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The activity of soil microbial extracellular enzymes is strongly controlled by temperature,
yet the degree to which temperature sensitivity varies by microbe and enzyme type
is unclear. Such information would allow soil microbial enzymes to be incorporated
in a traits-based framework to improve prediction of ecosystem response to global
change. If temperature sensitivity varies for specific soil enzymes, then determining
the underlying causes of variation in temperature sensitivity of these enzymes will
provide fundamental insights for predicting nutrient dynamics belowground. In this study,
we characterized how both microbial taxonomic variation as well as substrate type
affects temperature sensitivity. We measured β-glucosidase, leucine aminopeptidase,
and phosphatase activities at six temperatures: 4, 11, 25, 35, 45, and 60◦C, for
seven different soil microbial isolates. To calculate temperature sensitivity, we employed
two models, Arrhenius, which predicts an exponential increase in reaction rate with
temperature, and Macromolecular Rate Theory (MMRT), which predicts rate to peak
and then decline as temperature increases. We found MMRT provided a more accurate
fit and allowed for more nuanced interpretation of temperature sensitivity in all of the
enzyme × isolate combinations tested. Our results revealed that both the enzyme
type and soil isolate type explain variation in parameters associated with temperature
sensitivity. Because we found temperature sensitivity to be an inherent and variable
property of an enzyme, we argue that it can be incorporated as a microbial functional
trait, but only when using the MMRT definition of temperature sensitivity. We show that
the Arrhenius metrics of temperature sensitivity are overly sensitive to test conditions,
with activation energy changing depending on the temperature range it was calculated
within. Thus, we propose the use of the MMRT definition of temperature sensitivity for
accurate interpretation of temperature sensitivity of soil microbial enzymes.

Keywords: macromolecular rate theory, MMRT, activation energy, Q10, temperature optimum, extracellular
enzymes, microbial isolates, trait-based ecology
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INTRODUCTION

The activities of extracellular enzymes, a rate-limiting step in
decomposition and important component in biogeochemical
cycles (Burns and Dick, 2002), are strongly controlled by in
situ temperatures (Davidson and Janssens, 2006; Wallenstein
et al., 2011). Although the importance of enzyme temperature
sensitivity is widely recognized, the degree to which temperature
sensitivity is an inherent property of the enzymes vs. a
response to environmental conditions (Davidson and Janssens,
2006) is largely unknown. It has been difficult to parse the
mechanisms underlying observations of enzyme temperature
responses in part because assays are typically conducted at the
community level where the contribution of isoenzymes produced
by individual taxa cannot be isolated (Bradford, 2013; Karhu
et al., 2014). In addition, relative and absolute measures of
temperature sensitivity using the same, simple models often
produce contradictory results (Sierra, 2012). Understanding
if these soil extracellular enzymes have inherent temperature
sensitivity is critical for accurate predictions of soil carbon (C)
and other nutrient dynamics in changing environments. In this
study we attempt to determine the degree to which soil enzymes
are responsive to temperature. In addition, we focus on clearing
up some of the definitional confusions regarding temperature
sensitivity in soils.

Over most of the last decade, the debate on if and
how temperature sensitivity differs among enzymes has used
parameters from two models: the Q10 temperature coefficient
and activation energy, EA, derived from the Arrhenius equation.
Q10 is a unitless measure of the change in rate with a 10-degree
increase in temperature,

Q10 = (
R2

R1
)10/(T2−T1), (1)

where R is reaction rate and T is temperature. The Q10 of
biological systems is generally thought to be ∼2 or 3, although
it has been found to be substantially higher in some soils and
enzymes (Lloyd and Taylor, 1994; Chapin and Matson, 2011;
Elias et al., 2014). The Arrhenius equation describes temperature
response as

In(k) = In(A)−
EA

RT
, (2)

where k is the reaction rate constant, A is a pre-exponential factor,
EA is the activation energy, R is the universal gas constant, and T
is temperature. According to the Arrhenius model, temperature
sensitivity is compared using EA as the parameter of interest
instead of or in addition to Q10. Reactions with higher Q10 values
require a larger “push” or activation energy (EA) to initiate the
reaction (Davidson and Janssens, 2006).

Previously, studies have drawn varying conclusions about how
Q10 and EA vary with enzyme structure and function. From an
evolutionary perspective, selection should generate an adaptive
fit of enzyme kinetics to their thermal environment (Allison
et al., 2011; Bradford, 2013). For example, thermophilic enzymes
tend to have increased conformational rigidity (Zavodszky et al.,
1998), while psychrophilic enzymes have improved flexibility,

particularly at the active site (Feller, 2003; Struvay and Feller,
2012), impacting temperature sensitivity. Many soil studies have
observed significant differences among Q10 and EA values at a
range of spatial and temporal scales (Koch et al., 2007; Trasar-
Cepeda et al., 2007; Wallenstein et al., 2009; Brzostek and
Finzi, 2012; Steinweg et al., 2013). Despite the predicted and
observed differences between these different types of enzymes
and isoenzymes, an analysis conducted by (Elias et al., 2014)
found no statistical difference across enzyme classes in Q10 values
from 150 enzymatic reactions.

One reason why patterns in Q10 and EA are not easily
explained is that they may not be the most appropriate
parameters to evaluate temperature sensitivity from soil
microbial enzymes (Schipper et al., 2014). It has long been
recognized that Arrhenius and Q10 do not always accurately
describe the relationship between temperature and reaction
rates in soil systems (Lloyd and Taylor, 1994), yet they have
continued to be used out of convenience, convention, or
perhaps due to lack of a better alternative model. The most
conspicuous disparity between these models is the empirical
data commonly observed showing negative curvature (i.e., a
concave-down parabolic response) in rate vs. temperature, which
is not explained by either Q10 or EA. This negative curvature
is typically ascribed to enzyme denaturation even though the
pattern is sometimes observed at relatively low temperatures.
We hypothesize that this negative curvature causes estimated
Q10 and EA values to vary with the temperature range where
they are measured, thus making them more phenomenological
parameters than fundamental system properties (Pawar et al.,
2016). A second issue is that thermodynamic principles indicate
that the Arrhenius models are missing a key term when applied
in biological systems: for large macromolecules like enzymes, it
is not appropriate to assume that the transition state of Gibbs
Free Energy (1G‡) is constant across temperatures (Hobbs et al.,
2013).

