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A twin is defined as being an external operation between two identical crystals

that share a fraction of the atomic structure with no discontinuity from one

crystal to the other. This includes merohedral twins, twins by reticular

merohedry as well as coherent twins by contact where only the habit plane is

shared by the two adjacent crystals (epitaxy). Interesting and original cases

appear when the invariant substructure is built with positions belonging to the

same Z-module as, for example, the quinary twin structure first drawn by

Albrecht Dürer [(1525). The Painter’s Manual: a Manual of Measurement of

Lines, Areas and Solids by Means of Compass and Ruler. Facsimile Edition

(1977), translated with commentary by W. L. Strauss. New York: Abaris Books].

This paper will show that the Dürer twins, once defined in five-dimensional

space, are simple merohedral twins, in the sense of Georges Friedel, leaving the

five-dimensional lattice invariant. This analysis will be generalized to some other

higher-order Z-modules.

1. Introduction

From an historical point of view, twins have played a special

role in mineralogy and crystallography as they are an aggre-

gate of identical crystals oriented with respect to each other in

a very specific and characteristic manner (see, for instance,

Groth, 1906; Putnis, 1992). Several twin laws have been

proposed that can all finally be summarized by the basic idea

that the specific relative orientation of a twinned crystal is a

special isometry that keeps invariant – either exactly or

approximately – a part of the atomic structure or of a specific

property between the two twins. The idea is that the larger the

common part is, the more stable is the twin and the more

frequently it occurs in nature. Using this kind of intellectual

guide, Friedel (1904, 1926, 1933) proposed a classification of

twins based on the geometry of the sole crystal lattice

(Bravais, 1851; Mallard, 1885; Donnay, 1940):

(i) Merohedral twins where the crystals share the same

lattice (this can happen only for non-holohedral structures).

(ii) Twins by reticular merohedry where the crystals share

only a fraction, a sublattice, of the crystal lattice; this corre-

sponds, in metals and alloys, to the so-called special bound-

aries between grains like the famous mirror twin along the

(111) direction often observed in the f.c.c. (face-centred cubic)

metals.

(iii) Pseudo-merohedral twins or twins by reticular pseudo-

merohedry where the previous definitions are satisfied only

approximately.

In the present paper, we choose a general definition of

twinning as being an operation between two identical crystals

that share a fraction of the atomic structure or of a specific

property with no discontinuity from one crystal to the other, in
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the spirit developed by Nespolo & Ferraris (2004), Grimmer &

Nespolo (2006), Marzouki et al. (2014 and references therein):

(i) Twinned crystals in mutual orientation by reticular

merohedry in three dimensions (two dimensions or one

dimension) that share a common three-dimensional (two-

dimensional or one-dimensional) sublattice.

(ii) A twin by contact where only the habit plane is shared

by the two adjacent crystals (epitaxy).

(iii) More generally, any twin operation keeping invariant a

fraction of the Wyckoff positions of the structure.

2. Formalism

2.1. Symmetry operations and space groups

A symmetry operation in Rn is an isometry of Rn, made of

an orientation g and a translation part t, and noted ĝg ¼ ðgjtÞ,

that transforms a point r in Rn into a point r0 in Rn as

r0 ¼ ĝgr ¼ ðgjtÞr ¼ grþ t: ð1Þ

Designating by On the set of the isometries of Rn, we define

the space group G of the crystal as the set defined by

GC ¼ fĝg 2 On such that 8x 2 C; ĝgx 2 Cg: ð2Þ

Considering now the subset P � C of the points that are

invariant under the twin operation (see Fig. 1), its symmetry

group N P is defined

N P ¼ fĝg 2 On such that 8x 2 P; ĝgx 2 Pg: ð3Þ

It is generally different to GC and is not necessarily a subgroup

of it.

Thus, the fundamental group–subgroup relation defining

the geometry of the two processes implies the intersection

group I ¼ N P \ GC, that gathers the symmetry operations

that belong to both N P and GC.

