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Abstract: Microglia are the primary immune cells of the central nervous system that help nourish and
support neurons, clear debris, and respond to foreign stimuli. Greatly impacted by their environment,
microglia go through rapid changes in cell shape, gene expression, and functional behavior during
states of infection, trauma, and neurodegeneration. Aging also has a profound effect on microglia,
leading to chronic inflammation and an increase in the brain’s susceptibility to neurodegenerative
processes that occur in Alzheimer’s disease. Despite the scientific community’s growing knowledge
in the field of neuroinflammation, the overall success rate of drug treatment for age-related and
neurodegenerative diseases remains incredibly low. Potential reasons for the lack of translation from
animal models to the clinic include the use of a single species model, an assumption of similarity in
humans, and ignoring contradictory data or information from other species. To aid in the selection of
validated and predictive animal models and to bridge the translational gap, this review evaluates
similarities and differences among species in microglial activation and density, morphology and
phenotype, cytokine expression, phagocytosis, and production of oxidative species in aging and
Alzheimer’s disease.
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1. Introduction

Microglia are the principal immune cells of the central nervous system, constituting
10% of all cells in the brain [1,2]. They help nourish and support neurons, clear debris, and
respond to foreign stimuli [1,3]. During their resting state, microglia sample the neural
parenchyma every few hours using highly motile ramified processes [4]. When infection,
trauma, or neurodegeneration occurs, microglia go through rapid changes in cell shape,
gene expression, and functional behavior, a process known as microglial activation [3,5].
Morphologically, activation results in a graded response of decreased arborization, enlarged
cell soma, and shortened or loss of cellular processes. Reactive microglia travel to lesion or
infection sites and undergo mitotic proliferation, increasing in density to provide additional
defense and restoration of tissue homeostasis [3].

Upon activation, microglia release cytokines, small proteins that have pro- and anti-
inflammatory properties in response to different stimuli. Cytokine subfamilies include
interleukins (IL), interferons (IFN), tumor necrosis factors (TNF), growth factors (GF),
colony stimulating factors (CSF), and chemokines [6]. Proinflammatory cytokines, such
as IL-1α, IL-1β, IL-6, and TNF-α, upregulate microglial activation and can lead to neu-
rodegeneration through increased production of reactive oxygen (ROS) and nitric oxide
species (NOS) [7,8]. Conversely, anti-inflammatory cytokines, including IL-10, IL-4, and
transforming growth factor-beta (TGF-β), downregulate activation of microglia and are
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neuroprotective [9,10]. Another factor of the microglial phenotype is the expression of
certain immunoepitopes to identify resting and activated states. Ionized calcium-binding
adaptor molecule 1 (Iba1) detects both resting and activated microglia, while activated
microglia typically are distinguished by human leukocyte antigen-antigen D related (HLA-
DR) as well as a group of cluster of differentiation (CD) molecules such as CD40, CD45,
and CD68 [11–13].

As a stable, long-lived cell population with a low self-renewal rate, microglia are
greatly impacted by their environment over time [14]. One element that has a profound
effect on microglia is age. Senescence in microglia is manifested by changes in density,
activation, morphology, phenotype, cytokine expression, and phagocytosis [5,15,16]. These
age-associated changes produce persistent inflammation, making the brain increasingly
susceptible to injury or neurodegeneration, and a broad range of research implicates
microglia-mediated inflammatory processes as an important aspect in neurodegenerative
diseases, such as Alzheimer’s disease (AD) [6,17–20].

Despite the scientific community’s growing knowledge in the field of neuroinflamma-
tion, the overall success rate of drug treatment for age-related and AD remains incredibly
low. Many therapeutics show promise during clinical development in animal models only
to fail to elicit the same effects in humans. One potential reason for this lack of translation
from the bench to the clinic may be flawed preclinical research, such as poor study design,
reporting, and reproducibility. From 2008 to 2010, 82% of all therapeutic compounds failed
to advance from Phase II clinical trials due to efficacy issues [21]. In addition, researchers
often focus on results observed in a single species model and assume similarity in humans
as well as ignore contradictory data from other species. To aid in the selection of validated
and predictive animal models and bridge the translational gap, this review evaluates the
latest investigations in microglia and its role in aging and AD. We will highlight similari-
ties and divergences among species in microglial activation, morphology and phenotype,
cytokine expression, production of oxidative species, and phagocytosis.

2. Microglia in Aging

Aging is a complex process involving cellular senescence, inflammation, and a gradual
loss of homeostasis. As the brain gets older, a remnant of phagocytosed material called
lipofuscin accumulates in microglia. In addition, aged microglia have a different phenotype
than activated microglia exhibiting a dystrophic appearance, depicted by increased soma
volume, abnormalities in the cytoplasmic structure, retracted, fragmented processes, and
nonuniform tissue distribution [22,23]. The speed of microglial processes also is signif-
icantly slowed with age, producing reduced surveying of surrounding tissue, impaired
synaptic contact, and poor recovery to injury [24,25]. Primed microglia, a state known
as “inflammaging”, results in activation and density changes, variations in morphology
and phenotype, and altered cytokine expression, phagocytosis, and production of oxygen
species (Figure 1) [15,16,26–29]. The primary models used for aging and neuroinflamma-
tion studies include nonhuman primates (NHP) and rodents, although some work has
been performed in canines and equines.

2.1. Age-Related Changes in Microglial Activation and Density

Disturbance of the brain’s homeostasis during aging can lead to glial activation, and
through mitotic proliferation, reactive microglia increase in density to restore tissue equilib-
rium [3]. Humans (Homo sapiens sapiens) display both increased microglial activation and
density with age. Using the benzodiazepine receptor ligand (R)-[11C]PK11195 and positron
emission tomography (PET) imaging, in vivo neuroinflammation increased with age in
the frontal, cingulate, temporal, entorhinal (EC), parietal, and occipital cortices as well
as the hippocampus, thalamus, and cerebellum of 35 healthy humans (19–79 years) [30].
Other PET imaging reports using R-[11C]PK11195 and TSPO ligand [11C]vinpocetine as
a measure of enhanced neuroinflammation (non-microglial specific), revealed increased
receptor binding in the neocortex and subcortex of healthy elderly participants, though
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another examination did not find age-associated changes in TSPO binding [30–32]. Aging
studies of microglia density are rare in the postmortem human brain. Higher levels of
microglial activation have been found in the EC, CA1-CA4 hippocampal subfields, dentate
gyrus (DG), and subiculum of elderly nondemented subjects (73 years) compared to adult
controls (38 years) [33]. HLA-DR microglia density in the white matter of cognitively
normal older adults was greater than young adults and super agers [34]. Another investi-
gation determined the number of microglia increased with age in the neocortex of women
(19–87 years), but not men (18–91 years), despite having 28% more neocortical glial cells [2].
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Figure 1. Microglia undergo morphologic, phenotypic, and functional changes upon activation in aging and Alzheimer’s 
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ogies and functions. During the aging process, microglia reside in a chronic, low-level state of activation with a unique 
dystrophic morphology. In Alzheimer’s disease (AD), specialized microglia known as damage-associated microglia are 
adjacent to amyloid-beta and tau lesions, and a more severe persistent proinflammatory state is present. Created with 
BioRender.com. 
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are adjacent to amyloid-beta and tau lesions, and a more severe persistent proinflammatory state is present. Created
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A handful of studies of microglial activation and density in aged NHP contradict
findings in humans. In common marmosets (Callithrix jacchus, 2–18 years), quantification
of resting, active, and dystrophic microglia densities in the dorsal hippocampus revealed
no differences in total microglia number [35]. Reactive microglia numbers in the visual
cortex, substantia nigra pars compacta (SNc), and ventral tegmental area of rhesus monkeys
(Macaca mulatta) also did not show age-related effects [36,37]. Likewise, age did not impact
activated microglial densities in the neocortex and hippocampus of elderly chimpanzees
(Pan troglodytes, 37–62 years), though data were collected in the oldest available apes
to identify potential AD pathology and younger individuals were excluded [38]. Yet,
some reports in rhesus macaques indicate a similar aging pattern as humans. Old rhesus
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monkeys (≥20 years) exhibited a significant increase in grey matter and cingulum bundle
microglial densities compared to adult monkeys [39,40]. Moreover, aged rhesus monkeys
(25–35 years) demonstrated a 44% increase in microglial cells in the primary visual cortex
compared to young monkeys (5–6 years) [41].

