maternal Hepatitis C, and
maternal education were significantly different between the
POE and control groups (Table 1).

Performance of eFC-based classifier
We hypothesized that dynamic rs-fMRI would outperform
the widely used static rs-fMRI to distinguish POE infants
from controls. The eFC achieves an average ACC of
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73.6% (SEN: 76.25%, SPE: 69.33%, AUC: 0.7936,
F1-score: 78.07) using 10 times nested 10-fold CV
(Fig. 2A) which outperforms that obtained using the widely
used static FC (ACC: 56.9%, sFC in Table 2) as well as com-
bining clustering coefficients and the static FC (ACC:
51.96%, sFC+WLCC in Table 2), suggesting that dynamic
rs-fMRI is more effective in identifying differences between
POE infants and controls. The permutation tests showed
that the proposed classifier reliably learned the relationship
between the data and the labels, exceeding the 95% (P,

0.05) confidence interval of the classifier (Fig. 2B).
Two-sample t-tests showed no significant differences of

static FC strength between the POE infants and controls
(P,0.05, FDR corrected), which was consistent with the
results in a recent study using the automated anatomical
labelling (AAL) atlas (90 brain regions).28

Region-wise contributions
distinguishing POE infants from
controls
The ROI-level weights, reflecting the discriminative ability
of a given ROI for differentiating POE infants from

Table 1 Demographics of study population

Opioid-exposed (n= 15) Controls (n=24) P value

Male, n (%) 6 (40) 9 (37.5) 0.57
Gestational age at birth (weeks), mean (SD) 38.7 (0.9) 39.1 (0.8) 0.096
Birth weight (g), mean (SD) 3070 (275) 3190 (361) 0.277
Head circumference at birth (cm), mean (SD) 34.3 (1.2) 33.9 (1.3) 0.394
Postmenstrual age at scan (weeks), mean (SD) 44.8 (1.2) 45.2 (1.4) 0.419
Race/ethnicity, n 0.092
Non-Hispanic White 12 11
Non-Hispanic Black 2 10
Hispanic White 1 3

Maternal smoking, n (%) 14 (93) 1 (4) ,0.001a

Any maternal alcohol use during pregnancy 1 (7) 1 (4) 1
Maternal Hepatitis C, n (%) 10 (67) 0 (0) ,0.001a

Maternal college degree, n (%) 2 (13) 16 (67) 0.002a

Maternal methadone, n (%) 5 (33) n/a n/a
Maternal buprenorphine, n (%) 9 (60) n/a n/a
Maternal heroin and/or fentanyl, n (%) 8 (53) n/a n/a
Other maternal illicit drug use 3 (20) n/a n/a
Neonatal abstinence syndrome requiring opioid treatment, n (%) 4 (27) n/a n/a

Two-sided t-test was used to compare continuous variables and Fisher’s exact test was used to compare categorical variables.
aRepresents significant difference between two groups.

Figure 2 The eFC-based classification performance. (A) The AUC curve in the SVM classifier with 10 repetition 10-fold CV. (B)
Permutation distribution of the estimate (TRs: 5000). Red line is the ACC obtained by the classifier trained on the real class labels based on the
clinical assessments. Grey lines are the 95% (P, 0.05) confidence interval of the classifier trained on randomly re-labelled class labels. This figure
presents that the classifier reliably learned the relationship between the data and the labels.
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controls, are provided in Supplementary Table 2 and the
brain regions with the highest 25% of weights are shown
in Fig. 3. These regions were mainly in the subcortical re-
gions, visual regions, temporal lobe, and other high-order
brain regions.

Connection-wise contributions
distinguishing POE infants from
controls
A total of 3356 low-order connections took part in the
classifying task when we used the classifier with 10 repetitive
10-fold CV (Fig. 4A). The connections ranked in the top 5%
(167 edges) of the normalized weights are shown in Fig. 4B
and Supplementary Table 4. Note that the identified
167 connections mainly linked the ROIs shown in Fig. 3A.
Specifically, the nucleus accumbens and amygdala
(subcortical regions) and lingual gyrus (LG) and fusiform
gyrus (visual network) exhibited rich connections with other
ROIs.

