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Abstract

The study of systems genetics is changing the way the genetic and molecular basis of phenotypic variation, such as disease
susceptibility and drug response, is being analyzed. Moreover, systems genetics aids in the translation of insights from
systems biology into genetics. The use of systems genetics enables greater attention to be focused on the potential impact
of genetic perturbations on the molecular states of networks that in turn affects complex traits. In this study, we developed
models to detect allele-specific perturbations on interactions, in which a genetic locus with alternative alleles exerted a
differing influence on an interaction. We utilized the models to investigate the dynamic behavior of an integrated molecular
network undergoing genetic perturbations in yeast. Our results revealed the complexity of regulatory relationships between
genetic loci and networks, in which different genetic loci perturb specific network modules. In addition, significant within-
module functional coherence was found. We then used the network perturbation model to elucidate the underlying
molecular mechanisms of individual differences in response to 100 diverse small molecule drugs. As a result, we identified
sub-networks in the integrated network that responded to variations in DNA associated with response to diverse
compounds and were significantly enriched for known drug targets. Literature mining results provided strong independent
evidence for the effectiveness of these genetic perturbing networks in the elucidation of small-molecule responses in yeast.
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Introduction

Elucidation of the molecular and genetic basis of phenotypic

variation has been a longstanding goal in genetics, including all

aspects of morphology, physiology, behavior, disease susceptibility,

and drug response. Genome-wide association studies (GWAS)

mapping quantitative trait loci (QTLs) have enabled the identi-

fication of regions of the genome in which genetic variations are

associated with phenotypic variation. However, the computational

understanding of the biological mechanisms underlying genetic

variations remains unclear. Numerous previous studies have

dissected the downstream effects of genetic perturbations on

RNA intermediates, proteins, metabolites and other molecular

endophenotypes [1,2,3,4,5]. Whole-genome expression QTL

(eQTL) analysis in yeast, mice, and humans has demonstrated

that gene expression traits are highly inheritable and exhibit

surprisingly complex underlying genetic architecture [6,7,8]. By

layering gene expression phenotypes as intermediate phenotypes,

many studies have combined eQTL and disease GWAS to identify

causal relationships between genes and disease (reviewed by

Ertekin-Taner [5]). Therefore, further elucidation of changes in

molecular states that directly respond to changes in DNA could

potentially fill in the information gaps left by GWAS, and serves as

an excellent first step to understanding the drivers of a complex

phenotype.

However, most proteins perform their functions through

interactions with other proteins, or as part of biochemical

pathways and networks. Thus, some genes may respond as groups

due to their membership in networks. As an alternative to the

studies assuming that genes act independently, certain previous

studies have utilized an effective approach that assessed higher-

order a priori defined gene network responses caused by genetic

variation [9,10,11,12,13,14,15,16]. However, these studies only

considered the variation of the synthetic expression of genes in a

priori defined networks, and failed to model how genetic variations

are mediated by a network of molecular interactions in the cell. In

addition, the association of these networks that are affected by

genetic variations with the resultant phenotypic variation remains

poorly understood.

The use of systems genetics is changing the future of genetics.

Moreover, it is a corollary to the basic insight of systems biology in

that most complex traits of living things are properties generated

by dynamic networks of interacting genes and molecules [17,18].

In recent years, our ability to interpret the phenotypic variation in

model systems, and ultimately in humans, has benefited from

systems genetics approaches [17,18,19,20,21,22,23]. Chen et al.
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[21] constructed co-expression networks through the combination

of gene expression and genotype data, and uncovered components

of the co-expression networks that respond to genetic variations

associated with disease-associated traits. This study confirmed that

complex traits, such as obesity, are potentially emergent properties

of molecular networks modulated by complex genetic loci and

environmental factors. Zhong et al. [23] proposed a model to

describe the effect of disease-causing mutations in Mendelian

disorders on systems or interactome properties. Equipped with the

tools emerging from the genomics revolution, the study of the

effects of genetic perturbations on molecular networks will serve as

an important aspect of systems genetics research.