In wildtype rodents, reports of age-related changes in microglia activation are incon-
sistent. Variances in density may be due to quantification techniques, brain region, sex,
microglial markers, strain, and species. Some studies suggest that rodents, like humans,
show age-associated microglial activation. Greater microglial activation was noted in the
grey and white matter, corpus callosum, hippocampus, and basal ganglia of aged rats
(Rattus norvegicus) compared to young animals [42–44]. A qualitative increase in OX-42
immunoreactivity also was identified in microglia of old Sprague Dawley rats (23 months)
compared to young rats (3 months) [45]. Male and female aged Fischer 344 rats (18 months)
displayed a greater number of Iba1-ir microglia in the medial amygdala compared to young
rats (3 months), and females had higher microglia numbers in the bed nucleus of stria
terminalis (BNST) relative to their younger counterparts [46]. Moreover, male Wistar rats
(23 months) showed significant age-related increases in the number of Iba1-ir microglia in
all layers of the DG compared to 4 month olds, indicating microglial densities change in
aged but not middle-aged rodents [17,42]. Microglial numbers were increased by 65% in
the primary auditory cortex of 30-month-old Sprague-Dawley rats compared to 3 month
olds [47]. Additionally, the rate of microglial proliferation was greater in aged rats than in
young animals [48,49]. Besides rats, higher activated microglia levels have been seen in
Mongolian gerbils (Meriones unguiculatus) and mice (Mus musculus). The hippocampus of
18- and 24-month-old male Mongolian gerbils had greater microglial activation compared
to 6–12 month olds [50]. Iba1 immunoreactivity increased with age in the white matter of
C57BL/6 mice (2 vs 27 months) [51]. A 20% increase in microglial density also was found
in the CA1 and DG of aged female C57BL/6NIA mice (20–24 months) compared to young
mice (3–4 months), suggesting a potential sex difference [52]. Likewise, microglial numbers
were higher in layers I to VI of the primary visual and auditory cortices of 20-month-old
C57BL/6J mice compared to 3-month-old mice [53]. In contrast, other research in rodents
demonstrates a lack of microglial activation during the aging process. In the CA1 and DG
of male C57BL/6J mice, microglia densities did not vary between 5, 14, and 28 months,
whereas a reduction in microglial density was reported in a separate investigation between
12 to 18 months in the SNc and striatum, but not neocortex [54,55]. Similarly, 9-month-old
male ICR outbred mice showed no change in density in the CA1 compared to young
mice (2–4 months), although a significant decrease in microglial number was observed in
13-month-old mice [56]. Total microglial density, as measured by marker OX-42, did not
diverge between 2- and 12-month old male Wistar rats despite an age-related increase in
microglial activation [42]. Iba1-immunoreactive (ir) microglia numbers did not vary in the
CA1, CA3, or DG of adult (12–13 months) and aged (26–28 months) male Fischer 344 x
Brown Norway (F1) rats [57]. Of note, though, sex differences in microglia densities have
been identified in both mice and rats, which should be considered in future experimen-
tal designs of neuroinflammation in these species. Young, middle-aged, and old female
C57BL/6J mice had 25–40% more microglia in the DG and CA1 than age-matched male
mice [52]. In addition, a study in 60-day old rats found that females had significantly more
Iba1-ir microglia with thicker and longer processes (i.e., intermediate) than males in the
CA1, CA3, DG, and amygdala [58].

Minimal research on aging and glial activation has been performed outside of humans,
NHP, and rodents, though some data has been collected in older canines (Canis lupus
familiaris) and adult equines (Equus ferus caballus). Aged canines exhibit greater levels of
Iba1 protein in the DG than adult canines, despite Iba1-ir microglia density not varying
with age [59,60]. Contrastingly, microglial activation was not observed in adult horse brains
(7–23 years) [61].
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2.2. Age-Related Changes in Microglial Morphology and Phenotype

In a healthy brain, microglia exist in a resting state, morphologically illustrated by a
small cell body and fine, long processes, with a phenotype characterized by low expression
of CD40, CD45, CD68, and major histocompatibility complex class II (MHC II) [62]. During
activation, microglia transform into an intermediate or amoeboid morphology noted by
shorter, thicker prolongations or an absence of processes, decreased arborization, and
an enlarged cell soma (Figure 1) [3]. Activated microglia also express greater levels of
immunoepitopes, such as CD40, CD45, CD68, CD11b, and CD11c [15,16,49,63,64]. CD40
is a stimulatory molecule important for the activation of B cells, macrophages, and den-
dritic cells, while CD45 is a common lymphocyte antigen essential for the activation of T
cells [65,66]. CD68 is a lysosomal marker of phagocytic activity, and CD11b and CD11c
are adhesion molecules involved in cell migration and phagocytosis [3,67]. Variances in
microglial morphologies and immunoepitope expression associated with aging have been
identified in humans, NHP, rodents, and canines.

Aged human brains display greater numbers of intermediate and amoeboid mor-
phologies in the neocortex and hippocampus and higher expression of CD68 and HLA-DR,
a MHC II cell-surface antigen and marker for immune stimulation [51,68,69]. In addition,
rod-shaped microglia profusely express HLA-DR and are prevalent in the aged human
hippocampus and cortex, though the functional relevance of rod-shaped microglia remains
unknown [70,71]. Elderly human brains also exhibit non-activated dystrophic microglia
with increased soma volume, abnormalities in the cytoplasmic structure, retracted, frag-
mented processes, and nonuniform tissue distribution [5,64,72]. Moreover, microglial
processes are decreased in length and arborization area with less branching, suggesting
glial activation in the neocortex of aged humans [73].

NHP, like humans, exhibit greater numbers of activated morphologies, dystrophic
microglia, and expression of HLA-DR and MHC II during the aging process. An age-
dependent increase in the proportion of dystrophic microglia, but not resting or activated
phenotypes, was observed in the dorsal hippocampus of marmosets [35]. The number
of ferritin-positive microglia also was higher in the hippocampus and neocortex of old
marmosets (average 11 years) compared to younger subjects, while a decrease in ferritin-
positive microglia density was observed in aged subjects (average 17 years) relative to
old marmosets [74]. Dystrophic microglia have been noted in neocortical layers I and
II of elderly chimpanzees (37–62 years), though age was not associated with changes in
activated microglia morphology [38]. Furthermore, the brain of a 40-year-old gorilla (Gorilla
gorilla) displayed dystrophic microglia with iron deposition in the globus pallidus [75].
In middle-aged (14–17 years) and aged (22–29 years) rhesus monkeys, microglia shifted
to activated morphologies preferentially in the ventral tier of the SNc [36]. In addition,
white matter microglial arbor length was decreased in the frontal cortex of adult rhesus
monkeys (7–12 years) compared to juveniles (3–5 years) [39]. Similar to humans, expression
of HLA-DR increased in white matter microglia of aged rhesus monkeys (≥20 years),
and greater levels of MHC II were found in ramified cortical and cerebellar white matter
microglia of middle-aged rhesus monkeys (11–19 years) compared to juveniles (2–5 years)
or young adults (5–11 years) [76,77].

