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ABSTRACT Continuously monitoring body movement in preterm infants can have important clinical
applications since changes in movement-patterns can be a significant marker for clinical deteriorations
including the onset of sepsis, seizures, and apneas. This paper proposes a system and method to monitor body
movement of preterm infants in a clinical environment using ballistography. The ballistographic signal (BSG)
is acquired using a thin and a film-like sensor that is placed underneath an infant.Manual annotations based on
video-recordings served as a reference standard for identifying movement. We investigated the performance
of multiple features, constructed from the BSG waveform, to discriminate movement from no movement
based on data acquired from 10 preterm infants. Since routine cardiorespiratory monitoring is prone to
movement artifacts, we also compared the application of these features on the simultaneously acquired
cardiorespiratory waveforms, i.e., the electrocardiogram, the chest impedance, and the photoplethysmogram.
The BSG-based-features consistently outperformed those based on the routinely acquired cardiorespiratory
waveforms. The best performing BSG-based feature-the signal instability index-had a mean (standard
deviation) effect size of 0.90 (0.06), as measured by the area under the receiver operating curve. The proposed
system for monitoring body movement is robust to noise, non-obtrusive, and has high performance in clinical
settings.

INDEX TERMS Ballistography, neonates, patient monitoring, body movement, statistical signal processing.

I. INTRODUCTION
With 15 million infants being born too soon every year
(>10% of all births), prematurity of birth is a major
public health concern and the leading cause of neonatal
deaths [1]. Such vulnerable infants, owing to their physio-
logical immaturity, are often admitted to neonatal intensive
care units (NICUs) where vital signs such as the heart rate
(HR), breathing rate (BR) and oxygen saturation (SpO2)
are continuously monitored. These vital signs of cardiores-
piratory origin are reflective of the regulation of the auto-
nomic nervous system. Monitoring vital signs is important
so that dysregulation, as measured by vital signs crossing
predetermined thresholds, can be brought to the attention of

clinicians and the underlying cause of deterioration can be
addressed.

In addition to continuous cardiorespiratory monitoring,
as a part of routine care, intermittent clinical observations
at the bedside help provide information on muscle tone,
skin color, and gross body movement -- important clinical
features that are not captured in cardiorespiratory monitoring
yet capable of serving as early warning signs of clinical
deterioration. Body movement or the quality thereof has long
been considered important, as can be deduced from its use in
various clinical scoring systems such as the ComfortNeo [2],
Assessment of Preterm Infant Behavior [3] and the New-
born Individualized Developmental Care and Assessment
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Program [4]. While monitoring vital signs reflects the func-
tioning of the autonomic nervous system, monitoring body
movement indirectly provides insights into the functioning of
the motor system. Motor activity changes (e.g., overall body
movement, lethargy) in response to many clinically signif-
icant events including the onset of sepsis, seizures, apneic
episodes as well as during the sleep-wake cycle. For instance,
lethargy, the absence of spontaneous movement, but also less
apparent changes in movement activity over time, have been
identified as strongly predictive symptoms of sepsis in multi-
ple studies [5]–[8]. Concerning seizures, some seizure-types
cannot be identified using electroencephalograph monitoring
but do have motor manifestations [9], [10]. Also, the pres-
ence or absence of body movement preceding, during, or in
response to apnea can help discriminate central apnea from
obstructive apnea [11]–[13]. Monitoring movement can also
facilitate identifying sleep-wake cycles in preterm infants,
which can be used to help synchronize periods of nursing
care to minimally disturb the sleep of preterm infants – an
important factor in neurodevelopment [14], [15]. Therefore,
continuously monitoring movement can be important -- for
example, over long durations for identifying sepsis (timescale
of hours, up to 1 or 2 days), medium durations for the tracking
of sleep-wake cycles (tens of minutes, up to an hour) and
short durations for identifying apnea (seconds or minutes).
Here, intermittent observational scoring of movement by
clinical personnel at the bedside is of insufficient frequency,
necessitating the need for automated technology to monitor
movement continuously.