The group scheme is shown in Fig. 2. It defines two integers

n and m that are the indices of I in, respectively, N P and GC:

n ¼ ½N P : I�; m ¼ ½GC : I�: ð4Þ

Their meaning is the following:

(i) n� 1 is the number of different possible twinned crystals

around one given crystal and all share with the central crystal

the same subset P of symmetry group N P:

N P ¼ [
n
i¼1 ĝgi I : ð5Þ

(ii) m is the number of equivalent subsets P in the same

crystal of space group GC:

GC ¼ [
m
j¼1 ĝjI : ð6Þ

Each coset element ĝgiI represents a twin operation,1 i.e. an

operation that relates two twinned crystals sharing the same P

and each coset ĝgjI represents an internal operation for the

crystal that transforms the subset P into one of its equivalents.

As a simple example, let us consider the standard so-called

�3 twin in cubic face-centred metals where the two individuals

share a common sublattice of unit cell U ¼ f1=2ð1; 1; 0Þ,

1=2ð1; 0; 1Þ; ð1; 1; 1Þg. The involved groups are GC ¼ Fm3m,

N P ¼ P6=mmm (unit cell U), with the intersection group

I ¼ P3m1 with the same unit cell U, as shown in Fig. 3 on the

right. This leads to n ¼ 2, meaning that the twin operation

connects two individuals and m ¼ 4� 4� 3=4 ¼ 12 different

crystals – corresponding to the 4� 3 families of (1, 1, 1)

planes, A, B or C – can be formed around one single crystal.

Finally, the twin index that corresponds to the indices of the

lattices only is � ¼ 4� 3=4 ¼ 3, thus the term �3 used to

designate this kind of grain boundary.

This same twin can be as well defined through its epitaxy

property and using point groups. The two adjacent crystals

share the same (1, 1, 1) plane; thus, G ¼ m3m, N P ¼ 6m with

an intersection group I ¼ 3m. This means that the twin �3,

that keeps a (1, 1, 1) plane invariant, is between n ¼ 2 variants

and m ¼ 4 different individuals – the four orientation families

of (1, 1, 1) planes – that can be formed around one given

variant.

All known types of twins enter the general group–subgroup

tree of Fig. 2.

For instance, merohedral twins are characterized by I and

GC having the same lattice; coincidence grain boundaries are
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Figure 1
The space group GC of a crystal is the set of all isometries that transform
any point of the crystal into an equivalent one. The invariance group N P

of a subset P � C of the atoms of a crystal is generally different from GC

and is not necessarily a subgroup of GC.

Figure 2
General group–subgroup tree characterizing a twin operation (see text).

1 As discussed long ago (Guymont et al., 1976; Gratias et al., 1979; Portier &
Gratias, 1982), interfaces (twins or grain boundaries) in homogeneous crystals
are described by cosets of space groups. Indeed, consider two identical crystals
related by the operation �̂� and with space groups, respectively, G and �̂�G�̂��1.
The operation �̂� relates any point x of the first crystal to an equivalent x0 in the
second crystal. Thus the twin operation is equivalently described by any
operation that results in the product of any symmetry element of G by �̂� and
finally any symmetry element of �̂�G��1, that is �0 ¼ �̂�G�̂��1�̂�G ¼ �̂�G. This
shows that a general interface operation between two identical crystals is not
defined by a unique operation �̂� but by a coset of the form �̂�G.



twins by reticular merohedry with a grain boundary index

being the order of the lattice of I in the lattice of GC.

3. Generalization

As we will show here, there are cases where the scheme of

Fig. 2 leads to original results such as the twin structures first

drawn by Albrecht Dürer and reproduced here in Fig. 4(a)

from the original work De symmetria partium in rectis formis

humanorum corporum (1532) and Underweysung der Messung

(1538) (available on CD-ROM, Octavo Editions, CA, 2003).

3.1. The Dürer structure

The basic structure invented by Albrecht Dürer is shown in

Fig. 5(a). It is built with six adjacent regular pentagons and has

the crystallographic two-dimensional space group c2mm.

Taking the radius of the elementary pentagon as the unit

length (see Fig. 5a on the left), we find the lattice parameters

A ¼ ð2þ �Þ1=2 and B ¼ 3� þ 1 where � is the golden mean

� ¼ ð1þ 51=2Þ=2 ’ 1:6180339 . . . . The whole structure is

described by only two Wyckoff positions generated by the

positions ð1� �=2; 0Þ and ð0; 1� �=2Þ drawn in green and blue

in Fig. 5.