Aged rodents demonstrate comparable morphologic changes of activation, but they
lack the dystrophic microglia observed in elderly humans and NHP [78]. Retinal and
neocortical microglia isolated from aged C57BL/6J mice (18–26 months) have smaller
dendritic arbors, less branching, shortening of processes, increased soma volume, and a
loss of homogenous tissue distribution [24,25]. Additionally, greater numbers of microglia
with an intermediate morphology are observed in vivo in the brains of old C57BL/6 mice
(21 months) compared to young animals (4 months), and decreased microglial arborization
and distance between cells was found in the primary auditory and visual cortices of aged
C57BL/6J (24 months) and CBA/CaJ mice (12 and 24 months) [15,53]. Similar age-related
modifications have been discovered in rats and gerbils. Aged Wistar and Sprague-Dawley
rats exhibited more microglia with intermediate or amoeboid morphologies compared to
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young rats [17,47]. Larger Iba1-ir microglia soma size was identified in the BNST, medial
amygdala, and CA3 subfield of the hippocampus in old F344 rats [46]. Likewise, Iba1-ir
microglia in young Mongolian gerbils (≤12 months) had a ramified structure with a small
cell body and well-developed processes, while microglia in old gerbils (≥12 months) had
an activated morphology with increased cell body size, thickened processes, and decreased
ramification of distal branches [50]. The aged microglia phenotype appears relatively
conserved across species, though regional variances have been noted in rodents. Using
flow cytometry, primary microglia derived from aged C57BL/6J mice (20–22 months) have
increased expression of CD45 and CD11b [63]. Microarray analysis after a peripheral
immune challenge of lipopolysaccharide (LPS) administration in male BALB/c mice (adult:
3–6 months, aged: 20–24 months) found upregulation of CD68 and MHC II [79]. Higher
expression of CD68, CD11b, and CD11c was observed in the cerebellum of 21-month-old
C57BL/6 mice, though surprisingly, the DG did not exhibit age-related changes [15]. CD68
mRNA and protein expression also were more than 50% greater in the corpus callosum and
striatum of 24-month-old male C57BL/6NIA mice compared to 4-month-old animals [80].
Similarly, microglial cells isolated from the aged rat neocortex (24 or 30 months) showed
an amoeboid morphology and elevated expression of MHC II antigens [49]. Moreover,
transcriptomic data from adult (12 months), aged cognitively intact (28 months), and aged
cognitively impaired (28 months) male F1 rats determined that MHC II antigen presentation
was significantly upregulated with aging [57]. The same pattern was observed in vivo with
an upregulation of CD68 in grey and white matter microglia as well as MHC II-positive
aggregates in white matter microglia in aged rats [16]. MHC II expression also increased
from 2 to 12 months of age in the frontal and parietal cortices, basal ganglia, thalamus, and
corpus callosum, but not in the SNc and cerebellum, of male Wistar rats [42].

Evidence of morphological changes in microglia have been identified in canines and
tree shrews (Tupaia belangeri). In the DG, but not CA1, of aged canines (10–12 years),
Iba1-ir microglia displayed hypertrophy and retracted processes compared to adult dogs
(2–3 years) [59]. Aged canine microglial cells also were characterized by clustering, ab-
normalities in cytoplasmic structure, deramified, fragmented, or tortuous processes, and
occasional spheroidal or bulbous swellings [81]. Like NHP, old tree shrews (8 years) pre-
sented with an increased number of ferritin-positive and dystrophic microglia compared
to adult animals (4 years) [82].

2.3. Age-Related Changes in Cytokine Expression, Phagocytosis, and Oxygen Species

Microglia reside in a primed state in the aged brain, leading to an increased response
to proinflammatory cytokines or a blunted reaction to anti-inflammatory signals, though
age-associated expression of cytokines, chemokines, and growth factors varies widely
within and between species. Primary proinflammatory proteins include IL-1α, IL-1β, TNF-
α, IFN-γ, IL-6, IL-12, IL-15, IL-17, and monocyte chemoattractant protein-1 (MCP-1), while
anti-inflammatory proteins consist of IL-4, IL-8, IL-10, IL-1Rα, TGF-α, and TGF-β. Elderly
humans have greater circulating cytokine levels of proinflammatory IL-1β, IL-6, and TNF-α
and anti-inflammatory IL-10 [83]. Elevated serum expression of C-reactive protein (CRP),
IL-6, and IL-10 were noted in elderly individuals with deficits in executive functioning [84].
In addition, the number of activated microglia expressing proinflammatory cytokine IL-1α
is increased with age in the human brain [68]. Like humans, old rhesus macaques have
higher plasma levels of proinflammatory IL-6 and IL-17 and anti-inflammatory IL-1Rα
expression, while IL-2, IL-12, and IL-15 decreased with age, and TNF-α, IFN-γ, IL-4, and
IL-10 were not age-dependent [85,86]. In contrast, multiplex analyses in more than 100
rhesus macaques, ages 2 to 24 years, found circulating concentrations of proinflammatory
IL-1β, IL-12, and TNF-α, chemokine MCP-1, growth factor TGF-α, and anti-inflammatory
IL-1Rα, IL-4, and IL-8 increased with age, while IL-6, IFN-γ, TGF-β, and IL-10 were not
impacted by age [87]. Peripheral levels of proinflammatory CRP and anti-inflammatory
IL-8 also were not associated with age in old marmosets [88]. Most research on age-related
modifications in cytokine and growth factors comes from rodents, and several discrepancies
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exist between strains and species. Higher mRNA expression of proinflammatory IL-6, TNF-
α, and IL-1β and anti-inflammatory IL-10 and TGF-β1 was noted in microglia isolated from
transgenic mice expressing enhanced-green fluorescent protein under the promoter of the c-
fms gene for macrophage-colony stimulating factor receptor (M-CSFR) [27]. Glial isolations
from old male BALB/c mice demonstrated an age-associated increase in proinflammatory
IL-6 mRNA, a decrease in anti-inflammatory IL-10, and a lack of upregulation of anti-
inflammatory IL-4Rα expression after LPS injection [89,90]. Microglia derived from aged
male C57BL/6 mice secreted greater amounts of proinflammatory IL-6, TNF-α, and IL-1β
relative to younger mice, while growth factor TGF-β1 was downregulated [63,91,92]. In
addition, application of TGF-β1 inhibited proliferation of microglia cells isolated from
3-month-old, but not 24-month-old F1 male rats, indicating a dampened reaction due to
age [49]. After LPS exposure, aged glia cultures from the neocortex of male F1 rats (3 and
24 months) expressed greater IL-1α and IL-1β mRNA, while hippocampal cultures had
higher IL-6 mRNA and protein and no change was found in TNF-α mRNA or protein
for either region [93]. In vivo alterations in cytokine levels also have been identified in
postmortem rodent brain tissue. Basal hippocampal levels of proinflammatory TNF-α and
anti-inflammatory TGF-β1 were increased in 12-month-old C57BL/6J mice compared to 2-
month-old animals, though upon LPS exposure, neither cytokine was upregulated in aged
mice [94]. IL-6 protein concentration was higher in the cerebral cortex, hippocampus, and
cerebellum, but not the hypothalamus, of aged male BALB/c mice (24 months) compared to
young mice (1 and 3 months), and the number of microglia expressing IL-6 also increased
with age [95]. LPS administration amplified proinflammatory IL-1β, IL-6, and TNF-α
mRNA in the neocortex, hippocampus, and cerebellum, anti-inflammatory IL-10 in the
neocortex, and IL-1β in the hypothalamus of aged male BALB/c mice (18–24 months)
compared to 3–4-month-old mice [79,96,97]. Peripheral injection of Escherichia coli (E. coli)
also promoted higher and prolonged levels of IL-1β in the hippocampus, but not in
the hypothalamus, parietal cortex, or prefrontal cortex of aged male F1 rats (24 months)
compared to young adults (3 months) [98]. Studies of microglial-related cytokines outside
of humans, NHP, and rodents are rare. Older dogs (10–12 years) had greater protein levels
of proinflammatory IFN-γ in the DG compared to adult animals (2–3 years) [59]. Aged
horses (>16 years) express increased IL-6, IL-8, and IFN-γ after LPS stimulation compared
to adult horses (6–14 years) [99].