Recently two reviews have discussed, in detail, wear-
able sensor systems (e.g., accelerometers) and camera-based
solutions for monitoring movement in neonates, along with
potential clinical use-cases [16], [17]. They highlight the
challenges for sensor technologies, including the requirement
of sufficient sensitivity to subtle movements and the neces-
sity of integration within the neonatal environment given
the fragility and vulnerability of preterm infants. The lim-
itations of wearable sensor systems such as accelerometers
include difficulties in finding the optimal location(s) for the
placement of the sensor(s), i.e., body parts likely to undergo
acceleration due to movement. Further long-term monitor-
ing using wearable sensors is associated with skin irritation
and discomfort, to which preterm infants are especially vul-
nerable [18]. Finally, wearable sensors are associated with
multiple wires attached to the infant that increase the sense
of detachment between parents and infants [19]. On the
other hand, video-based monitoring of movement, while non-
obtrusive, face challenges with regard to occlusion of view,
changes in lighting conditions, light-reflection from incuba-
tor walls and the fact that NICU environments are often dim
and that blankets cover incubators.

Any approach for capturing forces generated by the body
can be termed ballistography (BSG) and includes forces due
to body movement, breathing motion and the mechanical
action of the beating heart (also called ballistocardiogra-
phy, BCG) [20]. BSG-based clinical monitoring solutions

using different types of sensors such as pressure sensors,
weighing scales, optical sensors, accelerometers, and piezo-
electric sensors have been described for several clinical
applications, including monitoring cardiac performance,
hemodynamic changes, sleep monitoring and respiration-
monitoring [21]–[26].

Currently, there are no clinically tested solutions suitable
for monitoring movement in the NICU environment, poten-
tially a valuable source of physiological information. In this
paper, we propose a non-obtrusive BSG-based system, for
monitoring body movement of infants in real time. Based on
the BSG signal, we develop and compare the performance
of several BSG-based features for capturing movement with
video-based visual annotations of movement. The system
and method described herein can enable the automation and
quantification of movement. Furthermore, since movement
artifacts are a common occurrence in routinely monitored
cardiorespiratory waveforms such as the electrocardiograph
(ECG), chest impedance (CI) and the photoplethysmograph
(PPG), we also quantify the potential of these waveforms for
monitoring movement.

II. METHODS
A. SENSOR SPECIFICATIONS
In this study, we used an electromechanical film sen-
sor (EMFi, Emfit, Kuopio, Finland) first described by
Paajanen et al. [27]. This sensor is made of three layers –
two smooth and homogenous surface layers enclosing a
thicker midsection consisting of polypropylene layers sepa-
rated by air voids (Fig. 1a). Similar to piezoelectric materials,
the EMFi sensor produces an electric charge when force is
applied perpendicular to its surface. However, the charge
generation mechanism is not piezoelectric, since the change
in the internal electric field, as a result of external forces
being applied is caused by the mutual movement of static
charges that were injected into the film using a corona dis-
charge method in the manufacturing process. In other words,
the EMFi is an elastic, permanently charged film in which
the air voids act as electrical dipoles with the film being
sensitive to forces normal to its surface [24], [28]. This sensor
is well suited tomeasure pulsatile and transient forces, such as
those of biological origin but unsuitable for measuring static
forces [21], [26], [29], [30]. Notably, the sensor produces one
output signal, effectively integrating different forces that may
be applied to it.