A relatively new model, Macromolecular Rate Theory
(MMRT), accounts for both the physical and biological
components of reaction rate with temperature (Hobbs et al.,
2013). MMRT is defined as,

In(k) = In(
kBT

h
)−

1H‡
T0 +1C‡

p(T − T0)

RT
(3)

+
1S‡

T0
+1C‡

p(InT − InT0)

R

where k is the rate constant, kB is Boltzmann’s constant, h
is Planck’s constant, R is the universal gas constant, T is
temperature, H is enthalpy, S is entropy, CP is heat capacity,
and ‡ indicates that it is the transition state. Thus, we propose
that the idea of “temperature sensitivity” when described by
MMRT emerges as three fundamental components: the heat
capacity of the enzyme (1C‡

p), the temperature optimum (Topt),
and the point of maximum temperature sensitivity (TSmax). The
heat capacity of the enzyme describes the degree of curvature
in the parabolic response of reaction rate with temperature;
more parabolic curves have larger, negative values of 1C‡

p that
arise when enzymes are more rigid at the transition state. The
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temperature optima denote the point at which the reaction rate
is greatest, with lower reaction rates at higher temperatures
not necessarily indicating enzyme denaturation. The point of
maximum temperature sensitivity is calculated from the first
derivative of k with temperature (dk/dT), and indicates the
temperature where the rate of change is greatest.

Our proposed concept of temperature sensitivity could
enable use of traits-based approaches for understanding how
community-level patterns in temperature sensitivity are related to
thermal responses of the many isoenzymes produced by diverse
microbes. Under this definition of temperature sensitivity,
1C‡

p, Topt, and TSmax are measurable properties of individual
organisms, or enzymes from organisms, and one that clearly
would influence organismal performance, falling under the
ecological definition of a functional trait (McGill et al., 2006).
Including temperature sensitivity in a traits-based framework
could enable the linking of the microbial community with soil
ecosystem functioning (Green et al., 2008), as well as allow
for a stronger quantitative approach to integrate temperature
sensitivity into models for improved predictive power (Webb
et al., 2010).

If temperature sensitivities of enzymes are in fact traits and
exhibit variation based on genetic and environmental variation,
we hypothesize that different enzymes will demonstrate distinct
temperature sensitivities, as defined by the terms 1C‡

p, Topt,
and TSmax. Because the difference in 1C‡

p is impacted by the
physical flexibility of the enzyme (Hobbs et al., 2013), which we
hypothesize is a result of genetic variation among communities
and/or from interaction with substrate type, we predict that
temperature sensitivity of soil extracellular enzymes will vary
by the microbe from which the enzyme was derived or by
the enzyme type. Because most enzymes are substrate specific,
different enzyme-substrate complexes can have a wide range
of 1C‡

p values. Moreover, different microbes produce different
isoenzymes, so temperature sensitivity may also vary among
microbes.

We measured extracellular enzyme activity from seven soil
isolates and three different enzymes at six temperatures, in
order to advance the study of temperature sensitivity as an
intrinsic microbial trait. In a previous study (Alster et al.,
2016), we found that temperature sensitivity varied among soil
microbial communities. We applied both Arrhenius and MMRT
to our data to compare the effectiveness of each of these
models and demonstrate how Arrhenius estimates of temperature
sensitivity may not be sufficient, even within in situ representative
temperature ranges.

MATERIALS AND METHODS

Experimental Design
Extracellular enzymatic assays were performed for three
enzymes, β-glucosidase (BG), leucine aminopeptidase (LAP), and
phosphatase (PHOS) on seven soil isolates, each from a different
genera—Acinetobacter, Bacillus, Citrobacter, Comamonas,
Enterobacter, Flaviobacterium, and Pseudomonas. The isolates
were derived either from soil or worm castings and kept at

−80◦C with 20% glycerol until use. The isolates were revived
from storage and grown in nutrient broth over a 2–3 days
period at 25◦C. We added 3-(N-morpholino)propanesulfonic
acid buffer to maintain a pH of 7.2, which is the same pH
as the microbes were originally isolated at. Before we began
the enzyme assays, the isolate solution was plated on nutrient
broth agar and total incubation time was determined by when
cultures reached between 105–107 colony-forming units per
mL.

The isolates were incubated in 96-well microplates with
substrates at six temperatures: 4, 11, 25, 35, 45, and 60◦C. We
chose a large initial temperature range in order to capture the
most accurate temperature response curve. The enzyme assay was
modified from Bell et al. (2013). Forty microliters of 200 mM
fluorometric substrate—4-MUB-β-D-glucopyranoside for BG, L-
leucine-7-amido-4-methylcoumarin hydrochloride for LAP, and
4-MUB phosphate for PHOS—was added to 160 µL of a 1 isolate
mixture: 15 acetate buffer solution. For each isolate × substrate
combination, there were eight replicates for each temperature (7
isolates× 3 enzymes× 6 temperatures× 8 replicates). Standards
ranging from 2.5 to 100 µM were used to calibrate the enzyme
activity from each enzyme. 4-methylumbelliferone (MUB) was
used to calibrate BG and PHOS and 7-amino-4-methylcoumarin
(MUC) was used to calibrate LAP. The plates were incubated
between 1 and 23 h depending on the temperature and scanned
on a Tecan Infinite M200 plate reader at optimal florescence
as determined by the MUB and MUC standards. Reaction rates
were linear regardless of incubation time, as determined by
preliminary experiments. The MUB and MUC standard curves
were used to calculate the raw florescence of the samples using
the slope and y-intercept, as described in Bell et al. (2013) and
converted into units of nmol activity L culture−1 hour−1, so
that samples were comparable across temperatures with varying
incubation times.