Microglia are the primary source of ROS and inducible nitric oxide synthase (iNOS),
which leads to greater proinflammatory cytokine release, reduced antioxidant defense, and
cytotoxic effects in the brain [29]. The majority of elderly humans develop an oxidative
stress condition, characterized by increased circulating levels of peroxides and a slight
reduction in antioxidant reserve [100]. Age-related modifications in microglia-produced
oxygen species have been reported in NHP, rodents, and canines. Levels of iNOS and
3-nitrotyrosine produced by microglia increased with age in the subcortical white matter of
rhesus monkeys [76]. The content of iron in brain cells with oxidized RNA increased during
aging in hippocampal and neocortical regions of aged marmosets compared to young
animals [74]. In rodents, primary microglia isolated from old C57BL/6J mice displayed
a significant age-related increase in the basal production of microglial ROS, indicating
greater oxidative stress with age [63]. After LPS exposure, microglia isolated from the
neocortex of 2-month-old C57BL/6J mice secreted nitric oxide (NO), while microglia from
12-month-old mice predominantly produced ROS [94]. Furthermore, anti-inflammatory
TGF-β1 inhibited NO production in microglia induced by LPS from 3-month-old but not
12- or 24-month old rat brains [49]. Markers of oxidative stress, 4-hydroxynonenal (HNE)
and 8-Hydroxy-2′-deoxyguanosine (8-OHdG), increased with age in macrophages in aged
canine brains [101].

Secretion of chemokines attracts macrophages, including microglia, to clear cellu-
lar debris through scavenger receptors, degrading enzymes, and phagocytosis [102,103].
Normal aging has significant effects on the phagocytic uptake of debris, particularly
the nondegradable intracellular pigment called lipofuscin. Lipofuscin accumulation in
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the cytoplasm and lysosomes of neurons is one of the most consistent features of aging
and has been noted in several species [104,105]. However, evidence of the pigment in
glial cells is infrequent, even in the elderly human brain [106]. In aged rhesus monkeys
(25–35 years), microglia displayed heterogeneous intracellular inclusions indicative of
lipofuscin deposition, increased phagocytosis, and a reduced capacity to digest engulfed
particles [41]. Membrane-bound inclusions resembling lipofuscin also were observed in
the cerebral cortex and hippocampus of aged rats, while age-related increases in lipofuscin
were identified in old canine and equine brains [47,61,78,101,107]. Besides lipofuscin accu-
mulation, changes in the number of phagocytic-specific macrophages and receptors have
been demonstrated with age. The density of phagocytic Gal-3-positive microglia was sig-
nificantly higher in the corpus callosum, cingulum bundle, and frontal white matter of old
rhesus monkeys (21–31 years) compared to young (6–10 years) and middle-aged animals
(11–20 years) [40]. Conversely, using a toxin model of demyelination, older female Sprague
Dawley rats (10–13 months) exhibited a delay in the recruitment and activation of OX-42-
positive and scavenger-receptor-type-B-positive macrophages following demyelination
compared to young rats (2 months) [108].

2.4. Age-Related Changes in Microglia-Derived Extracellular Vesicles

Microglia can communicate with other cell types by releasing soluble factors as well
as exchanging biomolecules through secreted extracellular vesicles (EV). First reported in
sheep reticulocytes, EV are cell-derived, membrane-bound vesicles that eliminate waste cargo
and mediate intercellular communication by diffusion and exchange of lipids, proteins, and
RNA, which can alter the physiological condition of the recipient cell [109]. Ranging in size
from 30 nm to 1 µm, EV are released into the extracellular space by endocytic maturation
(exosomes) or larger vesicles derived from direct budding at the plasma membrane (microvesi-
cles) [110]. Previous studies reported the presence of EV of microglial origin and indicated
their importance in regulating neuronal development, regeneration, and modulation of synap-
tic functions [111,112]. When EV are released into the extracellular space via endocytosis
or phagocytosis, they diffuse over long distances due to their size and are internalized by
cells. However, our understanding of what triggers the release of EV in microglia and the
microglial regulation of EV is currently limited (reviewed in Paolicelli et al., 2019) [113].

A growing amount of research has linked EV, including exosomes, to aging processes
with implications in cellular senescence, “inflammaging”, and epigenetic alterations [114].
Age-related changes in the circulating exosome pool have been reported in cells, including
a varying number of exosomes and differing exosomal content released from senescent
cells compared to younger cells [115]. Currently a rapidly expanding field of investigation,
exosomes also have emerged as a critical modulator of immune responses [116,117]. In-
travenous infusions of EV derived from mesenchymal stem cells in aged female rhesus
monkeys (16–26 years) with cortical injury resulted in recovered motor function more
rapidly and completely than aged monkeys given a vehicle control [118]. In addition, EV
treatment after injury was associated with greater MHC II densities of ramified microglia
and lower numbers of amoeboid microglia in the primary motor cortex, suggesting that EV
can reduce neuroinflammation and shift microglia towards restorative functions. Activated
primary microglia from C57BL6/J mice were shown to increase the expression of exosome
regulatory genes including Rab27a with a further increase in exosome release and Rab27a
upregulation in microglia from aged (24 months) mice compared to young (3 months)
mice [119]. Furthermore, activated microglia increased the recruitment of inflammatory
molecules, such as TNF-α, IL-1β, IL-10, and IL-6, into exosomes, while inhibition of exo-
some biogenesis in the aged C57BL/6 mouse brain exacerbated inflammation, indicating
that exosome release is imperative for the resolution of inflammation [119,120]. Conversely,
other studies have shown that aging does not affect phagocytosis of exosomes by mi-
croglia [121]. Though a dramatic increase has occurred in the number of studies exploring
the exosomal activity and cargo in the brain, understanding how these changes occur
throughout physiological aging and under homeostatic conditions remains in its infancy.
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3. Microglia in Alzheimer’s Disease

Alzheimer’s disease is a progressive, neurodegenerative brain disorder that affects
6.2 million Americans [122]. Most patients begin to experience symptoms, such as diffi-
culties with memory, language, and problem-solving, after 65 years of age. Pathologic
hallmarks associated with AD include aggregations of the protein fragment amyloid-beta
(Aβ) into extracellular plaques, misfolded, hyperphosphorylation of the protein tau in
neurofibrillary tangles (NFT), and selective neuronal loss in the prefrontal cortex and
hippocampus [123,124]. Conservation of the Aβ protein sequence is highly conserved
across mammals, while the microtubule-associated protein tau (MAPT) sequence appears
less conserved with substantial variations in the presence of tau isoforms noted [125–128].
Both Aβ and tau pathologies have been identified in the brains of several species besides
humans (Table 1). In addition, evidence indicates that chronic neuroinflammation, medi-
ated by microglia, may play a role in the pathogenesis of AD [19]. Recent genome wide
association studies implicate several genes related to the immune system (e.g., CD33, HLA-
DRB5-HLA-DRB1) and proteins highly expressed in microglia (e.g., triggering receptor
expressed on myeloid cells 2 [TREM2]) increase risk for sporadic, late-onset AD [129]. Fur-
thermore, activated microglia stimulate neurons to overproduce Aβ, resulting in synaptic
loss, the formation of extracellular plaques, and subsequent NFT formation [130,131]. These
effects, in turn, promote increased microglial activation creating a positive feedback loop
that drives the development of AD. Support for this concept comes from human cell lines
and tissue as well as transgenic mice models. Human neuronal cell lines established that
inflammatory factors released from stimulated microglia upregulate mRNA and protein
expression of tau and the production of amyloid precursor protein (APP), which is cleaved
into Aβ peptides [132]. Activated microglia migrate to plaques and NFT, participate in
the clearance of Aβ, and proliferate at sites of Aβ deposition in the hippocampus of AD
patients and transgenic mice models [133–138]. Alterations in microglial density and ac-
tivation, phenotype, phagocytosis, cytokine production, and oxygen species in relation
to Aβ and tau pathologies have been reported in NHP, transgenic rodent models, and
carnivores with AD-like lesions.

Table 1. Types of AD-like pathologies, including Aβ, tau, and microglial activation, by order and genus.

Order Genus Common Name Aβ Tau Microglial Activation Sources

Primates

Pan Chimpanzee DP, SP, V P, NFT, NC + [38,139–142]

Gorilla Gorilla DP, SP, V ND ND [143–145]

Pongo Orangutan DP, V ND ND [125,146]

Papio Baboon DP, V P, NFT NE [147–149]

Macaca
Rhesus macaque DP, SP, V P, NFT + [125,142,148–155]

Cynomolgus
macaque DP, SP, V Rare NFT NE [156–161]

Cercopithecus Campbell’s guenon NE P NE [149]

Chlorocebus Vervet monkey
(African, Caribbean) DP, SP, V Rare NFT + (Aβ) [162–164]

Saimiri Squirrel monkey DP, SP, V ND + (VAβ) [125,148,165–168]

Saguinus Cotton-top tamarin DP, V ND + (Aβ) [169]

Callithrix Common marmoset DP, SP, V ND + (fAβ, LPS) [170–174]

Eulemur Brown lemur NE ND NE [149]

Microcebus Gray mouse lemur DP, SP, V IC NE [175–179]
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Table 1. Cont.