The sensor used in this study (L-series sensor, EmFit) had
dimensions of 580 mm× 290 mm× 0.4 mm. The sensitivity
of the sensor is 25 pC/N, and the frequency response is flat
up to 20 KHz. The specifications for the range of operating
temperature are between −20 to 70 ◦C. The soft, flexible
nature of the sensor, as well as the fact that it was electrically
passive, made it well suited for use in the NICU environment
where safety concerns are paramount. Before use, the sensor
was placed on top of the mattress and was covered by a
bedsheet (Fig. 1b). Fig. 1c shows the sensor being used in
the NICU without a bedsheet for illustrative purpose.
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B. CIRCUIT DESIGN FOR SIGNAL ACQUISITION
A signal acquisition system was designed for processing,
digitizing and storing the electrical signals that were acquired
from the EMFi sensor. Fig. 1d shows the entire signal acqui-
sition system in the packaging in which it was housed for
the study. Fig. 1e shows the different parts of the signal
acquisition system in a block diagram format. First, the signal
from the EMFi sensor was amplified by a factor of 100 fol-
lowed by low-pass filtering using a 4th order Butterworth
filter with a cutoff frequency of 100 Hz (anti-aliasing filter).
Both the amplification and the filtering were carried out using
operational amplifiers (MCP 6242, Microchip). Digitization
was carried out using a 16-bit analog-to-digital converter
(ADS1115, Texas Instruments) and the digitized data was
written onto a secure digital card using a microcontroller
(Arduino Uno, Arduino). The data was time-stamped by the
microcontroller, which in turn was time-synchronized to a
laptop computer to which it was connected before starting
every measurement. A rechargeable power bank capable of
supplying 5V output was used to power the entire signal
acquisition system.

C. SIGNAL QUALITY AND SIGNAL TO NOISE RATIO
An infant placed on the EMFi sensor can generate forces due
to body movement, breathing movements and the beating of
the heart. Forces generated by the beating heart aremaximally
along the longitudinal axis of the infant, effectively parallel to
the EMFi sensor. Thus, amajority of the power corresponding
to the heart rate is filtered out by design. For breathing and
body movement, a fraction of the force is always perpendicu-
lar to the surface of the sensor and is defined as the BSG signal
(Fig. 1g and 1h). Fig. 1g shows the BSG signal (blue) with
an algorithm to track movement (in green, described later).
Typically, the breathing signal (Fig. 1h) is always present, and
the signal corresponding to infant motion is superimposed
upon it. Any external influence that would reduce the quality
of the signal is defined as noise. We calculate the signal to
noise ratio (SNR) as the ratio of the variance (normalized over
time) of the zero-mean signals, corresponding to an infant
placed on the sensor within the incubator, in comparison with
the typically expected external ‘noisy scenarios’ in the NICU
environment. These noise-like scenarios include the baseline
signal acquired by the sensor while it is placed in the incuba-
tor without an infant on it, the effect of mechanical vibrations
in the proximity of the incubator due to walking and hopping,
as well as nurse-handling of the incubator. Nurse-handling
includes opening the portholes of the incubator, opening the
lateral side of the incubator, and operating the incubator while
seated adjacent to the incubator with both feet placed at
the base of the incubator, as is typical during nursing care.
We tested all these effects on the SNR.

D. SIGNAL ACQUISITION
Routine patient monitoring was carried out using patient
monitors (Philips IntelliVue MX 800, Germany) from which
the ECG (250 Hz), CI (62.5 Hz) and PPG (125 Hz) wave-

forms were acquired via a data warehouse (DWH, IIC iX,
DataWarehouse Connect, PhilipsMedical Systems, Andover,
MA). The BSG waveform (250 Hz) was acquired using the
custom-made signal acquisition device (Fig. 1d). Further-
more, patient-monitor parameter data corresponding to HR,
BR and SpO2 were acquired at 1 Hz from the DWH. Video
monitoring of infants was carried out using a camera placed
on a tripod, near the incubator. The data acquired from the
DWH were manually synchronized with the BSG signal and
the video data, to a precision of within 1s, based on matching
the noise characteristics of the waveforms with the times-
tamps of the internal clock of the BSG acquisition device and
the video camera, respectively.