Calculating Temperature Sensitivity
In order to quantitatively characterize temperature responses of
each of the 21 isolate × enzyme combinations, we plotted the
natural log of the reaction rate against temperature and fitted
both the Arrhenius and MMRT equations using an analytic
Gauss-Newton for Arrhenius and a numerical Gauss-Newton
for MMRT in JMP Pro 11 (Schipper et al., 2014; Alster et al.,
2016). Parameters EA and 1C‡

p, along with their uncertainty,
were reported by the software. The optimum temperature (Topt)
and point of maximum temperature sensitivity (TSmax) from the
MMRT curve fits were calculated by taking the derivative of the
MMRT equation with respect to temperature (Alster et al., 2016).
We used a Monte Carlo Simulation to estimate the standard error
for Topt and TSmax.

Analysis of variances (ANOVA) were performed using the
software R version 3.2.1 (R Core Team, 2015) to determine
the relative importance of substrate type and species type in
explaining variation in the parameters from each of the models
(1C‡

p, 1S‡
T0

, 1H‡
T0

, EA, and A) as well as for Topt and TSmax.
We also used R to run pairwise comparisons with a Holm
multiple testing adjustment to examine differences between each
of the model parameters and Topt and TSmax from each of
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the isolate × enzyme combinations. Differences in 1Cp
‡ were

calculated using a two-sampled approximate Z-test.

Comparison of MMRT and Arrhenius
Equations
We used adjusted R2 and Akaike information criterion corrected
for a finite sample size (AICc) to determine the most
parsimonious model between the Arrhenius and MMRT model
fits for the full temperature range (4–60◦C). Additionally, we
re-ran the Arrhenius model fit for each isolate × enzyme
combination, but only using temperatures 4–25 and 4–35◦C to
evaluate if, under more biologically relevant temperatures, the
Arrhenius model fits were accurate predictors of reaction rate.
To assess this, we calculated the percentage that each of the three
models (MMRT from 4 to 60◦C, Arrhenius from 4 to 35◦C, and
Arrhenius from 4 to 25◦C) over or underestimated the reaction
rate as compared to the actual experimental values and conducted
corresponding lack-of-fit (LOF) tests. The importance of each of
these models for predicting the percent error was examined with
a linear model and tested with an ANOVA using the lmerTest
package in R (Kuznetsova et al., 2014).

RESULTS

Temperature Sensitivity Differs for
Isolate × Enzyme Combinations
Out of the 21 isolate × enzyme combinations we tested, we
present here the results from the 19 that worked. BG activity in
Bacillus and PHOS activity in Comamonas were below detection
limits. Thus, these two combinations were eliminated from the
analysis. We plotted the reactions rates of the remaining 19
isolate × enzyme combinations vs. temperature and fit both the
MMRT and Arrhenius equations to the data (Figure 1). These
model fits for MMRT give temperature sensitivity parameters
1C‡

p, Topt and TSmax, while Arrhenius gives EA as a parameter.
We found that 1C‡

p differed for some, but not all of the
isolate × enzyme combinations. The 1C‡

p differed among
microbial isolates in BG and LAP enzymes (P < 0.05;
Figures 2A,B). However, in PHOS, the isolates did not
differ in 1C‡

p (P > 0.05; Figure 2C). When comparing if
1C‡

p differed between the same isolate for different enzymes
we found significant differences in 1C‡

p for Acinetobacter,
Citrobacter, and Enterobacter (P < 0.05), but not for Bacillus,
Comamonas, Flaviobacterium, or Pseudomonas. Patterns in
statistical differences were identical for 1C‡

p, 1S‡, and 1H‡.
Overall 70.9% of variation in 1C‡

p was explained by the microbial
isolate type, compared with 29.1% of the variation explained by
the enzyme type.

The temperature optima (Topt) and point of maximum
temperature sensitivity (TSmax) also varied with the
isolate × enzyme combinations (Table 1). Despite the 25◦C
conditions used during initial culturing of the inoculum isolates,
Topt ranged from 33.5◦C in BG for the Enterobacter isolate
to 60.7◦C in LAP for the Bacillus isolate and TSmax ranged
from 18.2◦C in BG for the Acinetobacter isolate to 40.3◦C in

LAP for the Bacillus isolate. Pooling the Topt and TSmax values
across the same microbial isolate and enzyme type, we found
differences for some of the values across both microbial isolate
and enzyme type (P < 0.05). While differences between these
pooled values for Topt and TSmax were similar, they were not
identical. Furthermore, similar to 1C‡

p, variation in Topt and
TSmax are best explained by the microbial isolate type, with SS
values of 86.7 and 80.0%, respectively.

The three metrics of temperature sensitivity, 1C‡
p, Topt and

TSmax, each have unique statistical patterns of similarity across
inocula × enzyme combinations. In this paper, we do not deeply
examine the basis for groupings but focus instead on identifying
if patterns of similarity and difference exist or if all enzymes
behave similarly. For conciseness, we illustrate only patterns of
differences for 1C‡

p in Figure 2, and provide Topt and TSmax
findings in Table 1. For PHOS we found no differences in
1C‡

p among the different microbial isolates (Figure 2). For
TSmax of PHOS there were no differences, but for Topt we
found several significant differences among isolates (Table 1).
Likewise for BG, there were quite a few differences among
isolates in 1C‡

p (Figure 2). However, there were no significant
differences between different microbial isolates in TSmax for BG,
and while there are differences in Topt, they are not the same
as the differences identified for 1C‡

p. Interestingly, patterns in
significant differences among isolates for LAP are the same for
Topt and TSmax, but show a different pattern for 1C‡

p. Some of
these patterns likely emerge because Topt and TSmax are positively
correlated (R2

= 0.84), while 1C‡
p does not correlated with Topt

or TSmax (R2
= 0.23 and R2

= 0.01, respectively).