Order Genus Common Name Aβ Tau Microglial Activation Sources

Rodents

Rattus Rat ND ND NE [180]

Mus Mouse ND ND NE [181–184]

Cavia Guinea Pig DP ND NE [149,185]

Meriones Gerbil ND NE NE [186,187]

Tupaia Tree shrew DP IC + (tau) [82,188]

Lagomorphs Oryctolagus Rabbit NE P NE [149]

Carnivores

Canidae Domestic dog DP, V P + (Aβ) [125,189–195]

Felis Domestic cat DP, V P, NFT NE [189,191,195–198]

Panthera Snow leopard NE ND NE [149]

Acinonyx Cheetah DP, V
(rare capillary) NFT NE [199]

Ursus

Polar bear DP, SP ND NE [125,149,200,201]

Asiatic brown bear ND NFT NE [201]

American black bear DP, SP ND NE [202]

Melursus Sloth bear NE ND NE [149]

Tremarctos Spectacled bear NE P NE [149]

Gulo Wolverine DP, SP, V NFT NE [203]

Zalophus/
Neophoca

Sea lion
(Californian,
Australian)

DP, SP, V NFT + [204]

Phoca Harbor seal DP (rare),
SP (rare) Rare NFT + [204]

Odobenus Walrus DP, SP, V NFT + [204]

Cetaceans

Ziphius Cuvier’s beaked
whale ND ND NE [205]

Globicephala Short-finned pilot
whale ND ND NE [205]

Mesoplodon Blainville’s beaked
whale DP P (cerebellum) NE [205]

Tursiops Bottlenose dolphin DP, V P NE [206,207]

Stenella Striped and spotted
dolphins DP, SP, V NFT NE [205,206]

Delphinus Common dolphin DP, SP (rare) Rare NFT NE [205,208]

Grampus Risso’s dolphin ND ND NE [205]

Perissodactyl Equus Horse ND ND ND [61,191]

Artiodactyls

Capra Goat ND P NE [191]

Ovus Sheep DP, SP (rare) P, NFT NE [127,191,209]

Bos Cow DP ND + (Aβ) [210]

Lama Guanaco NE P NE [149]

Rangifer Reindeer NE P NE [149]

Bison Bison NE P, NFT NE [149,211]

+, present; DP, diffuse plaque; ND, not detected; NE, not examined; NFT, neurofibrillary tangle; P, pretangle neuron; SP, senile dense-core
plaque; V/VAβ, vascular amyloid-beta.

3.1. AD-Related Changes in Microglial Activation and Density

Glial activation is associated with both Aβ and tau pathologies in AD (Figure 1). Aβ

peptides are capable of directly activating microglia, resulting in proliferation demonstrated
by increased microglial density [212]. While aging results in greater numbers of microglia in
the white matter, the AD brain shows a selective increase in gray matter microglial density,
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indicating a different mechanism of activation in normal aging versus AD [11,76,213].
Specifically, increased microglial density and proliferation occurs concomitant with Aβ

plaques in the hippocampus of AD individuals [214,215]. However, while an abundance of
research supports the concept that Aβ initiates microglial activation, a study examining
four humans with substantial plaque loads in absence of tau lesions found no evidence
of microglial activation [72]. Neuroinflammation also has been implicated in driving
hyperphosphorylation and aggregation of tau in humans [216,217]. Microglia density in
postmortem AD brains increased linearly, even after amyloid burden stopped growing, and
correlated with NFT burden instead of plaque load [218]. Moreover, increased microglial
activation and proliferation was associated with high NFT numbers, particularly in the CA1
subfield of the AD hippocampus [11,138,214]. NFT burden also was positively correlated
with HLA-DR-ir activated microglia density in a non-amnestic clinical AD variant called
primary progressive aphasia [219].

NHP display microglial activation primarily in response to Aβ pathologies. Microglial
activation was found in the brains of aged common marmosets that displayed Aβ and tau
deposits, though dystrophic microglia, not activated microglia, contained hyperphosphory-
lated tau [35]. In the neocortex of aged rhesus monkeys, which demonstrate senile plaques,
vascular Aβ, and NFT, activated microglia were associated with fibrillar Aβ plaques
and neuronal loss [220]. Likewise, when insoluble Aβ fibrils were microinjected into the
cerebral cortex of old rhesus macaques, profound neuron loss, tau phosphorylation, and
microglial activation and proliferation were observed [221]. A substantial increase in acti-
vated microglia also was observed in the DG of rhesus monkeys injected with oligomeric
Aβ [150]. Intriguingly, inhibition of microglial activation with a macrophage/microglia
inhibitory factor eliminated fibrillar Aβ toxicity in elderly rhesus macaques [222]. Injection
of Aβ oligomers in female cynomolgus monkeys resulted in microglial activation along
with NFT formation, astrogliosis, and synapse loss [223]. A recent study of 20 aged chim-
panzees with varying levels of AD-like pathologies, including Aβ lesions, NFT, and tau
neuritic clusters, found increased microglial activation in the hippocampus in association
with Aβ42-positive plaques and vasculature but not NFT [139]. In contrast, Aβ plaques
and vessels in aged orangutan (Pongo pygmaeus) brains were not associated with microglia
activation [146]. These data demonstrate an important variance between humans and NHP.
While both tau and Aβ are associated with increased microglial activation in AD brains,
Aβ appears to be the predominant pathology correlated with neuroinflammation in NHP,
perhaps due to significantly reduced NFT burden seen in these animals.

Rodents, such as mice and rats, do not naturally develop amyloid plaques or NFT;
therefore, these pathologies are typically induced using human transgenes. Correspond-
ing to humans, microglial activation in the vicinity of Aβ plaques and vessels has been
detailed in several transgenic mouse models of AD, which overexpress APP or Aβ but
lack NFT formation [224–227]. APPsw/PS1 mice exhibit higher activation of microglia
correlated with Aβ, and double APP/PS1 transgenic mice have greater numbers of Iba-1
microglia [228,229]. A mouse model of CAA, Tg-SwDI, also showed abundant reactive
microglia near microvasculature containing fibrillar Aβ [230]. Like AD brains, aged APP23
and APPsw (Tg2576) mice display microglial aggregation and activation in the neocor-
tex and hippocampus associated with dense-core amyloid deposits, but not with diffuse
plaques [224,231]. Additionally, after intraperitoneal injection with LPS, hyperreactive
microglia were found surrounding dense-core plaques of 5XFAD (12 months) and APP23
(24 months) transgenic mice [232]. Conversely, in a more aggressive AD mouse model
(TgCRND8), which develops diffuse and dense-core plaques as early as 9–10 weeks, mi-
croglia were associated with both types of plaques [233]. The triple transgenic (3xTg-AD:
APP/PS1/tau) mouse demonstrates increased microglial density in the EC at 6 months,
CA1 subfield at 12 months, and DG at 18 months, mimicking the regional and temporal
distribution of pathology observed in AD brains [225–227]. Injection of LPS in 3xTg-AD
mice also results in tau hyperphosphorylation with enhanced microglial activation [234].
Interestingly, 3xTg-AD mice had significantly greater resting and activated microglial
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densities in the CA1 and DG at 12 and 18 months of age compared to non-transgenic
controls, and the increase in resting microglia ensued prior to glial activation and forma-
tion of Aβ plaques [225,226]. Likewise, a study of hAPP-J20 mice identified a correlation
between the number of activated microglia and neuron loss in CA1, while Aβ patholo-
gies appeared last, indicating glial activation may precede Aβ expression and neuron
loss in these animals [235]. However, APP/PS1/CD11b-HSVTK mice, in which nearly
complete ablation of microglia occurred, demonstrated the formation of Aβ plaques inde-
pendent of the presence or absence of microglia, despite increased microglial activation
in association with Aβ noted in an earlier study [236,237]. Another model of microglial
depletion using diphtheria toxin in APP/PS1 mice found Aβ plaque size was reduced
by 13% within one week, although the number of plaques did not change [238]. Fur-
thermore, 5xFAD mice, in which CSF-1R was pharmacologically inhibited eliminating
80% of total microglia, resulted in rescued dendritic loss, prevented neuronal loss, and
improved contextual memory despite unaltered Aβ plaque loads [239]. Moreover, young
male Wistar rats injected with Aβ oligomer had increased microglia activation, but did
not present with NFT in contrast to NHP [223]. Unfortunately, nearly all AD transgenic
mouse models lack tau pathologies, particularly NFT, but neuroinflammation has been
examined in models of tauopathies. Like overexpressing amyloid mice, the PS19 mouse
model of tauopathy, which carries the human tau P301S mutation, expressed microglial
activation coinciding with synaptic pathology followed by fibrillary tau pathology and
astrogliosis, while chemically or genetically enhanced microglial activation significantly
accelerated tau pathology in hTau mice [240,241]. Purified microglia derived from hTau
mice also induced tau hyperphosphorylation within the non-transgenic mouse brain [240].
Deficiency of the microglial fractalkine receptor (CX3CR1) in hTau/Cx3cr1-/- mice resulted
in microglia-specific neuroinflammation and accelerated onset and progression of tau
pathology, cognitive dysfunction, and neurodegeneration [137]. Finally, like aging, sex
differences are noted in rodent microglia in association with AD pathologies (reviewed in
Han et al., 2021) [242].