Network-wise contributions
distinguishing POE infants from
controls
As outlined above, three network-wise contributions were
calculated, including intra-network, inter-network, and
pairwise inter-network indices. Fig. 5A shows both the nor-
malized intra- and inter-network weights ranked by the
whole network weights. The normalized inter-network
weights are higher than the intra-network weights, suggest-
ing that neural substrates distinguishing POE infants from
controls are mostly inter-network rather than intra-network
connections. Furthermore, among the inter-network contri-
butions, the visual network exhibits the highest normalized
inter-network weights, followed by the subcortical, default
mode, and limbic networks, suggesting that eFC connections
to these networks may be more affected by POE. The pair-
wise inter-network contributions (Fig. 5B) further revealed
that although the visual and subcortical networks are the
two most important networks (Fig. 5A), they have distinctly
different patterns associated with POE; the visual-related
POE-influenced FCs were mainly connected to the default
mode and fronto-parietal networks, while the subcortical
network showed uniformly strong influence in the FCs
with the default mode, limbic, sensorimotor, and ventral at-
tention networks.

Discussion
The intrinsic interaction between different brain regions has
been reported to be temporally nonstationary. As a result,

Table 2 Comparisons of static versus dFC to distinguish
POE infants from normal controls

Method
ACC
(%)

SPE
(%)

SEN
(%) AUC

F1-score
(%)

sFC 56.92 66.67 41.33 0.5181 65.54
sFC+
WLCC

51.96 67.92 36.00 0.5425 65.28

eFC 73.59 76.25 69.33 0.7936 78.07

sFC, static functional connectivity; WLCC, weighted local clustering coefficients.

Figure 3 Region-wise contributions distinguishing the opioid-exposed infants from controls. (A) The surface view of the highest 25%
ROIs. The colour bar shows normalized weights, reflecting the importance of ROIs in the classifier model (i.e. the degree of contribution). (B) The
normalized weights of the highest 25% ROIs. AMYG, amygdala; AG, angular gyrus; ACCU, accumbens; ITGt, inferior temporal gyrus,
temporooccipital part; FOrC, frontal orbital cortex; FOpC, frontal operculum cortex; HIP, hippocampus; IC, insular cortex; ITGp, inferior temporal
gyrus, posterior division; PhGa, parahippocampal gyrus, anterior division; PhGp, parahippocampal gyrus, posterior division; TOF, temporal occipital
fusiform cortex; PP, planum polare; MTGp, middle temporal gyrus, posterior division; ITGa, inferior temporal gyrus, anterior division; MTGt, middle
temporal gyrus, temporooccipital part; MTGa, middle temporal gyrus, anterior division; STGa, superior temporal gyrus, anterior division; TP,
temporal pole; SmGp: supramarginal gyrus, posterior division; TFCp, temporal fusiform cortex, posterior division; L, left; R, right.
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static FC using the FC matrix obtained from the entire
rs-fMRI scan54 may fail to capture brain functions that are
only present within time scales much shorter than the entire
data acquisition.36 Recently, edge-centric methods have been

proposed capable of capturing interaction patterns between
pairs of edges, which differ from the widely used static FC as-
sessing temporal synchrony of BOLD signals among pairs of
brain regions.55,56 The patterns of co-fluctuation revealed by
eFCs could reflect the aggregate effects of communication
processes between neural elements.55–57 Faskowitz et al55 in-
vestigated eFCs and revealed an overlapping neural system-
level architecture. That is, a given brain region could be
assigned to multiple brain functional networks. In particu-
lar, the greatest levels of overlap were observed in the
sensorimotor and attentional networks. Jo et al56 used
eFCs to improve subject idiosyncrasies and captured
subject-specific features as fingerprints to characterize un-
ique individuals. In this study, we developed an edge-
centric representation of dynamic FC (dFC) and used it
distinguish infants with POE from typically developing in-
fants. Our results showed that the eFC approach outper-
formed the widely used static FC for distinguishing POE
infants from controls (Table 2), suggesting that the neural
substrates underpinning POE infants may be associated
with alterations of co-fluctuation between pairs of edges
instead of temporal synchrony between pairs of brain re-
gions. Collectively, eFC has provided a new tool studying
the higher-order organization and function of brain net-
works and serves as complementary approaches to the cur-
rent prevailing node-based static FC.