Various biochemical or biophysical interaction(s) are the

building blocks of biological functions and processes and are also

the basic units of molecular networks; thus, it is important to

investigate the effects of genetic variations on molecular interac-

tions. Recently, several reports have explored the effects of genetic

variations on protein-DNA interactions [24] or protein-protein

interactions [23] from the perspective of the structural properties

of physical binding. In this study, through integrating gene

expression data, genotype data, and molecular interactions, we

developed models to detect two types of allele-specific perturba-

tions on interactions, termed allele-specific co-perturbation

(ASCP) and allele-specific dys-perturbation (ASDP). In both cases,

a genetic locus exerted a different influence on the transcriptional

program of interactions for cases in which the locus exhibited

distinct (alternative) alleles.

In this study, using a well-controlled system, we aimed to

investigate how molecular networks respond to DNA perturba-

tions based on the interaction perturbation models (ASCP and

ASDP), and thus, drive variations in physiological states associated

with phenotypic variation. Therefore, we used a panel of 112

genotyped and expression-profiled yeast strains [6] which were

also treated with a collection of 100 diverse compounds, termed

small-molecule perturbagens (SMPs) [25], to investigate the effect

of genetic variations (such as Single Nucleotide Polymorphisms,

SNPs) on the dynamic behavior of an integrated interactome of

yeast, and to elucidate the molecular mechanisms underlying

individual differences in response to small-molecule drugs in yeast

based on networks that exhibit genetic perturbation.

Results

EQTL Mapping
We performed eQTL mapping using gene expression and SNP

genotyping data on 112 segregants generated in a cross between

laboratory (BY) and wild (RM) strains of Saccharomyces cerevisiae [6].

We sought to identify an initial set of potential associations

between eQTLs and their target genes for further analysis. In

order to determine the statistical significance more accurately, we

merged adjacent markers that exhibited the same genotype profile

to obtain a total of 1118 representative markers and selected 4500

transcripts with significantly high heritability (h2.0.669 at a false

discovery rate, FDR of 0.05) (see Materials and Methods). Finally,

we performed linkage calculations between 1118 genetic markers

and 4500 transcript levels using the Student’s t-test, and assessed

significance via permutations (see eQTL mapping section in

Materials and Methods for algorithmic details). As a result, we

detected 30,793 associated transcript-locus pairs (FDR,0.05).

There were 3175 transcripts (3141 ORFs) linked to at least one

QTL and an average of 9.7 QTLs per transcript. A total of 1112

markers were linked to at least one target transcript. To determine

whether the loci identified by linkage act in cis or in trans, we

investigated transcripts whose levels were linked to markers within

10 kb of their own gene. We found that 656 (21%) of the 3175

transcripts fell into the cis-acting category and most expression

differences mapped to trans-acting loci. Our findings are in

concordance with other reports in which trans-acting loci appear

to be responsible for most differences in gene expression between

yeast strains [26,27].

Determining Allele-specific Perturbation of Interactions
To assess how variations at the genetic level that affected gene

expression levels (eQTLs) would alter molecular interaction states

in the cell, we introduced allele-specific perturbation of interac-

tion; we defined this as: a genetic locus with alternative alleles that

exerts a different influence on an interaction. Two models were

developed to detect the allele-specific behavior of interactions:

allele-specific co-perturbation (ASCP) and allele-specific dys-

perturbation (ASDP) (a detailed description can be found in the

Materials and Methods section). ASCP denotes that an eQTL

synchronously regulated the expression of two interacting genes.

ASDP denotes that an eQTL triggered significant changes in

expression correlation between two interacting genes. Each

interaction in an integrated interactome, containing protein-

protein interactions (PPI), protein-DNA interactions (PDI), kinase-

protein interactions (KPI), and enzyme-enzyme interactions (EEI)

(a detailed description of the interaction types can be found in the

Materials and Methods section), was then analyzed to determine

which demonstrated allele-specific behavior based on the two

models. As a result, we identified 10440 ASCP relationships

between 408 eQTLs and 2184 interactions, and 5774 ASDP

relationships between 758 eQTLs and 2416 interactions

(P,0.001, FDR,0.082). A total of 70.86% (788/1112) of the

eQTLs perturbed at least one interaction. In addition, we

analyzed the cis-acting or trans-acting regulation between the

genetic loci and their perturbed ASCP and ASDP interactions.