Though multiple mammalian species demonstrate Aβ and tau pathologies, com-
prehensive studies of whether neuroinflammation accompanies such lesions are scarce
(Table 1). Aged canines exhibit Aβ plaques and tau-positive pretangle neurons, but dif-
fering from AD, canine senile plaques with neurites did not correlate with activated
microglia [243–246]. Rather, activated and dystrophic microglia were present in cognitive
dysfunction syndrome (CDS), a condition accompanied by tau synaptic impairment, in
canines [81]. Additionally, microglial infiltration was identified around Aβ plaques and
an increase in microglia was noted near NFT in pinnipeds (i.e., seals, sea lions, and wal-
rus) [204]. Reactive microglial cells also have been localized in proximity to Aβ deposits in
bovine brains [210].

3.2. AD-Related Changes in Microglial Morphology and Phenotype

In AD, microglia are specifically associated with dense-core Aβ plaques and NFT,
an activated state as represented by intermediate and amoeboid morphologies, and an
increased expression of MHC II and HLA-DR antigens in the neocortex and hippocam-
pus [13,69,247–250]. In addition to greater protein expression, HLA-DR-ir microglia in-
creased in number in the midtemporal gyrus of AD patients compared to controls, and
CD33-ir microglia density was positively correlated with insoluble Aβ42 levels and plaque
loads in AD brains [251,252]. Moreover, the number of CD11c-ir microglia increased rapidly
during plaque accumulation in early-onset AD brains [232]. In contrast, diffuse plaques are
not associated with microglia in AD, and humans with significant Aβ plaque deposition,
but no tau lesions, displayed fully ramified microglia with even cell distribution and a lack
of clustering throughout the temporal lobe [13,72].

NHP also exhibit reactive morphological changes to Aβ. Activated microglia were
detected in the proximity of senile plaques in the brain of a marmoset injected with fibrillar
AB and LPS [174]. Dystrophic microglia, not activated or resting microglia, contained hy-
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perphosphorylated tau (AT100) in aged marmosets [35]. In cotton-top tamarins (Saguinus
oedipus), Aβ42 plaques were associated with reactive microglia [169]. Activated, hyper-
trophic microglia were near amyloid-positive capillaries in squirrel monkeys (Saimiri sci-
ureus), which predominantly exhibit CAA [165,253]. A significant increase in the cell soma
of activated microglia has been noted in the DG of rhesus monkeys injected with oligomeric
Aβ, while cerebral amyloid deposits lacking Aβ dimers induced greater Iba1 immunoreac-
tivity in microglia in these animals [150,155]. Furthermore, microglia in amyloid-negative
areas displayed a resting morphology, while microglia in amyloid-positive regions showed
a reactive profile with hypertrophy, beading with spheroidal swellings, deramification,
and ameboid morphology. Increased clustering of Iba1-ir microglia also has been observed
surrounding plaques in African vervet monkeys (Chlorocebus aethiops), and HLA-DR-ir
microglia were present in or adjacent to plaques in Caribbean vervet monkeys (Chlorocebus
pygerthrus) [162,164]. Tau-positive (Alz50) glial cells have been identified in old gorilla
brains [143]. Aged chimpanzees exhibited an increase in intermediate-shaped microglia
morphologies associated with Aβ42 plaque and vessel volumes, and tau deposition was
significantly increased in activated, intermediate microglia as measured by PHF1/Iba1
immunoreactivity [139]. Though tau lesions were not significantly correlated with mi-
croglia morphologies, intermediate and amoeboid morphologies were noted adjacent to
pretangles, NFT, and tau NC in these animals.

Like AD brains, transgenic rodent models have higher expression of MHC II and HLA-
DR antigens. Gene expression profiling of plaque-associated MHC II microglia from 5XFAD
mice revealed a proinflammatory phenotype with upregulation of several markers for
genes involved in the immune response to external stimuli (e.g., CD63) and phagocytosis
(e.g., CD11c) [232]. In contradiction, CD11b was not upregulated in microglia in double
APP/PS1 transgenic mice [228]. However, in the PS19 mouse model of tauopathy, early
activation of HLA-DR-ir and CD11b-ir microglia was reported, and microglial activation
coincided with synaptic pathology followed by NFT formation and astrogliosis [241].

In canines with CDS, Aβ plaque density was not associated with microglia clusters,
though reactive microglia with enlarged cell processes (i.e., intermediate) and dystrophic
microglia with spheroidal or bulbous swellings and deramified or tortuous processes were
present [81,245]. Conversely, in a case report of neuropathology in a 12-year-old dog,
neuron loss was associated with substantial diffuse plaques with microglial clustering
and CAA [194].

3.3. AD-Related Changes in Cytokine Expression, Phagocytosis, and Oxygen Species

In AD, Aβ stimulates a pathway dependent on nuclear factor-kappa B (NF-κB), which
subsequently activates chronic proinflammatory cytokine production [254,255]. However,
akin to aging studies, inconsistencies are present regarding which cytokines are affected.
In vitro cultured human microglia and monocytes (THP-1) exposed to fibrillar Aβ peptides
upregulate gene expression of proinflammatory cytokines IL-1β, IL-1, IL-6, and TNF-α,
anti-inflammatory cytokine IL-8, and matrix metalloproteinases (MMP) [254,256]. Similarly,
dose-dependent increases in proinflammatory IL-1β, IL-6, TNF-α, MCP-1, and MIP-1α,
anti-inflammatory IL-8, and M-CSF were observed in microglia isolated from AD and
non-demented brains exposed to pre-aggregated Aβ [257]. In vivo research demonstrates
higher soluble TREM2 levels in AD cerebrospinal fluid and plasma compared to age-
matched samples, though unlike in vitro studies, no detectable differences were found
in TNF-α and IL-6 levels between the two groups [151]. In cerebrospinal fluid of healthy
controls, subjective cognitive decline (SCD), mild cognitive impairment (MCI), and AD, sol-
uble TREM2 was increased in SCD, while MCP-1 was noted at the MCI and AD stages [258].
Additionally, total tau and phosphorylated tau (p-tau) levels were positively correlated
with soluble TREM2 levels in the SCD group. A meta-analysis of peripheral levels of
proinflammatory markers IL-1β, IL-6, TNF-α, and CRP also determined that only IL-1β
was significantly increased in AD patients [259]. In contrast, proinflammatory cytokines
TNF-α, IL-5, IL-6, IL-12p70, MCP-1, and MIP-1α as well as anti-inflammatory IL-8 were
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upregulated in AD brains, while GM-CSF, IL-17, and IL-1β were downregulated in control
brains [260,261]. In a novel study examining cytokine profiles in the brains of humans
that had intermediate or high probability of resilience to AD pathologies (i.e., presence of
significant Aβ and tau lesions but absence of dementia), upregulation of proinflammatory
IL-1β and IL-6 and anti-inflammatory IL-4, IL-10, and IL-13 in resilient cases delineated
differential inflammatory activity compared to AD cases [262]. Moreover, resilient brains
exhibited greater expression of neurotrophic factors, such as PDGFβ, and reduced expres-
sion of chemokines associated with microglial recruitment, including MCP-1, compared to
AD brains.