Furthermore, our results indicate that the effects of POE
may predominately alter inter-network instead of intra-
network dFC (Fig. 4 and Fig. 5). We previously reported
that long-distance and inter-network connections appear to
be more vulnerable in POE infants when compared to con-
trols.28 In this study, the eFC results further elucidated the
differences of high-order communication in inter-network
eFC. Specifically, we found that inter-network eFC with
the visual, subcortical, and default mode networks were

Figure 4 Connection-wise contributions. (A) The contribution weight of basic FCs in the classifying task. Colour bar shows the importance
scale—normalized weights. (B) FCs ranked in the top 5% of the normalized weights. The size of the spheres reflects the region-wise contributions.
The brain regions connected by the identified edges are labelled by different colours based on the network affiliations of each brain region. DA,
dorsal attention; FP, frontoparietal; DM, default mode; LN, limbic network; SM, sensorimotor network; SN, subcortical network; L, left; R, right;
VA, ventral attention; VN, visual network.

Figure 5 Network-wise contribution. (A) Network-level
contribution in the eFC classifier to identify POE from controls.
Blue bars indicate the network-level contribution of inter-network
dFC, and red bars indicate that of intra-network dFC. (B) The
contribution of each pairwise inter-network connection to the eFC
classifier. DAN, dorsal attention network; DMN, default mode
network; FPN, frontoparietal network; LN, limbic network; SMN,
sensorimotor network; SN, subcortical network; VN, visual
network; VAN, ventral attention network.
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more strongly associated (larger inter-network weights,
Fig. 5) with POE than that of other functional networks,
which implied that the high-order interactions between
them could be more affected by POE. While inter-network
connections serve less specialized and complex brain func-
tions when compared to intra-network connections,58,59

inter-network communications have been regarded as essen-
tial to maintain healthy executive function.58,59 In particu-
lar, growing evidence from adult studies60,61 has supported
that the intrinsic neural connections between visual and de-
fault mode networks play a key role in visual mental im-
agery, which is the basis of a variety of high-level cognitive
functions.62 Better visual creativity was correlated with
stronger resting-state FC between the visual network, default
mode, and frontoparietal networks.61,63 Although our stud-
ies focused on infants, it is plausible that the similar mechan-
isms are present at some level or are developing in infants.
We found that the inter-network connectivity between the
visual and DMN exhibited the largest weight, followed by
visual-FPN, suggesting potential functional alterations gov-
erned by the inter-network connectivity among the three net-
works in POE infants. Indeed, children with POE are known
to have a higher risk of visual problems, including reduced
visual acuity, strabismus, and nystagmus.64–67 After prenatal
exposure to methadone, infants show abnormal, smaller, or
slower visual evoked potentials relative to controls.68

Furthermore, infants with POE experiencing withdrawal
symptoms tend to be ‘disorganized’ soon after birth and re-
quire decreased auditory and visual stimulations.28 The
inter-network connectional differences shown in this study
may reflect this outward disorganization. We speculated
that the observed abnormalities of higher order inter-
network connections between visual and default mode as
well as frontoparietal networks may be the neurological
underpinning of higher risks of altered visual function in
children with POE.

Consistent with the observed inter-network dFC fea-
tures between the visual and default mode networks of
POE infants, we also found that the bilateral occipital fu-
siform gyrus, LG, temporal occipital fusiform gyrus
(TOF), and right temporal fusiform cortex were among
the highest regional contributions for differentiating
POE from controls (Fig. 3B). The fusiform gyrus plays
an important role for high-order visual processing in chil-
dren and adults, including identification and differenti-
ation of objects,69,70 face recognition,69,71,72 processing
of colour information,73–75 identifying words and letters
from lower-level shape images,74,76,77 and accessing ob-
ject semantic information.74,75,78 Furthermore, the LG
has been shown to govern visual processing,79,80 analysis
of logical conditions,80,81 and encoding of visual memor-
ies.80 Normal visual function is important for brain mat-
uration and cognitive development. Infant’s visual
performance such as attention and fixation has been impli-
cated to predict later neurocognitive development.82,83

Neuroimaging features such as the flexibility of the visual
network has been associated with later cognitive

performance.84 Together, these findings may potentially
explain the observed differences of visual functions and la-
ter cognitive delays in infants with POE.

The subcortical network was the second most important
network distinguishing POE infants from controls
(Fig. 5A). The subcortical network has been linked to a var-
iety of functions including emotion, behaviour, memory, and
olfaction.85–87 Therefore, the effects of POE on subcortical
network and regions are likely to affect a wide range of net-
works in the brain. Indeed, our results showed that subcor-
tical network exhibited a distinctly different POE-affected
pattern when compared to the visual network. Aside from
a relatively large weight with the default mode network,
the intra-network weights were more similar with the limbic,
sensorimotor, and ventral attention networks. These find-
ings suggest that high-order co-fluctuation abnormalities
with the subcortical network occurred more broadly across
the whole brain.