E. PATIENT POPULATION
Ten infants of varying body weights were enrolled
in this study that took place in the level III NICU
(private room design) of the Máxima Medical Center, Veld-
hoven, the Netherlands between May-June, 2017. The mean
(standard deviation, SD) weight and postmenstrual age of
the infants on the day of the study were 1422g (402g)
and 31.4 weeks (2.3 weeks), respectively. All infants were
recorded for approximately 6-8 hours during daytime hours,
because of higher ambient lighting, desirable for video mon-
itoring. From the recordings of each infant, two continuous
segments of approximately one hour or longer were selected
for inclusion in the analysis. The selection criterion was min-
imal obstruction of the infant due to nursing care or parental
presence, and sufficient visibility of the infants in the video-
data, which varied with lighting conditions. When possible,
segments were selected with infants in different positions to
determine whether the system under consideration worked
sufficiently for all body positions of the infants. All infants
received routine care. Infants were supported by positioning
materials (SnuggleUp, Philips, Amsterdam, the Netherlands)
in 18 out of 20 recorded segments, and partially covered
by a blanket in 17 out of 20 segments, respectively. Eight
of the ten infants received non-invasive ventilator support
(continuous positive airway pressure or high flow nasal
cannula) while two infants did not need supplementary oxy-
gen. Infant positions in the recordings included eight right-
lateral positions, seven left-lateral positions, three prone and
two supine positions. In accordance with the Dutch law on
medical research with humans (WMO), the medical ethical
committee provided a waiver (registered as N16.068) for the
study since it was of an observational nature and low-risk.

F. MOVEMENT ANNOTATIONS
While qualitative movement scoring systems of a clinical
nature based on visually observing various aspects of move-
ment such as spontaneity, speed, force, etc. are available,
they are not readily applicable for this analysis using the
BSG waveform due to its purely quantitative nature [31].
Therefore, to determine whether the BSG waveform and the
routinely acquired cardiorespiratory waveforms can be used
to monitor body movement, a reference standard for measur-
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FIGURE 1. Part a shows the EMFi sensor which was used by placing it on a mattress underneath the infant
(part b). Part c shows the sensor in clinical use in a NICU, but without the mattress cover for visibility. The
sensor was connected to the signal acquisition system which was powered by a battery pack (part d). Part e
shows the various components of the signal acquisition system which stored the BSG signal for offline signal
processing in a computer (part f). Part g shows 30 minutes of the BSG signal while part h shows the breathing
signal over a short period.

ing movements is required. Theoretically, body movement of
an infant can be considered as a signal that ranges from zero
to infinity. The signal is zero if there is no body movement,
no breathing motion, and no heartbeats, thereby creating no
micro-motion of the body. On the other hand, movement can
be large with no upper bound (theoretically infinity) making
gross body movement particularly hard to annotate and for
which there exist no conventions.

For this study, as a reference standard, two annotators
independently annotated infant motion at a frequency of 1 Hz,
based on retrospective visual observation of video recordings,
and categorized movement in a dichotomous manner. They
were instructed to consider as a movement any motion of the
head, trunk, arms, legs, and digits, no matter how small, but
were required to ignore facial movements, such as grimaces
and breathing-based motion of the chest. All periods of a
limited view of the infant due to occlusion (e.g., parents or
staff between infant and camera) and periods of nursing care
were noted. Annotations were categorized into three classes
-- no movement (‘0’), movement (‘0.1’) and occlusion/nurse
handling (‘0.2’). Following this, the inter-rater agreement
was estimated using the chance-corrected metric, Cohen’s
kappa coefficient (κ), and expressed as mean κ (SD). For
further analysis, only those periods were retained where the
annotators agreed. The periods corresponding to occlusion or
nursing care were removed from further analysis.

G. SIGNAL PROCESSING AND FEATURES FOR
TRACKING MOVEMENT
All waveform signals – the BSG, ECG, CI, and the PPG
signals were digitally band-pass filtered using a Butterworth
filter of the second order with lower and upper cutoff fre-
quencies of 0.001 Hz and 0.40 Hz respectively. The lower
cutoff was chosen to eliminate any low-frequency baseline
drifts that may occur over time, while the upper cutoff was
chosen to preferentially capture any movement information
in the signal while limiting breathing and heart-rate based
movement signal. The upper cutoff frequencywas swept from
0.1 Hz to 1 Hz with a step size of 0.1 Hz to determine
the most suitable frequency band for capturing movement
information, for each of the four waveform signals under
consideration. It was expected that upon increasing the upper-
cutoff, an increasing amount of breathing and heart-rate based
information would be captured. Finally, features to obtain
different indices of movement were developed for use with
the filtered signals.