MMRT Provides Better Statistical Fit
than Arrhenius
For the temperature range of 4–60◦C, we found that MMRT
gave vastly superior fits to the data as compared to Arrhenius
according to both AICc and R2 criteria (Supplementary Table S1).
MMRT was also superior when the Arrhenius model was fit to
the more linear part of the temperature range (4–35 and 4–25◦C)
for 13 of the 19 isolate × enzyme combinations (see example,
Figure 3A; Supplementary Table S1). For the six combinations
where MMRT was not superior, AICc analysis found MMRT and
Arrhenius to have equivalent explanatory power; in no case was
Arrhenius the superior model. Phosphatase was the only enzyme
where MMRT was significantly better in all isolates tested.

Despite the statistically improved fit of MMRT as compared to
Arrhenius, when comparing the overall error produced from each
of the model predictions, the results were less striking. We found
3.8% of the total variation was explained by LOF from the model
in MMRT compared with 6.2% for Arrhenius from 4 to 35◦C and
10.3% for Arrhenius from 4 to 25◦C. This means that by using
Arrhenius instead of MMRT we are introducing 1.6 and 2.7 times
more error into our predictions for the Arrhenius 4–35 and 4–
25◦C models, respectively. ANOVA results for the percent error
of the models compared to the experimentally observed results
at 4, 11, 25, and 35◦C, revealed a significant difference between
MMRT and the Arrhenius 4–25◦C model (P≤ 0.05) and between
the two Arrhenius models (P = 0.02). However, there was no
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FIGURE 1 | Temperature response of each isolate and enzyme combination. Macromolecular Rate Theory (MMRT) is represented by the solid line and
Arrhenius is represented by the dashed line.

FIGURE 2 | Heat capacity for each isolate and enzyme combination. Error bars (±2SE) represent uncertainty in the model fit. Letters represent significant
differences (P < 0.05) between isolates of the same enzyme (i.e., within panels), but not across the different enzyme types (i.e., not between panels). Panels
correspond to heat capacity responses for (A) isolates for the BG enzyme, (B) isolates for the LAP enzyme, and (C) isolates for the PHOS enzymes.
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TABLE 1 | Mean temperature optima (Topt) and point of maximum temperature sensitivity (TSmax) for each isolate and enzyme combination ± SEM.

BG LAP PHOS Pooled estimate

Topt TSmax Topt TSmax Topt TSmax Topt TSmax

Acinetobacter 36.0 ± 1.9 18.2 ± 2.4 37.7 ± 0.6 24.45 ± 0.6 37.55 ± 2.1 18.85 ± 2.6 37.1 ± 2.9 20.5 ± 3.6

Bacillus NA NA 60.7 ± 2.5 40.25 ± 1.5 48.05 ± 1 27.95 ± 0.7 54.2 ± 3.3 34.1 ± 3.0

Citrobacter 38.1 ± 0.7 22.6 ± 0.8 39.7 ± 0.6 24.55 ± 0.6 47.95 ± 0.9 27.95 ± 0.7 41.7 ± 1.3 25.0 ± 1.2

Comamonas 39.1 ± 2.5 19.0 ± 3.1 40.6 ± 0.7 24.55 ± 0.8 NA NA 39.8 ± 2.6 21.8 ± 3.2

Enterobacter 33.5 ± 0.6 19.8 ± 0.7 40.0 ± 0.4 25.25 ± 0.5 46.85 ± 0.5 28.25 ± 0.4 40.1 ± 0.9 24.4 ± 0.9

Flaviobacter 38.4 ± 0.5 23.2 ± 0.6 39.4 ± 0.8 23.85 ± 0.9 41.85 ± 2.2 23.25 ± 2.3 39.9 ± 2.4 23.4 ± 2.5

Pseudomonas 39.0 ± 2.6 19.1 ± 3.2 41.4 ± 1.1 23.25 ± 1.1 40.45 ± 2.7 18.55 ± 3.1 40.3 ± 3.9 20.3 ± 4.6

Pooled estimate 37.3 ± 4.2 20.3 ± 5.2 42.6 ± 3.1 26.6 ± 2.4 43.8 ± 4.3 24.1 ± 4.8 – –

Pooled estimates are averages either across enzymes for a given isolate or across isolates for a given enzyme.

significant difference in percent error between MMRT and the
Arrhenius 4–35◦C model fits when compared to original activity
values at 4, 11, 25, and 35◦C.

Comparison of Activation Energy Values
To examine the value of using activation energy as a trait, we
compared activation energies derived from different temperature
ranges to see if they vary. In a 3-way ANOVA examining the
EA values from all three of the Arrhenius model temperature
ranges tested, we found that the temperature range explained
68.5% of variation in the data, compared to 12.7% explained
by enzyme type and 11.0% explained by isolate type. Overall,
we found that as the temperature range increased EA values
decreased (Figures 3B–D). Not only did the absolute values
of EA vary based on temperature range, but the relative EA
values also differ (Figures 3B–D) leading to different groupings
of similarity among assays. In comparisons of EA values for
the different inocula × enzyme combinations that shared either
the same enzyme or same isolate, 25% of the relationships
changed between the Arrhenius 4–25 and 4–35◦C estimates, and
36.8% of the relationships changed between the Arrhenius 4–
35 and 4–60◦C estimates. A similar analysis capturing different
temperature ranges was not needed for MMRT since MMRT
captures the peak.