At the brain regional level, our results showed that the
left amygdala and the nucleus accumbens were the two
strongest regional contributors (Fig. 3B) discriminating
POE from controls, consistent with the previously re-
ported opioid-related findings in both human and animal
studies.26,27,29,88–91 Specifically, the amygdala plays a piv-
otal role in emotional processing as the integrative centre
for emotions, emotional behaviour, and motivation and
its abnormalities have been linked to social anxiety, obses-
sive and compulsive disorders, and post-traumatic stress,
as well as more broadly to separation and general anx-
iety.92 It is believed to represent a core fear system in the
human brain.93 In addition, the early development of the
left amygdala may provide infants the ability to detect
danger.94 Grewen, Salzwedel and Gao26 observed hyper-
connectivity of left amygdala with orbital frontal cortex
and hypo-connectivity of posterior thalamus with hippo-
campus in infants with prenatal exposures to opioids and
other drugs. Salzwedel et al.27 also revealed common drug
exposure-related connectivity disruptions within the amyg-
dala–frontal circuits. More recently, Radhakrishnan et al.29

found significant differences in connectivity of an amygdala
seed to several cortical regions.

The nucleus accumbens, one of the subcortical nuclei, is im-
portant in addiction95 as it involves in the cognitive processing
of motivation, aversion, and reinforcement learning,96–98 as
well as playing a role in processing fear and impulsivity.99–
101 A negative effect of opioids on the nucleus accumbens
have also been reported.88–91 The neural activity of nucleus
accumbens has been found to be fine-tuned by the opioid sys-
tem,102,103 which is formed by opioid receptors and their li-
gands, and the opioid peptides (prodynorphin,
proenkephalin and proopiomelanocortin).104 Mu opioid re-
ceptors are considered the main pharmacological target of
opiates and the molecular substrate of their analgesic and he-
donic properties. The nucleus accumbens expresses high levels
of kappa, mu and delta opioid receptors, prodynorphin and
proenkephalin, thus serving as a key hub of the reward sys-
tem.102,103 Our results showed that the nucleus accumbens
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possessed a strong discriminative ability when distinguishing
POE infants from controls, suggesting the disruption of its
high-order connections with other brain regions, which may
cause the dysfunction of the reward system. Together, our
findings along with previously reported results, suggest effects
of POE on connectional patterns of the subcortical networks,
which may explain some of the later onset of emotion and in-
hibition abnormalities observed in children exposed to
opioids prenatally.26,27,29,90

Limitations
It should be noted that several confounds should be consid-
ered in our study. Specifically, 93% of the mothers of the
POE infants were smokers (versus 4% in controls), and
67%of themwere positive for hepatitis C (versus 0% in con-
trols). With respect to hepatitis C, the risk for
mother-to-child transmission is very low (,5%), making it
unlikely to alter brain FC in the POE infants.105,106

However, both morphine and nicotine are considered nar-
cotic drugs, as they both activate the mu opioid receptor at
some stage,107 meaning that the observed differences in func-
tional activity in infants with POEmay not be specific to opi-
ates. Nevertheless, multiple drug use is one of the common
limitations of most human studies of addiction, and rather
difficult to avoid.108 More POE infants (6/21) than the con-
trols (4/28) were excluded due to the presence of excessive
motion during image acquisition. The presence of excessive
motion during MR imaging may represent hyperactivity of
POE infants, a consequence of POE. Thus, the exclusion of
POE infants with increased motion during MRI might have
limited our findings. The sample size is limited.
Nevertheless, our results are robust via the permutation
test. With the machine learning approach employed in our
study, neural features capable of distinguishing POE infants
from controls were revealed. However, we were unable to
evaluate the direction of the differences owing to the intrinsic
limitation of machine learning approaches. Finally, the lack
of a long-term follow-up of the study cohort makes it diffi-
cult to determine if the observed neural substrates persist be-
yond infancy. Nevertheless, these aforementioned
limitations are not unique considering the difficulties of
study on this vulnerable population. The upcoming
HEALthy Brain and Child Development study, which aims
to recruit a larger sample size (.5000 infants) and a longitu-
dinal design (.5yrs), will further improve our understanding
how the type, timing, and duration of opioid exposure affect
the brain and relate to later neurodevelopment.
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