Changes in cytokine expression have been demonstrated in NHP, transgenic rodent
models of AD, and canines with CDS. Like AD patients, a robust increase in cerebrospinal
fluid and plasma levels of soluble TREM2 was found in adult rhesus monkeys that received
an infusion of recombinant adeno-associated virus (AAV) capsid 1 carrying two tauopathy-
related mutations (P301L/S320F) in the EC [151]. However, these monkeys also displayed
significant increases in TNF-α and IL-6 in contrast to AD individuals. Similarly, oligomeric-
Aβ-injected rhesus macaques had increased cerebrospinal fluid levels of TNF-α compared
to control animals [150]. In 3xTg-AD mice, higher expression of TNF-α and MCP-1 was
found in the EC in association with Aβ deposition [227]. In APP/PS1 mice, microglia were
negative for TNF-α at 6 months old, but at 18 months, a significant increase in TNF-α
along with a tenfold increase in oligomeric Aβ was identified [237]. Moreover, CD45
deficiency in APP/PS1 transgenic mice resulted in increased levels of soluble oligomeric
and insoluble Aβ accompanied by greater abundance of TNF-α and IL-1β [263]. APPsw
mice upregulated proinflammatory TNF-α, IL-1β, and IL-17 and anti-inflammatory IL-10
cytokines, which were blocked by knockout of the toll-like receptor 4 (TLR-4) gene [264].
Microglia, localized with fibrillar AB deposits, were immunoreactive for IL-1β, TNF-α,
IFN-γ, and IL-12, and suppression of IFN-γ reduced plaque load and gliosis in these
animals [265–267]. In 5XFAD and APP23 mice, LPS induced substantial expression of
IL-1β in plaque-associated microglia [232]. Downstream of Aβ activation, cytokines also
can affect tau phosphorylation, potentially accelerating NFT formation [268]. Specifically,
IL-1, IL-1β, IL-6, IL-18, TNF-α and IFN-γ are known to modify tau phosphorylation. IL-1β
has been shown to increase levels of tau mRNA in rats [269]. Reports of IFN-γ diverge
with evidence of both reduced phosphorylation of tau in 3xTg-AD mice and increased
soluble p-tau in two mouse models of tauopathy, JNPL3 and rTg4510 [270,271]. In APP/PS1
and 3xTg-AD mice, TNF-α was found to decrease p-tau [272,273]. Inclusion of an IL-1R
antagonist to purified microglia derived from hTau mice reduced microglia-induced tau
pathology [137]. To date, a single study has examined cytokine changes in the canine brain.
In the frontal cortex of canines with CDS, upregulation of several inflammatory genes, such
as chemokine CCL2, IL-1α, and IL-1R1, was noted compared to control animals [81].

Aβ and tau aggregation in AD results in activation of disease-associated microglia
(DAM), which facilitate persistent inflammation and ROS generation primarily by NADPH
oxidase 2 (NOX2) [274]. In vitro cultured human microglia exposed to Aβ peptides pro-
duced increased ROS [256]. Accumulation of Aβ42 in the AD brain is associated with
oxidative stress, including lipid peroxidation and protein oxidation [275]. Likewise, mi-
croglia isolated from aged rhesus monkeys produced significant ROS when stimulated by
fibrillar Aβ [222]. Rats injected with fibrillar Aβ in the striatum also showed a significant
increase in microglial iNOS expression and loss of NOS-ir neurons compared to rats given
soluble Aβ or vehicle injections [276]. Recently, a “dark” microglia phenotype, which
includes an electron-dense cytoplasm, strong CD11b immunoreactivity, and increased
oxidative stress and phagocytic activity, has been discovered in the vicinity of Aβ plaques
in APP/PS1 mice [277]. Microglia produced greater iNOS expression from 6 months to
18 months in APP/PS1 mice, likely due to a significant increase in oligomeric Aβ lev-
els [237]. In canines with cognitive dysfunction syndrome, SLC11A1, a gene involved in
protection against ROS in macrophages, was upregulated compared to control animals [81].
In old dogs, oxidative stress marker 8-OHdG is correlated with dementia [101].
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Upon activation by Aβ deposition, microglia proliferate, surround plaques, and limit
the further spread of amyloid deposition by phagocytosis [134]. Microglia phagocytose Aβ

in 6-month-old APP/PS1 mice, and a novel ex vivo model using co-culturing organotypic
brain slices from aged APP/PS1 and neonatal wildtype mice resulted in proliferation,
recruitment, and clustering of microglia with reduced plaque size [237,278]. Treatment
of APP/PS1 mice with macrophage CSF also increased microglial phagocytosis of Aβ,
reducing the number of plaques [279]. In APP23 mice, microglia numbers and phago-
cytic activity increased collectively, suggesting that microglia are the main drivers of Aβ

clearance in this model [280]. An investigation in 5XFAD mice found that activated mi-
croglia surround plaques and take up Aβ through phagocytosis, after which the microglia
become apoptotic and release the accumulated Aβ into extracellular space contributing
to further plaque growth [281]. Microglia also are involved in the uptake of tau protein.
Primary microglia isolated from C57BL/6 mice rapidly internalized and degraded hyper-
phosphorylated paired helical filament tau isolated from human AD brain tissue [282].
Moreover, co-incubation of microglia with an anti-tau monoclonal antibody enhanced
microglia-mediated uptake and degradation of pathological tau in PS19 mice, and in a
rhesus macaque tauopathy model, microglia actively took in three-repeat and four-repeat
tau isoforms from pretangle neurons [151]. Yet despite the abundant presence of reactive
microglia near dense-core plaques and NFT, microglia fail to clear these lesions in AD
brains, implicating an age-related impairment in microglial phagocytosis, persistent in-
flammation, and decreased binding, degradation, and clearance of Aβ [63,283]. Support
for age-related alterations is found in humans and rodent models. Rare heterozygous vari-
ants in TREM2, a gene involved in microglial activation and phagocytosis, are associated
with a significant increase in the risk of AD [284]. Microglia isolated from 6-month-old
C57BL/6 mice lacked a CD47-dependent ability to phagocytose fibrillar Aβ compared to
neonatal mice [285]. In addition, microglia derived from adult and aged APP/PS1 mice
had significantly decreased mRNA levels of Aβ-binding scavenger receptors (SR) SRA,
CD36, and receptor for advanced glycation end products and of Aβ-degrading enzymes
insulysin (IDE), neprilysin, and MMP9 compared to wildtype controls [134].

3.4. AD-Related Changes in Microglia-Derived Extracellular Vesicles

Accumulating evidence suggests that the progression of AD lesions in the brain
may be attributed to exosomes involved in cell-to-cell communication, and aberrations in
intercellular communication have been reported in AD [286,287]. Specifically, recent studies
have identified a role for EV and exosomes in the spread of monomeric and misfolded
proteins, such as Aβ, tau, and α-synuclein [288,289]. In support of this concept, brains of
AD patients demonstrate accumulation of exosomal proteins, Alix and Flotillin, in amyloid
plaques [290]. APP and Aβ oligomers also have been shown to be present in EV and
exosomes extracted from human AD brain tissue and human-induced pluripotent stem
cells [291–293]. A postmortem investigation conducted with tissue from AD and mixed
dementia patients indicated that EV biogenesis was altered during the preclinical stage
of AD with an increase in the population of EV that express MHC class-type antigens
typically attributed to dendritic cells and microglia [291]. Additionally, microglia-derived
microvesicles isolated from the cerebrospinal fluid of AD and MCI patients promotes
formation of soluble Aβ species from extracellular insoluble aggregates [294]. Though
human studies are incredibly scarce to date in cell-specific exosomes, these data imply
that exosomes can act as vehicles for the transfer of pathological content from one cell to
neighboring cells, including immune responsive cells such as microglia and astrocytes.