DISCUSSION

Heat Capacity Differs Significantly
among Enzymes
This study advances efforts to understand how temperature
sensitivity of extracellular enzymes varies by substrate and
isolate type. Such an effect has long been speculated, based
on assays conducted at the community level with whole soils
(e.g., Trasar-Cepeda et al., 2007; Steinweg et al., 2013). We
found that 1C‡

p differed significantly among isolates for the
BG and LAP enzymes, across the different isolates measured
(Figure 2). Furthermore, heat capacity of different enzymes
varied within the same isolate for three out of the seven isolates
measured. While this study was not designed to elucidate the
mechanisms behind why heat capacity varied between some
enzymes and isolates but not others, here we provide a few

possible explanations. One broad explanation for why we see
these differences is that microbes adapt to their environment
and more efficient enzymes are selected for in accordance to
the thermodynamic conditions in that environment (Bradford,
2013); thus, microbes will adapt to produce isoenzymes with
varying degrees of flexibility and consequently different heat
capacities values depending on what is most advantageous for the
microbial cell’s survival. The idea that isoenzymes have distinct
temperature sensitivities is not particularly groundbreaking if
comparing enzymes derived from thermophilic, psychrophilic,
and mesophilic conditions (Zavodszky et al., 1998; Lonhienne
et al., 2000; Feller and Gerday, 2003) or even across the same
soil microbial community throughout seasons (Koch et al., 2007;
Trasar-Cepeda et al., 2007; Wallenstein et al., 2009). However,
in this study all of the isolates measured were derived from
a mesophilic environment and raised in culture at the same
temperature (25◦C). Thus, we found that temperature sensitivity
varies even among organisms raised under the same temperature
conditions.

In contrast to BG and LAP, the heat capacity of PHOS
was invariant with isolate type, suggesting that perhaps this
enzyme did not undergo a similar type of adaptation over
evolutionary history or that there are simply fewer isoenzymes.
Although the PHOS enzyme is ubiquitous across different types
of organisms, the genomic region encoding for the active site is
highly conserved and fairly homologous across plants, animals,
and bacteria, at least for the acidic version of the enzyme (Anand
and Srivastava, 2012). As opposed to aminopeptidases in which
relatively few homologies have been observed despite their high
abundance (Taylor, 1993), gene conservation of PHOS might
explain the lack of variation in heat capacity. Thermodynamic
constraints of the enzyme or active site may also limit adaptation
if there is a fundamental evolutionary tradeoff between the
structure and function of the enzyme that is specific to the
catalytic properties of PHOS (Bradford, 2013).

It is also worth noting that because these estimates of heat
capacity were not necessarily of individual enzymes, but of the all
of the isoenzymes produced by the isolates under the incubation
conditions of this experiment. While it is unclear if multiple
enzymes acting on the substrate impacted the results, it is worth
highlighting that these results might be the average of one or
more isoenzymes. It is also possible that given our sample size
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FIGURE 3 | (A) Example temperature response plot (LAP for Enterobacter) showing fits for MMRT, Arrhenius with temperature range 4–60◦C (blue, dashed line),
Arrhenius with temperature range 4–35◦C (green, dashed line), and Arrhenius with temperature range 4–25◦C (pink, dashed line). (B–D) Activation energy estimates
from the three Arrhenius fits with bars corresponding to Arrhenius 4–25◦C (pink), Arrhenius 4–35◦C (green), and Arrhenius with temperature range 4–60◦C (blue).
Error bars (±2SE) represent uncertainty in the model fit. Letters represent significant differences (P < 0.05) between different isolates for the same Arrhenius fit (i.e.,
4–25, 4–35, or 4–60◦C, not between different fits for the same isolate) and within the same enzyme types (i.e., not between panels). Only compare same colors
within the same panels.

(seven isolates and three enzymes), more differences in heat
capacity may have been observed if we had increased the diversity
and number of the isolates and enzymes in the experiment.
Furthermore, specific experimental conditions, such as pH, could
potentially alter the temperature-response curve. Determining
how heat capacity varies phylogenetically for different enzymes
is an important avenue for future research.

Exercising Caution for Arrhenius
Estimates of Temperature Sensitivity
Despite clear evidence of MMRT’s statistical superiority to
Arrhenius in this experiment, we found that at the lower
temperature ranges (i.e., 4–25 and 4–35◦C) Arrhenius

estimations were not necessarily poor. However, we still
recommend that future estimations of temperature sensitivity
for soil microbial enzymes that apply the Arrhenius equation use
caution for the following reasons. First, we found that EA values
varied significantly with the range in which they were evaluated,
making them an unreliable metric to use for comparisons
across studies. These results are corroborated by Pawar et al.
(2016), who tested 1,085 temperature-response curves from
a variety of organisms and systems and determined that the
calculated EA value is an artifact of the temperature range,
spread of temperatures measured, and where the temperature
range falls. In order for temperature sensitivity to be used
as a common currency of discussion and incorporated as a
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FIGURE 4 | Theoretical framework and hypotheses. In this figure, we demonstrate how the Arrhenius and MMRT frameworks fit together conceptually and how
that impacts our view of the temperature response, which in our case refers to the reaction rate of extracellular enzymes. Under the Arrhenius framework, activation
energy is the singular factor driving the apparent temperature response. MMRT expands upon this framework, suggesting that the temperature response is a
function of the heat capacity of an enzyme, which is related to the enzyme’s flexibility. While there is already evidence for substrate type influencing activation energy
(solid arrow connecting substrate to activation energy), in this experiment (red lettering) we extend this framework and hypothesize that the enzyme flexibility is also a
product of the substrate type and genetic variation among different enzymes (dashed arrows). We posit that this overarching framework could be applied in a variety
of situations relating to the temperature response.

microbial trait, relationships should not be a function of different
measurement methods. Second, even if Arrhenius is comparable
to MMRT in a narrow temperature range, EA fails to capture
key phenomenological features of temperature sensitivity in
soil biological systems. Other non-linear models have also
been shown to give suitable empirical fits to the temperature
dependence of enzyme activity (Peterson et al., 2004; Del Grosso
et al., 2005; Daniel and Danson, 2013; Corkrey et al., 2014),
but MMRT not only fits well empirically, but is derived from
thermodynamic theory and thus has an underlying theoretical
basis. Thus, even if EA continues to be used in the future, EA
values should not be taken as true indicators of temperature
sensitivity, at least for soil extracellular enzymes.