A total of six features were used to quantifymovement with
the intention to integrate over both the quantity and duration
of motion. These were based on the signal instability index
(SII), Teager energy (TE), Hilbert transform (HT), approx-
imate entropy (ApEn), Kolmogorov complexity (KC) and
permutation entropy (PeEn), as discussed in the following
paragraphs.
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FIGURE 2. Parts a and b show approximately 80 minutes of the BSG signal (blue) of two different infants with
annotations for movement (red; 0 = no movement, 0.1 = movement and 0.2 = external handling) and the SII
calculated every second using a running window of 15s.

The rationale for using the aforementioned features was
based on an expected difference in sensitivity to movement
in comparison to the infant lying still. The use of TE and
HTwere motivated by their expected sensitivity to movement
amplitude (signal power), while KC and the entropy-based
features were expected to be sensitive to signal regularity
with movement expected to be of an irregular nature. The SII
was expected to capture aspects of both, signal amplitude and
signal regularity. Frequency-based features were not consid-
ered since the corresponding signal is expected to be non-
stationary, even in short time-windows. All feature values
were estimated at a frequency of 1Hz using amovingwindow
of 15s since motion is typically considered to change over
several seconds.

The signal instability index is a non-parametric measure
based on the kernel density estimate (KDE) for determining
the probability density function of the underlying signal. The
probability density is approximated by the superposition of
a number of Gaussian kernels centered on equidistant points
(here 100) on the windowed signal. The estimated bandwidth
of the superposition of these Gaussian kernels forms the
SII [32]. The following equation was used to calculate the

KDE, the bandwidth of which was the SII.

f̂h(x) =
1
nh

n∑
i=1

K
(
x − xi
h

)
where f̂ (x) is the KDE of the underlying signal x, n is number
of equidistant points – here 100 – used to divide the length of
signal x, K is the Gaussian kernel centered at points i and h is
the bandwidth of the Gaussian kernels, optimally estimated
by the expression 1.06σ/n1/5 where σ is the standard devi-
ation of the Gaussian kernel. The SII is low if the mean and
variance of the underlying Gaussian kernels are comparable
and would be reflective of the absence of motion.

The Teager energy operator is a non-linear operator to
estimate energy using only a small time-window, making it
ideal for local time analysis [33]. The TE feature, calculated
every second is defined as the maximum value of the TE
estimate applied at every point on the windowed data. The
TE is calculated according to the following equation,

TE = x2n − xn−1xn+1

where, xn is the nth sample of the underlying signal x.
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FIGURE 3. The box-plots show the logarithm of the SII calculated from
the BSG signal shown in Fig. 2b for the time-periods corresponding to
no-movement and movement. The SII responds differentially to the
periods annotated as no-movement, versus those annotated as a
movement. The y-axis is in arbitrary units (a.u.).

FIGURE 4. The mean (SD) AUROCs corresponding to the BSG (black), ECG
(red), CI (blue) and the PPG (green) waveforms for different features. The
AUROC is a measure of the effect size of the feature’s ability to
discriminate no-movement from movement.

The Hilbert transform was used for local envelope detec-
tion [34]. The HT feature, calculated every second, was
defined as the mean value of the modulus of the complex
analytical signal obtained from the window under consid-
eration. The analytical signal (z) was defined as the sum of
the complex signal, comprising the original signal (x) and its
Hilbert transform (h) as follows,

z (n) = x (n)+ jh(n)

where n is the samples of the underlying signal x.
Approximate entropy, a regularity statistic, was used

as a feature because it quantifies the unpredictability of
time-series data in a manner not captured by moment statis-
tics [35]. A time-series with repetitive patterns tends to have
low ApEn, while a less predictable time-series has a high
ApEn. The ApEn feature was calculated on the entire length
of the windowed data, with the sequence-length for compar-
ison, also known as the embedded dimension, equal to 1.5s
of data (empirical choice) and a tolerance value defined as
0.2 times the standard deviation of the windowed data [35].

FIGURE 5. The y-axis shows the effect size, as measured by the AUROC,
of the best performing feature for each of the four waveforms after they
were band-pass filtered to range from 0.001-1 Hz in step sizes of 0.1 Hz
(x-axis). The error-bars are staggered about the x-tick values for
readability.