Twins of the Dürer structure can be generated in a very

symmetrical tenfold symmetry according to various equivalent

modes, either radiant central as in Dürer’s original drawing, or

spiral-like twins made of ten two-dimensional crystals along

the ten directions of a regular decagon as seen in Fig. 4(b).

3.2. The hidden symmetries of the Dürer structure

The very specific feature of the Dürer structure is that the

atomic positions xj are all vertices of interconnected identical

regular pentagons so that they can all be defined as integer

sums of the five vectors relating the centre to the five vertices

of the elementary pentagon:

xj ¼
P5

k¼1

n
j
kek: ð7Þ

This structure is thus a periodic decoration of a Z-module2 of

rank 5 (4 in fact, because the sum of the five unit vectors gives

the zero vector) generated by the five vectors defined by the

regular pentagon. In a more geometric view, the Dürer

structure is a two-dimensional projection of a five-dimensional

periodic structure in a four-dimensional hyperplane perpen-

dicular to the five-dimensional main diagonal (1, 1, 1, 1, 1).

Embedding the Dürer structure in five-dimensional space is

easily performed. We choose the origin in � as shown in Fig.

5(b) and find the unit cell defined by A ¼ ð0; 1; 0; 0; 1Þ and

B ¼ ð2; 1; 2; 2; 1Þ, two vectors that are both perpendicular to

the main diagonal ð1; 1; 1; 1; 1Þ in five-dimensional space. The

two Wyckoff positions are located at the nodes w1 =

ð0; 1; 0; 0; 0Þ for the blue one and w2 ¼ ð0; 0; 1; 0; 0Þ for the

green one. The point symmetry operations are 5� 5 signed

permutation matrices given by

C2 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA; mx ¼

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0BBBBBB@

1CCCCCCA;

my ¼

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0BBBBBB@

1CCCCCCA ð8Þ

and the corresponding space operations that generate the

space group c2mm arebCC2 ¼ ðC2j0; 0; 1; 1; 0Þ; bmmx ¼ ðmxj0; 0; 0; 0; 0Þ;bmmy ¼ ðmyj0; 0; 1; 1; 0Þ: ð9Þ

These operations together with the translation group gener-

ated by ðA;BÞ form a faithful representation of the group

c2mm in five-dimensional Euclidean space.

3.3. Twin operation

Now, we choose the underlying five-dimensional lattice

generated by the five mutually orthogonal vectors Ei; i ¼ 1; 5

whose projections are the five basic vectors of the pentagon, as
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Figure 4
(a) Original drawings of pentagonal assemblages created by Dürer (1525)
illustrating the fact that regular pentagons cannot tile the plane, one of
the best packings being shown on the right. It is a two-dimensional
periodic structure, designated here as the ‘Dürer structure’, multiply
twinned around a central fivefold axis. (b) Construction by the authors of
a tenfold twinning of the Dürer structure obtained by a spiral-like
growing mode around a central empty decagon. The geometric nature of
the twin interface h in green is shown in Fig. 6.

Figure 3
Two equivalent ways of describing the classical �3 twin in f.c.c. metals. On
the left, emphasis is put on the sublattice conservation between twinned
crystals, whereas on the right, emphasis is put on the twinned crystals
sharing a common ð1; 1; 1Þ plane.

2 A Z-module of rank p in Rd of dimension d< p is the set of points x defined
by x ¼

Pp
i¼1 niei where the basic vectors ei are arithmetically independent (no

non-zero p integers lead to a sum giving the null vector); it is isomorphic to an
irrational projection in d-dimensional space of an N-dimensional lattice, with
N> d. For d ¼ p the Z-module is a lattice.



the geometric object that should be left invariant. The group

N P of all operations that keep the five-dimensional lattice

invariant together with the two-dimensional cut space is

p10mm generated by

C5 ¼

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0BBBBBB@

1CCCCCCA; mx ¼

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0

0BBBBBB@

1CCCCCCA;

1 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0BBBBBB@

1CCCCCCA: ð10Þ

Thus, the general group–subgroup tree (Fig. 2) is built with the

point groups N P ¼ 10mm (order 20), GC ¼ I ¼ 2mm (order

4) that is a subgroup of N P and thus qualifies this defect to be

a pure twin by merohedry because GC � I , and thus it leaves

the Z5-module invariant.