Conceptual Framework
For nearly a decade, scientists have recognized the importance of
using microbial traits as a framework for predicting ecosystem
response to climate change (Green et al., 2008; Wallenstein and
Hall, 2012). Many of these studies make predictions about how
microbial traits (e.g., nutrient use efficiency) respond across
a gradient of temperatures (Rinnan et al., 2009; Dell et al.,
2011; Wallenstein and Hall, 2012). In this study we argue that
temperature sensitivity is not only a measure of how biological
traits respond across a gradient of temperatures, which is how
it is typically characterized, but also that temperature sensitivity
is an inherent biological trait. In light of this interest and our
results, we developed a new conceptual model that develops a
more precise definition of temperature sensitivity and organizes
the factors that can lead to variation in temperature sensitivity
itself.

In our framework, we first consolidated the Arrhenius
and MMRT definitions of temperature sensitivity. Under the
Arrhenius equations, activation energy is the singular factor
driving the apparent temperature response (Figure 4). But,
this violates laws of thermodynamics with regards to biological
systems because of the large molecular size of enzymes
characterized by large heat capacities impacting the temperature
response (Arcus et al., 2016). MMRT expands thermodynamic
theory initiated with Arrhenius by incorporating heat capacity as
part of the temperature response (Figure 4). Implicit within the
MMRT theory is that the 1C‡

p is a function of enzyme flexibility
and thus 1C‡

p varies among enzymes (Schulte, 2015; Arcus et al.,
2016). Given existing evidence for substrate type influencing
activation energy (Davidson and Janssens, 2006), our outline of
temperature sensitivity includes potential for enzyme flexibility
to be a product of the substrate upon which the enzyme acts as
well as the genetic variation among different enzymes (Figure 4).
In this experiment, we tested if these additional factors (i.e.,
substrate type and genetic variation) impacted the temperature
sensitivity by measuring heat capacity as a proxy for enzyme
flexibility and found strong evidence for heat capacity varying by
both enzyme and isolate type.

Based on this expanded framework of temperature sensitivity,
we propose that use of 1C‡

p and TSmax will give a more
comprehensive basis to describe “temperature sensitivity” than
Q10 or EA. Q10 gives a false sense that a single constant
can characterize the temperature sensitivity of a system
(Davidson and Janssens, 2006). In order to overcome this
obvious discrepancy authors using Q10 often present multiple
temperature sensitivity values at different temperature ranges
for a given system, leading to results that are often difficult to
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compare. Conceptually, we consider temperature sensitivity to be
the change in velocity per change in temperature (dV/dT). Unlike
Q10, EA can be used as a summary term to capture temperature
sensitivity of a system; this is effective because Arrhenius predicts
a monotonic increase in rate with temperature. Since MMRT
captures the inherently non-monotonic response of enzyme-
catalyzed reactions, a single variable cannot fully capture the
temperature sensitivity from the MMRT curve as is done by EA in
the Arrhenius equation. Thus the use of TSmax and Topt provide
two practical metrics to characterize this non-linear response of
temperature sensitivity to temperature, although for modeling
purposes 1C‡

p and other thermodynamic parameters (i.e., 1S‡
T0

and 1H‡
T0

) are sufficient to explicitly predict reaction rates with
temperature. Temperature optimum values are also commonly
reported in the literature for extracellular enzymes (Huston et al.,
2000; Daniel et al., 2001; Peterson et al., 2004; Eijsink et al.,
2005), but are typically quite high and perhaps not biologically
relevant. We argue that TSmax is actually a more important term
to consider than Topt because TSmax describes where the greatest
change in rate occurs and it typically falls within environmentally
relevant temperature ranges (Table 1). Consequently, by focusing
on TSmax we capture the area of the temperature-reaction curve
that will have the greatest impact on rates of nutrient cycling
and greenhouse gas production. Characterizing temperature
sensitivity with these unifying parameters gives us an avenue to
incorporate temperature sensitivity into traits-based microbial
models.

Our new framework suggests a number of future lines
of inquiry. One immediate question is: how broadly does
temperature sensitivity vary under this new definition of
temperature sensitivity? If temperature sensitivity of different
enzymes, microbes, or communities exhibit vastly different 1C‡

p
and TSmax values then this might impact current calculations
of soil C and N dynamics. As the climate warms, does this
inherent temperature sensitivity adapt or acclimate? What are
the evolutionary constraints on rate of evolution and how is
the overall temperature sensitivity value impacting by different
groups of organisms? What other factors besides enzyme type and
the microbe from which it was produced might impact enzyme
flexibility? We hope that future research will be conducted in
many of these avenues to elucidate mechanisms controlling

temperature sensitivity of enzymes and determine what impact
this has on communities, ecosystems, and nutrient cycling in
soils.

AUTHOR CONTRIBUTIONS

CA, JvF, PB, and MW developed the original concepts. CA
and PB designed and performed the experiments. MW and
CA contributed materials. CA conducted data analysis with
significant involvement from JvF and NJ. CA wrote the
manuscript with help from JvF, PB, MW, and NJ.

FUNDING

This work was supported by NSF grant 1054956 and a grant from
the Environmental Defense Fund to JvF, USDA NIFA grant 2014-
05626 to MW, and the Graduate Degree Program in Ecology at
Colorado State University Small Grants for Graduate Research.
The National Institute for Mathematical and Biological Synthesis
is an Institute sponsored by the National Science Foundation
through NSF Award #DBI-1300426, with additional support
from The University of Tennessee, Knoxville.

ACKNOWLEDGMENTS

We would like to thank Lauren Mancini for her laboratory help,
and Vickery Arcus and Louis Schipper for their help with the
MMRT model, and M. Francesca Cotrufo, Melinda Smith, and
the two reviewers. We wish to thank Ann Hess at the Franklin
Graybill Statistical Laboratory at Colorado State University for
statistical consulting help.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2016.01821/full#supplementary-material

REFERENCES
Allison, S. D., Weintraub, M. N., Gartner, T. B., and Waldrop, M. P. (2011).