Five different conditions were investigated and detailed informa-

tion is shown in Table S1. Interestingly, we found that many

interacting genes in ASCP and ASDP interactions are located on

the same chromosomes, even located adjacent to their regulators

(eQTLs). This phenomenon may reflect the linear arrangement

and aggregation of yeast genes on the same chromosomes which

are required for coordinate expression of genes involved in related

metabolic or regulatory pathways [28,29,30]. In addition, among

the 3141 target genes associated with at least one eQTL,

approximately 65% exhibited allele-specific perturbation of

interactions with their partners in the interactome. It has been

suggested that for a considerable portion of target genes, the

eQTLs that disturbed their expression levels would also cause a

degree of dynamic variation in their local network. Various

biochemical or biophysical interaction(s) are the basic units of a

molecular network and also the building blocks of biological

functions and processes; thus, exploration of the allele-specific

behavior of interactions makes it possible to test the downstream

effects of genetic perturbations on molecular networks.

Comparison of the Effect of ASCP and ASDP on Networks
Table 1 shows the overall statistics of perturbed interactions

detected by ASCP and ASDP models. Firstly, we found that

13.53% (4443/32831) of the interactions between target genes (of

eQTLs) and their partners in the integrated network are perturbed

by at least one eQTL. This finding indicates that many of the

interactions (,86%) may behave consistently across individuals

with different genotypes and represent a cellular network

‘backbone’. Secondly, we found that PPIs in complexes exhibited

ASCP more frequently. When annotated to 305 protein complexes

obtained from the CYC database [31], 162 of the 939 (17.3%)

Allele-Specific Behavior of Molecular Networks
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ASCP PPIs were found to be in the same complexes, whereas only

56 of the 819 (6.8%) ASDP PPIs were located in the same

complexes (Fisher’s exact test, P = 1.184e–11). For PDIs, regula-

tory relationships between TFs (TF-TF) were also observed more

frequently in ASCP (Fisher’s exact test, P = 0.03809), whereas

phosphorylation events between two kinases (K-K) were observed

more frequently in ASDP (P = 0.03245) (Figure S1A).

In order to facilitate analysis, we constructed two networks

called CPN and DPN that contained all of the ASCP and ASDP

interactions, respectively. As shown in Figure S1B, most interac-

tions in CPN are connected and form a large connecting

component that contains ,90% of all nodes; the same is observed

in DPN (,93% of all nodes). These results indicate that the

transmission of the effect of genetic variations is mediated by

network continuity. By merging these two types of perturbed

interactions, a larger system is formed, thus, the coordination of

these two disturbance effects is evident. We evaluated the degree

distribution of genes and observed a power-law in both CPN and

DPN (Figure S1C). This suggests that both models of genetic

perturbing networks display scale-free characteristics [32]. CPN

and DPN shared approximately 39.8% (910/2286) proteins but

only approximately 3.53% edges, indicating that a large quantity

of interactions is rewired between CPN and DPN (Figure S1D).

Thus, these two models represent various genetic perturbing

actions on a molecular network. Hence, ASCP and ASDP could

potentially reveal the condition-specific dynamic information

hidden among otherwise common static interactions.

The Interactome Exhibits a Modular Changing Pattern
Under Allele-specific Context

As discussed above, when genetic variations occurred on DNA

sequences, some gene expression levels are affected (eQTL

mapping), and cause the alteration of interaction states (allele-

specific perturbation on interactions). Next, dynamic changes in

networks would be triggered. In this study, we introduced an

allele-specific context to capture the changing patterns of a

network from one allele state to another. Due to the linkage

disequilibrium (LD) of adjacent eQTLs, we identified 263

haplotype LD blocks (B1–B263) defined by the non-random

association of genetic variants at two or more loci using Haploview

software [33]. We then assembled all ASCP and ASDP

interactions associated with the eQTLs located in the same block

region. As a result, we found 246 blocks associated with at least

one interaction; of these, 180 were associated with at least three

edges. Next, we built an association matrix that represented the

allele-specific perturbation relationships among all of the blocks

and their perturbed interactions, and performed hierarchical

clustering on the perturbed interactions. Figure 1A shows the

clustering results of four sub-matrices extracted from the overall

association matrix. These sub-matrices represent the associations

between 32 blocks and 1446 PPIs, 30 blocks and 937 PDIs, 23

blocks and 1078 KPIs, and 14 blocks and 366 EEIs, respectively.