The feature based on Kolmogorov complexity was calcu-
lated for the entire length of windowed data after binarizing
the time-series corresponding to the windowed data, based on
the median value of the windowed data [36].

Permutation entropy is a complexity measure that consid-
ers the temporal order of data by using symbolic dynamics.
It is known to be less affected by small amounts of noise as
opposed to other entropy measures [37]. The PeEn feature
was calculated for the moving window by averaging the
PeEn calculated at every sample while using an embedded
dimension equal to 2s of data and a permutation order of 5.

First, the performance of all six features was compared
to annotations for all four waveforms corresponding to the
original frequency band of 0.001-0.4 Hz. Second, for the
frequency sweep, corresponding to each frequency band,
the best performing features were determined for each of the
waveforms.

H. CORRELATION BETWEEN MOVEMENT AND
VITAL SIGNS
The maximum and minimum cross-correlation between the
best performing movement index (SII) and the vital signs
(acquired directly from the patient monitor) were calculated
over ten-minute windows by first standardizing each signal
(subtracting mean and dividing by standard deviation) and
calculating the normalized correlation coefficient within a
time lag of ±30 seconds at every data-point, i.e., every sec-
ond. The correlations and corresponding lags were averaged
for each of the 20 recordings and are presentedwhen themean
± SD for both the correlation values and the corresponding
time lags did not include zero. High absolute values for
correlation are indicative of coupling between the motor and
the autonomic nervous systems (ANS).

I. STATISTICS
The feature-values for movement and no movement were
visually compared using box-plots. Since the range of signal
amplitudes corresponding to the movement was large, box
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FIGURE 6. The SII, HR, BR and SpO2 signals for approximately 80 minutes of data. Visually it is apparent that
often movement-bursts (black arrows) are associated with an increase in HR and a decrease in BR and
SpO2 respectively.

plots were constructed using the logarithm of the feature val-
ues. The predictive accuracy of the algorithms was evaluated
using effect size – a measure of performance that determines
the magnitude of the difference between the two groups.
We measured the effect size using a non-parametric approach
by calculating the area under the receiver operating curve
(AUROC). The AUROC is a standardized measure (no untis)
and offers a threshold-independent method to evaluate the
performance of the features. Themean and SD of the AUROC
of the 20 recordings were calculated for all six features for all
waveforms – the BSG, ECG, CI, and the PPG. All data were
analyzed using Matlab (MathWorks, Natick, Massachusetts,
USA).

III. RESULTS
In this study, movement forces generated by preterm infants
were captured using an EMFi sensor. For all 20 recordings
that were acquired, the order of magnitude of the variance of
the BSG signals was comparable, indicating that the differ-
ences in weight and position of the infants did not adversely
affect the BSG signal. With regard to the SNR, the signal
was defined as the BSG signal obtained with a 1500g infant
lying on the sensor. The SNR for both the scenario without
an infant lying on the sensor and for walking in the proximity
of the incubator was 1000 while hopping in the proximity
of the incubator and opening the incubator’s portholes led to
an SNR of 100. Opening an entire side of the incubator and
resting one’s feet at the base of the incubator, as is typical
during nursing care, led to an SNR of 10.

The mean (SD) duration of the 20 recordings that were
selected for analysis was 72 (4.5) min. For this data, the
inter-rater agreement as measured by the κ score was 0.72
(0.07). After excluding periods of disagreement, occlusion,

and nurse-handling, 82% (10%) of the BSG-data remained
and was used for comparing the performance of the various
features. Additionally, based on observations of the video
recordings, the annotators identified infants to be moving for
43.7% (19.8%) of the time.

Fig. 2a and 2b, show 80 minutes of typical BSG signals
obtained from two different infants along with one of the
six calculated features – the SII. Here, the SII values can
be considered a proxy for movement, with the area under its
curve acting as a cumulative measure of movement over a
time-period. Fig. 3 shows the box plot for the values of the SII
corresponding to no-movement and movement, respectively,
for the SII feature corresponding to Fig. 2b. Based on the
box-plot we can observe that the SII can discriminate move-
ment from no movement.