“Evolutionary-economic principles as regulators of soil enzyme production and
ecosystem function,” in Soil Enzymology, eds G. Shukla and A. Varma (Berlin:
Springer), 229–243.

Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D., and
Fischer, J. C. (2016). Temperature sensitivity of soil microbial
communities: an application of macromolecular rate theory to microbial
respiration. J. Geophys. Res. 121, 1420–1433. doi: 10.1002/2016JG
003343

Anand, A., and Srivastava, P. K. (2012). A molecular description of acid
phosphatase. Appl. Biochem. Biotechnol. 167, 2174–2197. doi: 10.1007/s12010-
012-9694-8

Arcus, V. L., Prentice, E. J., Hobbs, J. K., Mulholland, A. J., van der Kamp,
M. W., Pudney, C. R., et al. (2016). On the temperature dependence of

enzyme-catalyzed rates. Biochemistry 55, 1681–1688. doi: 10.1021/acs.biochem.
5b01094

Bell, C. W., Fricks, B. E., Rocca, J. D., Steinweg, J. M., McMahon, S. K., and
Wallenstein, M. D. (2013). High-throughput fluorometric measurement of
potential soil extracellular enzyme activities. J. Vis. Exp. 2013:e50961. doi:
10.3791/50961

Bradford, M. A. (2013). Thermal adaptation of decomposer communities
in warming soils. Front. Microbiol. 4:333. doi: 10.3389/fmicb.2013.
00333

Brzostek, E. R., and Finzi, A. C. (2012). Seasonal variation in the temperature
sensitivity of proteolytic enzyme activity in temperate forest soils. J. Geophys.
Res. 117, G01018. doi: 10.1029/2011JG001688

Burns, R. G., and Dick, R. P. (2002). Enzymes in the Environment: Activity, Ecology,
and Applications. Boca Raton, FL: CRC Press.

Chapin, III. F. S., and Matson, P. A. (2011). Principles of Terrestrial Ecosystem
Ecology. Berlin: Springer.

Frontiers in Microbiology | www.frontiersin.org 9 November 2016 | Volume 7 | Article 1821

http://journal.frontiersin.org/article/10.3389/fmicb.2016.01821/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fmicb.2016.01821/full#supplementary-material
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-07-01821 November 15, 2016 Time: 15:51 # 10

Alster et al. Temperature Sensitivity of Bacterial Enzymes

Corkrey, R., McMeekin, T. A., Bowman, J. P., Ratkowsky, D. A., Olley, J., and
Ross, T. (2014). Protein thermodynamics can be predicted directly from
biological growth rates. PLoS ONE 9:e96100. doi: 10.1371/journal.pone.0096100

Daniel, R. M., and Danson, M. J. (2013). Temperature and the catalytic
activity of enzymes: a fresh understanding. FEBS Lett. 587, 2738–2743. doi:
10.1016/j.febslet.2013.06.027

Daniel, R. M., Danson, M. J., and Eisenthal, R. (2001). The temperature optima of
enzymes: a new perspective on an old phenomenon. Trends Biochem. Sci. 26,
223–225. doi: 10.1016/S0968-0004(01)01803-5

Davidson, E. A., and Janssens, I. A. (2006). Temperature sensitivity of soil carbon
decomposition and feedbacks to climate change. Nature 440, 165–173. doi:
10.1038/nature04514

Del Grosso, S. J., Parton, W. J., Mosier, A. R., Holland, E. A., Pendall, E.,
Schimel, D. S., et al. (2005). Modeling soil CO2 emissions from ecosystems.
Biogeochemistry 73, 71–91. doi: 10.1007/s10533-004-0898-z

Dell, A. I., Pawar, S., and Savage, V. M. (2011). Systematic variation in the
temperature dependence of physiological and ecological traits. Proc. Natl. Acad.
Sci. U.S.A. 108, 10591–10596. doi: 10.1073/pnas.1015178108

Eijsink, V. G. H., Gåseidnes, S., Borchert, T. V., and van den Burg, B.
(2005). Directed evolution of enzyme stability. Biomol. Eng. 22, 21–30. doi:
10.1016/j.bioeng.2004.12.003

Elias, M., Wieczorek, G., Rosenne, S., and Tawfik, D. S. (2014). The universality
of enzymatic rate–temperature dependency. Trends Biochem. Sci. 39, 1–7. doi:
10.1016/j.tibs.2013.11.001

Feller, G. (2003). Molecular adaptations to cold in psychrophilic enzymes. Cell.
Mol. Life Sci. 60, 648–662. doi: 10.1007/s00018-003-2155-3

Feller, G., and Gerday, C. (2003). Psychrophilic enzymes: hot topics in cold
adaptation. Nat. Rev. Microbiol. 1, 200–208. doi: 10.1038/nrmicro773

Green, J. L., Bohannan, B. J. M., and Whitaker, R. J. (2008). Microbial
biogeography: from taxonomy to traits. Science 320, 1039–1043. doi:
10.1126/science.1153475

Hobbs, J. K., Jiao, W., Easter, A. D., Parker, E. J., Schipper, L. A., and Arcus, V. L.
(2013). Change in heat capacity for enzyme catalysis determines temperature
dependence of enzyme catalyzed rates. ACS Chem. Biol. 8, 2388–2393. doi:
10.1021/cb4005029

Huston, A. L., Krieger-Brockett, B. B., and Deming, J. W. (2000). Remarkably low
temperature optima for extracellular enzyme activity from Arctic bacteria and
sea ice. Environ. Microbiol. 2, 383–388. doi: 10.1046/j.1462-2920.2000.00118.x

Karhu, K., Auffret, M. D., Dungait, J. A. J., Hopkins, D. W., Prosser, J. I., Singh,
B. K., et al. (2014). Temperature sensitivity of soil respiration rates enhanced by
microbial community response. Nature 513, 81–84. doi: 10.1038/nature13604