In the past few years, new evidence has also implicated exosome involvement in
the spread of pathology in transgenic mouse models of AD. An in vivo study in 5XFAD
mice found that exosomes were capable of stimulating Aβ aggregation and inhibition
of those exosomes reduced plaque deposition [295]. A report in tau transgenic rTg4510
mice demonstrated that brain-derived exosomes encapsulated tau seeds and induced tau
aggregation in the recipient cells in a threshold-dependent manner [296]. Additionally,
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inhibiting the synthesis of exosomes or depleting microglia significantly reduced tau
propagation both in vivo and in vitro [297]. Furthermore, exosomes and microvesicles
appear to interact significantly with microglia in these models. Exosomes derived from the
plasma of C57BL/6 mice and injected into the DG of hAPP-J20 mice were predominantly
localized in Iba1-positive microglia in the neocortex and hippocampus [121]. Like in
humans, microvesicles derived from rat primary microglia promote the formation of
soluble Aβ when added to hippocampal cultures [294]. Exosomes were clustered around
extracellular Aβ plaques and localized in activated microglia in hAPP-J20 mice, and the
ability of microglia to engulf exosomes was significantly reduced, suggesting that microglia
play an essential role in AD pathogenesis through the engulfment of exosomes [121].
Pharmacologic blockade of P2RX7, an ATP-gated cation channel enriched in microglia that
triggers exosome secretion, suppressed exosome secretion, decreased tau accumulation,
and ameliorated hippocampal memory deficits in P301S tau transgenic mice [298]. Secretion
of exosomes from primary microglia isolated from the same model was also reduced.
A novel attempt to study the association between tau, EV, and BIN1, the second most
significant locus associated with late-onset AD highly expressed on microglia, reported
that BIN1 contributes to the progression of tau pathology by promoting the release of
tau-enriched EV by microglia in PS19 mice [299]. Moreover, genetic deletion of BIN1
from microglia resulted in the reduction of tau secretion via extracellular vesicles in vitro.
On the other hand, microglia-derived exosomes may have a beneficial role in clearing
toxic proteins. Neuronal exosomes enriched with glycosphingolipids have been shown
to scavenge Aβ while promoting the uptake and consequent intracellular degradation by
microglia in APP transgenic mice [300–302]. In addition, microglia-derived exosomes have
been discovered to carry an exosome-associated insulin-degrading enzyme (IDE), a zinc
metallopeptidase known to efficiently degrade Aβ, thus promoting Aβ clearance [303].

Though our knowledge on microglia-derived EV and exosomes is exponentially
growing, the current focus is on murine models in aging and neurodegenerative disease
research. Further work is required to answer the intriguing questions about exosomes
derived from microglia across species and their potential impact on inflammation in the
aged and diseased brain.

3.5. AD-Related Changes in Microglial Mitochondrial Homeostasis

Disruption of cell energetics is an important factor underlying the pathogenesis of AD,
supporting the idea that alteration of mitochondrial functions may be the cause or the result
of the pathological hallmarks of the disease [304]. Aggregation of Aβ in neurons promotes
degeneration through several mechanisms, including mitochondrial dysfunction, which
results in oxidative stress, impaired mitochondrial dynamics, apoptosis and damaged
function of electron transport chain (ETC) complexes [305,306]. Studies in postmortem
brains of AD individuals and AD transgenic mice have reported increased mitochondrial
abnormalities [307]. PET imaging in brain cells of living AD patients also demonstrated
reduced energy metabolism in affected brain regions, implicating mitochondrial dysfunc-
tion [308,309]. Gene expression studies have identified mitochondrial encoded genes were
abnormally expressed in AD brains and hippocampal neurons; specifically, increased
expression of mitochondrial fission genes (Drp1 and Fis1) and decreased levels of fusion
genes (Mfn1, Mfn2, and Opa1), mitochondrial biogenesis (TFAM, PGC1α, NRF1, and NRF2),
autophagy, and mitophagy were discovered [310–314].

Mitochondria also are increasingly recognized as key hubs in immune responses me-
diated by astrocytes and microglia [212,315–317]. In microglia, LPS- induced inflammation
altered mitochondrial metabolism and morphology, reduced the oxygen consumption
rate, and exacerbated the release of proinflammatory cytokines [318]. Recent evidence
from studies conducted on primary microglia from C57BL/6J mice, Sprague-Dawley rats,
and human microglia-like cells suggests that dysfunctional, fragmented mitochondria are
released from microglia when activated by Aβ [294]. Primary microglia from transgenic
AD mouse models acutely treated with Aβ induced microglial activation, production of
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inflammatory cytokines, and phagocytosis, as well as underwent mTOR-HIF1α-dependent
metabolic reprogramming from oxidative phosphorylation to glycolysis [319]. Furthermore,
microglia in TREM2-deficient 5XFAD mice have lower mitochondrial mass than 5XFAD
mice and exhibit impaired mTOR signaling due to downregulated energy metabolism
suggesting that TREM2 and mTOR together might mediate functions in microglia [320].

Another pathologic feature of AD is reduced mitophagy, the cellular process in which
damaged mitochondria are eliminated from the cell by autophagy [321]. A recent study
in APP/PS1 mice showed that an increase in the number of defective mitochondria in
microglia induced the secretion of proinflammatory cytokines and inhibited the removal
of Aβ plaques. However, restoring mitophagy promoted the phagocytic activity of mi-
croglia, mitigated inflammation, ameliorated Aβ pathology and cognitive decline in this
model [321]. Stimulation of mitophagy also inhibited phosphorylation of tau, resulting
in memory improvement, in a Caenorhabditis elegans tau model [321]. Accumulated dam-
aged mitochondria in microglia possibly modulate this response by releasing DAMPS
(damaged-associated molecular patterns), increasing ROS levels, which in turn, activates
the NLRP3 inflammasome and decreases ATP [322,323]. This is evident in APP/PS1 mice
where treatment with a mitophagy inducer decreased the expression of NLRP3, IL-1β
and cleaved caspase 1 [321]. Furthermore, primary microglia isolated from NLRP3 and
caspase-1 knockout mice indicated an increase in phagocytosis [324]. These studies un-
derscore an intertwined role between enhanced mitophagy and inflammasome-mediated
neuroinflammation making it a promising target for AD [325].

4. Conclusions

Animal models for aging and neurodegenerative diseases range from bacteria to NHP,
though the most common model is rodents. Rodents play a valuable role in biomedical
research due to the ease of manipulating their genes, but scientists now recognize the
significant, evolutionary neurological differences between rodents and humans, which
likely have contributed to high failure rates in AD clinical trials. In addition, genetically
engineered rodent models do not recapitulate the full pathologic profile of the disease.
Here, we reviewed the microglial expression profiles related to aging and AD in a broad
range of species. While high similarity was found in the biological and physiological
properties of human and other species’ microglia, a few noteworthy divergences were
identified. Microglia in rodents lack a dystrophic morphology with aging and AD lesions
compared to humans and NHP. In addition, females may experience higher levels of age-
associated microglial activation during aging, as identified in humans and rodents. Existing
rodent and canine models lack the ability to recapitulate the full spectrum of Aβ and tau
lesions to date, whereas some NHP, specifically Old World monkeys and chimpanzees,
naturally produce NFT, senile plaques, and vascular amyloid. However, in these animals,
microglia are primarily activated in association with Aβ, not tau, perhaps due to the
much lower NFT burden observed in these species. Potential differences in microglial
expression profiles may be a result of the quantification methods, neuroinflammatory
model, pathology levels, age of the animals, brain region, sex, divergent markers for cell
surface antigens, and postmortem interval. Determining and recognizing various patterns
of aging and neuroinflammatory processes across species is imperative for improving
animal models of neurological aging and AD and understanding the natural progression
of disease.
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