Fig. 4 shows the mean (SD) AUROC of the 20 recordings
corresponding to all four waveform signals calculated for the
six features – SII, TE, HT, ApEn, KC, and PeEn for the fre-
quency band of 0.001-0.40 Hz. Amongst all features, the best
performing features for detecting movement are the SII and
the HT which are comparable to each other and outperform
other features for all waveforms. The best-performing feature
for both the BSG and ECGwaveforms is the SII, with a mean
AUROC of 0.90 (0.06) and 0.79 (0.15), respectively. The
best-performing feature for the CI and the PPG waveforms is
the HT, with a mean AUROC of 0.78 (0.15) and 0.77 (0.18),
respectively. Amongst all waveform signals, the BSG is the
best at monitoring movement for all six features. Particularly
noteworthy is that the SD of the AUROC corresponding to
the BSG signal, irrespective of the feature under consider-
ation, is considerably smaller than the SD of the AUROCs
corresponding to other waveforms, indicating repeatability in
monitoring movement in comparison with other waveforms.
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Fig. 5 shows the performance of the best features for each
of the waveforms when the upper cutoff frequency was swept
from 0.1-1 Hz with a step size of 0.1 Hz, and the lower
cutoff frequency was held constant at 0.001 Hz. The best
performance of the BSG and ECG waveforms across all
cutoff frequencies is with the SII while that of the CI and PPG
waveforms is with theHT. The best performing of all features,
irrespective of the waveform, is the SII for BSG waveform
with an AUROC of 0.90 (0.06).

Fig. 6 shows the SII, HR, BR and, SpO2 signal corre-
sponding to a recording of approximately 80 min duration.
Visually, we can observe that there are sustained periods
of increased movement or movement-bursts that are often
associated with an increase in HR and decrease in BR and
SpO2, respectively. The correlation results indicate the same
– a correlation of 0.40 (0.18) with time lag of −10.3s (6.9s)
between SII and HR, a correlation of −0.41(0.17) with a
time lag of −6.6s (4.1s) between the SII and the BR, and a
correlation of −0.24 (0.13) with a time lag of −14.7s (10s)
between SII and SpO2. The negative time lags indicate that
movement precedes changes in vital signs.

IV. DISCUSSION
We have developed and clinically tested a setup that can be
used to non-obtrusively monitor body movement of preterm
infants in clinical settings. Continuous monitoring of move-
ment in preterm infants has many potential applications
including the early detection of sepsis, seizures, apneas and
sleep-wake cycles. Features based on the BSG waveform
acquired from the EMFi sensor performed well for monitor-
ing movement and outperformed the same features applied
to the routinely acquired cardiorespiratory waveform. Not
only do the features based on the BSG waveform yield the
highest AUROC – a measure for quantifying effect size – but
also the lowest variability from one measurement to the other
(small SDs). The small SD points to repeatability in moni-
toring movement and indicates that, irrespective of external
factors such as the position and weight of infants, movement
monitoring with BSG was reliable.

Since the BSG waveform is acquired from a pressure sen-
sor, it is not surprising that it is more effective than cardiores-
piratory waveforms for tracking movement. Also, compared
to the ECG, CI, and the PPG waveforms, the superior perfor-
mance of the BSG waveform may be because, irrespective of
which body part of the infant is moving, the sensor, as a result
of being placed underneath the infant, is always sensitive
to movement. The ECG-electrodes, which generate both the
ECG and CI waveforms, may have limited sensitivity to
movement in the lower extremities. Also, they might be more
prone to noise due to poor electrode contact with the body.
The PPG sensor, which is typically placed on one of the
feet, may have limited sensitivity to movement in the upper
body. Combining information from different sensors could
prove useful in discriminating movement between the lower
and upper extremities of the body. Another possible reason
for the poorer performance of cardiorespiratory waveforms

is that the corresponding sensors are not optimized to detect
movement and may, in fact, have hardware or embedded
software solutions to reduce motion artifacts. Nevertheless,
while routinely monitored cardiorespiratory waveforms are
less reliable than BSG for monitoring movement, they may
still prove useful for certain applications such as longitudi-
nally tracking movement.