The coset decomposition leads to five (20/4) different

possible twins that are the five individuals drawn in Fig. 4(b).

These are the five different ways of constructing the Dürer

structure using the same pentagon (and its inverse). For

example, one among the possible cosets of equivalent twin

operations is given by
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Figure 5
(a) Crystallographic description of the Dürer tiling. This very specific structure occurs almost perfectly as planar stacks of the Fe Wyckoff positions in the
FeAl3 phase as identified by Black (1955a,b). It has been studied in detail by Ellner & Burkhardt (1993) and Ellner (1995) and has been taken as a basic
example in the interpretation of twinning in icosahedral to cubic phase transformations in the (Al, Cu, Fe) system (Bendersky et al., 1989; Bendersky &
Cahn, 2006). (b) The Dürer structure can also be analysed as part of the Z5-module built with the five vectors that relate the centre � to the five vertices
of the elementary regular pentagon seen on the left. This periodic subset of the Z5-module has unit cell A ¼ ð0; 1; 0; 0; 1Þ and B ¼ ð2; 1; 2; 2; 1Þ and two
Wyckoff positions w1 ¼ ð0; 1; 0; 0; 0; Þ and w2 ¼ ð0; 0; 1; 0; 0Þ.

Figure 6
The twin operation of the Dürer structure is characterized by the
horizontal glide mirrorbhh in green; it exchanges the green and the red unit
cells and leaves invariant the common interface made of the collection of
pentagons in grey that are shared by the two structures that are both built
with the same pentagons.



h ¼

0 0 1 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0BBBB@
1CCCCA; bhh ¼ ðhj1; 0; 0; 0; 1Þ ð11Þ

and is the glide mirror shown in Fig. 6.

It can be easily verified that this twin is perfectly coherent

although it has no two-dimensional coincidence lattice. The

boundary is defined by a sinuous row of adjacent pentagons

that belong to both structures. Moreover, irrespective of the

centring c, the lattice of the Dürer structure is the set of five-

dimensional points V = pA + qB = ð2q; q� p; �2q; �2q,

pþ qÞ where p and q are integers. This lattice transforms into

the set V 0 = ð2q0; p0 � q0;�2q0;�p0 � q0; 2q0Þ and the common

lattice points are such that 2q = 2q0 ¼ pþ q ¼ p0 þ q0 and

qþ q0 = pþ p0 that has solutions only for p ¼ p0 ¼ q ¼ q0, i.e.

for the direction ð1; 1Þ. This is the habit direction of the twin:

we have a perfect epitaxy with no (two-dimensional)

coincident lattice.

4. Beyond the Dürer twin

Dürer-like structures can easily be found using identical

regular polygons of order n (later on, designated as n-gons)

connected by edges. All these structures have the basic

property of being defined by Wyckoff positions that are all on

the same Z-module and can thus be described as two-dimen-

sional cut-and-projections of n-dimensional structures.

We discuss here some of the simplest of these kinds of

polygonal tilings where the n-gons in the unit cell are all

crystallographically equivalent. We shall designate these

patterns as monogeneous n-gon patterns.

An efficient way of characterizing these patterns consists of

reporting in a vector the sequence of the number of free edges

between each connected edge around an n-gon as exemplified

in Fig. 7 for n ¼ 9. We call it the vector of free edges, the length

of which is equal to the coordination of the n-gon. Under these

notations, the Dürer structure of the previous section with

n ¼ 5 has coordination p ¼ 3 and is characterized, up to a

circular permutation, by the vector ð0; 1; 1Þ.

The search for possible periodic solutions is significantly

simplified by observing that, for an n-gon surrounded by p

identical n-gons, the vector of free edges ð�1; �2; . . . ; �pÞ is

such that �1 þ �2 þ . . .þ �p ¼ n� p with �i � bn� 1=6c.

Also, the maximum possible number Pn of non-overlapping

n-gons sharing an edge of a central identical n-gon is given by

Pn ¼
n

n�1
6

� �
þ 1

$ %
: ð12Þ

For the simple case p ¼ 3, monogeneous non-overlapping

n-gon periodic patterns are generated only if the centre of the

central n-gon is inside the triangle formed by the centres of the

three adjacent n-gons, in which case the

triangle characterizes the unit cell of the

structure (see Fig. 7).