Koch, O., Tscherko, D., and Kandeler, E. (2007). Temperature sensitivity of
microbial respiration, nitrogen mineralization, and potential soil enzyme
activities in organic alpine soils. Glob. Biogeochem. Cycles 21, GB4017. doi:
10.1029/2007GB002983

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2014). lmerTest: Tests
for Random and Fixed Effects for Linear Mixed Effect Models (lmer Objects of
lme4 package). R package version 2.0-11. Available at: http://CRAN.R-project.
org/package=lmerTest

Lloyd, J., and Taylor, J. A. (1994). On the temperature dependence of soil
respiration. Funct. Ecol. 8, 315–323. doi: 10.2307/2389824

Lonhienne, T., Gerday, C., and Feller, G. (2000). Psychrophilic enzymes: revisiting
the thermodynamic parameters of activation may explain local flexibility.
Biochim. Biophys. Acta 1543, 1–10. doi: 10.1016/S0167-4838(00)00210-7

McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M. (2006). Rebuilding
community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. doi:
10.1016/j.tree.2006.02.002

Pawar, S., Dell, A. I., Savage, V. M., Knies, J. L., Kearney, M., and Kalisz, S. (2016).
Real versus artificial variation in the thermal sensitivity of biological traits. Am.
Nat. 187, E41–E52. doi: 10.1086/684590

Peterson, M. E., Eisenthal, R., Danson, M. J., Spence, A., and Daniel,
R. M. (2004). A new intrinsic thermal parameter for enzymes reveals true
temperature optima. J. Biol. Chem. 279, 20717–20722. doi: 10.1074/jbc.M309
143200

R Core Team (2015). R: A language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Rinnan, R., Rousk, J., Yergeau, E., Kowalchuk, G. A., and Bååth, E. (2009).
Temperature adaptation of soil bacterial communities along an Antarctic
climate gradient: predicting responses to climate warming. Glob. Change Biol.
15, 2615–2625. doi: 10.1111/j.1365-2486.2009.01959.x

Schipper, L. A., Hobbs, J. K., Rutledge, S., and Arcus, V. L. (2014). Thermodynamic
theory explains the temperature optima of soil microbial processes and high
Q10 values at low temperatures. Glob. Change Biol. 20, 3578–3586. doi:
10.1111/gcb.12596

Schulte, P. M. (2015). The effects of temperature on aerobic metabolism: towards
a mechanistic understanding of the responses of ectotherms to a changing
environment. J. Exp. Biol. 218, 1856–1866. doi: 10.1242/jeb.118851

Sierra, C. A. (2012). Temperature sensitivity of organic matter decomposition in
the Arrhenius equation: some theoretical considerations. Biogeochemistry 108,
1–15. doi: 10.1007/s10533-011-9596-9

Steinweg, J. M., Jagadamma, S., Frerichs, J., and Mayes, M. A. (2013). Activation
energy of extracellular enzymes in soils from different biomes. PLoS ONE
8:e59943. doi: 10.1371/journal.pone.0059943

Struvay, C., and Feller, G. (2012). Optimization to low temperature
activity in psychrophilic enzymes. Int. J. Mol. Sci. 13, 11643–11665. doi:
10.3390/ijms130911643

Taylor, A. (1993). Aminopeptidases: structure and function. FASEB J. 7, 290–298.
Trasar-Cepeda, C., Gil-Sotres, F., and Leirós, M. C. (2007). Thermodynamic

parameters of enzymes in grassland soils from Galicia. NW Spain. Soil Biol.
Biochem. 39, 311–319. doi: 10.1016/j.soilbio.2006.08.002

Wallenstein, M., Allison, S. D., Ernakovich, J., Steinweg, J. M., and Sinsabaugh, R.
(2011). Controls on the temperature sensitivity of soil enzymes: a key driver of
in situ enzyme activity rates. Soil Enzymol. 22, 245–258.

Wallenstein, M. D., and Hall, E. K. (2012). A trait-based framework for
predicting when and where microbial adaptation to climate change will affect
ecosystem functioning. Biogeochemistry 109, 35–47. doi: 10.1007/s10533-011-
9641-8

Wallenstein, M. D., McMahon, S. K., and Schimel, J. P. (2009). Seasonal
variation in enzyme activities and temperature sensitivities in Arctic tundra
soils. Glob. Change Biol. 15, 1631–1639. doi: 10.1111/j.1365-2486.2008.
01819.x

Webb, C. T., Hoeting, J. A., Ames, G. M., Pyne, M. I., and LeRoy Poff, N.
(2010). A structured and dynamic framework to advance traits-based theory
and prediction in ecology. Ecol. Lett. 13, 267–283. doi: 10.1111/j.1461-
0248.2010.01444.x

Zavodszky, P., Kardos, J., Svingor, Á, and Petsko, G. A. (1998). Adjustment of
conformational flexibility is a key event in the thermal adaptation of proteins.
Proc. Natl. Acad. Sci. U.S.A. 95, 7406–7411. doi: 10.1073/pnas.95.13.7406

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Alster, Baas, Wallenstein, Johnson and von Fischer. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Microbiology | www.frontiersin.org 10 November 2016 | Volume 7 | Article 1821

http://CRAN.R-project.org/package=lmerTest
http://CRAN.R-project.org/package=lmerTest
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive

	Temperature Sensitivity as a Microbial Trait Using Parameters from Macromolecular Rate Theory
	Introduction
	Materials And Methods
	Experimental Design
	Calculating Temperature Sensitivity
	Comparison of MMRT and Arrhenius Equations

	Results
	Temperature Sensitivity Differs for Isolate  Enzyme Combinations
	MMRT Provides Better Statistical Fit than Arrhenius
	Comparison of Activation Energy Values

	Discussion
	Heat Capacity Differs Significantly among Enzymes
	Exercising Caution for Arrhenius Estimates of Temperature Sensitivity
	Conceptual Framework

	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