Determining the best-performing features after pre-
filtering the waveform signals – the BSG, ECG, CI, and
PPG – to limit the upper-frequency content, revealed that
for all waveforms, performance is best for an upper cutoff
between 0.3-0.5 Hz, in accordance with the literature [13].
Increasing the cutoff frequency further reduces performance,
likely due to a decrease in the SNR, because of increased
breathing and heartbeat-related contribution. Increasing the
upper cutoff frequency beyond 1 Hz reduces performance
for all waveforms (data not shown). Overall, the best per-
forming feature is the SII, closely followed by the HT.
The HT-feature detects the instantaneous amplitude of the
waveform and performs better than entropy and complexity-
based measures, indicating that amplitude changes due to
movement are more informative than changes in the signal’s
regularity. Likely, the SII performs best because it combines
both information based on signal amplitude, as well as its
regularity. The battery of features used in this work are
easily interpretable and perform well, but for future work,
other features such as those based on the wavelet transform
may be considered [38]. The data presented in this study
uses a window length of 15s to calculate and evaluate the
performance of the features. Depending on the intended
application, the window length may also be reduced – for
example, if sensitivity to sharper movements, such as startles,
is required.

A remarkable finding, based on monitoring movement,
as can be seen in Fig. 2 and Fig. 6, is that there were peri-
odic movement-bursts that lasted 20-60s, but occasionally
up to 2 minutes, and typically occurred every few minutes.
Thesemovement-bursts, in fact, occurred in all 20 recordings.
Based on visual observation of the corresponding video-
data, movement in these periods were large body move-
ments of the head, trunk, and limbs. Perhaps, the nature
of these movements is also the reason why motion detec-
tion based on the ECG, CI and PPG waveforms perform
reasonably well on average, but with considerable varia-
tion in performance (large SD). Likely the overall supe-
rior performance of the BSG waveform is due to its abil-
ity to capture smaller movements, even if they are local-
ized to a body part. The repetitive nature of the movement-
bursts suggests a physiological origin. We hypothesize that
these are reflective of the arousal state of the sleep-wake
continuum as discussed in Werth et al. [14]. Occasionally
in the 20 hours of recorded data, there were periods of
tens of minutes without any movement bursts, and these
might have corresponded to periods of quiet sleep [14]. This
hypothesis of movement-bursts corresponding to arousals is
strengthened by the positive correlation between movement
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bursts and increases in heart rate, as is expected during
arousals [14].

The fact that motor response often precedes changes in
vital signs can be exploited for the early generation of alarms
– an important issue in the NICU – potentially increas-
ing the window of opportunity for nurses to respond to
critical alarms [39], [40]. Literature also shows that spon-
taneous movement can lead to various physiological per-
turbations, including increased oxygen consumption due
to metabolic demands, movement-induced hyperventilation,
and hypocapnia. These perturbations can lead to a destabi-
lizing effect on breathing and therefore tracking movement
can be an important marker for predicting apnea, which,
if minimized, leads to neurodevelopmental benefits [12],
[41], [42]. Further applications of monitoring gross body
movement include its use in filtering heart rate variability
and as a physiological marker to study growth and develop-
ment in neonates [41], [43]. Polysomnographic studies may
also benefit from a ballistographic approach for monitoring
movement, since visually identifying movement is not easy,
as supported by the inter-rater agreement obtained in this
study. The challenges include infants being partially covered
by blankets and low ambient visibility to minimize external
stimuli to the infant – problems that persist in automated
video-based actigraphy monitoring as well.

The unobtrusive and reliable solution for monitoring body
movement of preterm infants in a clinical environment,
as detailed in this study, can function in real time and may
be useful in identifying both acute and longer-term clinical
deteriorations. In the future, we will evaluate the potential
of this BSG-based approach for monitoring breathing in the
NICU setting.

V. CONCLUSION
This paper presents a system and method for monitoring
movement in neonates using ballistography. The proposed
approach is robust to noise and can be used in real time in
clinical settings. Multiple features for identifying movement
using the BSG waveform were evaluated and performed well
when compared to visually observed movement and outper-
formed features based on routinely acquired cardiorespira-
tory waveforms. We recommend using the SII based on the
BSG waveform for tracking movement.
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