The vector of free edges has the form

ð�1; �2; n� �1 � �2 � pÞ. Assuming all

index ranks are taken modulo n, the

centres of the three n-gons are located

at V1 = (1, 1, 0, . . . ), V2 = (0, 0, . . . ,

1�1þ2; 1, 0, . . . ) and V3 = (0, 0, . . . ,

1�1þ�2þ3; 1, 0, . . . ), generating the

(primitive) unit cells defined by A =

V2 � V1 = ð1; 1; 0, . . . , 1�1þ2; 1, 0, . . . )

and B = V3 � V1 = ð1; 1; 0, . . . , 1�1þ�2þ3;
1, 0, . . . ).

All twins in these structures are

merohedral twins (built with the same

n-gon). They are characterized by the

symmetry elements of the n-dimen-

sional lattice that leave the projected

two-dimensional space invariant and

that do not belong to the symmetry

group of the structure as dictated by the

general group tree of Fig. 2. In two-

dimensional space, these twin opera-

tions are symmetry operations of the

central n-gon that are not symmetry

elements of the two-dimensional peri-

odic structure and that leave invariant a

row of the structure to form a perfect

plane of epitaxy. For p ¼ 3, these
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Figure 7
The local configurations of n-gons around a central one are characterized by the sequence of the
number of free edges of the central n-gon that are between two consecutive connections. Here, for
example, 9-gon tilings are shown with coordination p ¼ 3 of configurations from (a) to (c): ð1; 1; 4Þ,
ð1; 2; 3Þ and ð2; 2; 2Þ. The configuration (a) ð1; 1; 4Þ generates no periodic pattern of non-
overlapping n-gons because the centre ! lies outside the triangle formed by the centres of the three
adjacent n-gons. For the coordination p ¼ 4, there is only one configuration ð1; 1; 1; 2Þ issued from
(a) and shown in (d); but it leads to a non-monogeneous pattern since there are two kinds of n-gons,
one (in grey) of coordination 4 and the other (in white) of coordination 2.



elements are signed permutations of the n basic vectors

generating the n-gon that transform into each other two of the

other adjacent n-gons and put the third one in a new position.

This translates in the vector of free edges in exchanging two

symbols while keeping the third constant. For example, the

vector of free edges ð1; 2; 3Þ of the case n ¼ 9 generates three

possible coherent twinned crystals: ð1; 3; 2Þ, ð3; 2; 1Þ and

ð2; 1; 3Þ as exemplified in Fig. 7, whereas the vector of free

edges ð1; 2; 2Þ of the case n ¼ 8 generates only two, ð2; 2; 1Þ

and ð2; 1; 2Þ. The interface operations are glide mirrors

oriented along the common row of n-gons shared between the

two adjacent crystals, as shown in Figs. 8 and 9.

5. Conclusion

We propose here a formal extension of the notion of twin

operation as an isometry between two identical crystals that

preserves part of the atomic structure. Its internal symmetry

group can possibly contain hidden symmetries issued from

high-dimensional space when the Wyckoff positions of the

preserved part of the structure belong to a Z-module of rank

n> 3. In that case, the concepts developed by Friedel

survive very naturally by extending the notion of lattices to

more general Z-modules. Thus, twins that do not share a

common sublattice can still be labelled as merohedral twins

when they share the same Z-module as in the case of the

Dürer twins.

Beyond this n-dimensional generalization, the interest of

the present approach is the simplicity of its basic group–

subgroup tree shown in Fig. 2 that can be used in all cases of

actually known twins, once N P is identified.
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the mirror in orange. The 9-gon ð1; 2; 3Þ allows for one additional
exchange ð1; 3; 2Þ characterized by the mirror 3 in green. In all cases, the
twin interfaces are generated by the glide mirrors drawn in dashed lines,
perpendicular to the previous ones.

Figure 9
Examples of Dürer-like multiple twins for the (a) 8-gon ð1; 2; 2Þ, (b) 9-gon
ð1; 2; 3Þ, (c) 10-gon ð2; 2; 3Þ and (d) 10-gon ð1; 3; 3Þ structures. In each
drawing, the twinned crystals are built with the same n-gon.
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