Our findings indicated that for all four types of networks, each

block primarily regulated a small portion of the network and that

distinct parts of the network are primarily modulated by a few

particular blocks. Thus, a complicated combination is evident, in

terms of both target specificity and cooperativity of blocks.

Moreover, the overall integrated network presented the same

changing pattern under an allele-specific context (Figure S2).

To further analyze the role that individual blocks play in the

regulation of the integrated network, we mapped an allele-specific

sub-network for each block. Each sub-network corresponded to a

minimal component in the original integrated network that

contained all the genes consisting of the interactions associated

with a block. It is guaranteed that all of the interactions perturbed

by the block are located in this network component. We

investigated the sub-graph properties of these sub-networks to

determine their topological features in the integrated network. A

summary of the results is listed in Table 2 and Figure 2A.

Computer simulation results demonstrated that the topological

features of these sub-networks were significantly different from

randomized networks (details of the randomization test are

provided in Materials and Methods). The results indicated that

the characteristic path length between genes in the same sub-

network was significantly shorter, and the average density of these

sub-networks was significantly greater. Moreover, the average in-

degree ratio of the sub-networks was significantly higher,

indicating that proteins composing the allele-specific sub-network

jointly exhibit significant modularity in the integrated network.

The in-degree ratio is defined as the ratio (R) of in-degree to out-

degree of a sub-network, in which ‘‘in-degree’’ represents the

number of its connections within the sub-network, and ‘‘out-

degree’’ represents its connections outside sub-network [34]. In

total, 162 blocks (89.5% of 180 blocks investigated) were

demonstrated to perturb interactions located in a module of the

integrated network (FDR,0.05). In other words, the alteration of

allele state of a block potentially leads to changes inside a network

module. In addition, modules in the integrated network are

composite modules; thus elucidation of the complex relationships

underlying multiple biological interaction types will further the

understanding of complex cell processes. For example, we found

that B20 on chromosome II regulates 318 interactions among 246

genes, including 93 KPIs, 54 PDIs, 142 PPIs, and 26 EEIs

(Figure 1B). Most interactions (92%) perturbed by B20 were

connecting components gathered in a network module, moreover,

various types of interactions were gathered in certain areas; the

PPIs in the area marked by orange constitute a cellular component

called nuclear lumen, and the EEIs in the area marked by green

are derived from a pathway that controls DNA-directed RNA

polymerase activity. These findings suggest that the information

exchange and collaboration occurs among multi-layer molecular

networks.

Proximal Blocks Regulating Similar Network Components
It has been observed previously that different chromosomal

regions (LD blocks) regulate common network modules together.

Here, we found a total of 423 pairs of blocks associated with

overlapping allele-specific sub-networks. We introduced a score

Table 1. Summary of the global effect of ASCP and ASDP on
the four studied molecular interaction networks and the
integrated interactome.

NETWORK Edges ASCP ASDP Both Percentage

PPI 12067 939 819 1703 14.11%

PDI 6815 524 616 1056 15.50%

KPI 13532 550 842 1336 9.87%

EEI 1912 261 237 421 22.02%

COMBINED 32831 2184 2416 4443 13.53%

The second column denotes the total number of interactions detected for
allele-specific behavior. The third and the fourth column represent the number
of ASCP and ASDP interactions detected respectively. The fifth column
represents the total number of perturbed interactions when considering both
ASCP and ASDP, while the proportion they occupy in all interactions tested is
listed in the sixth column.
doi:10.1371/journal.pone.0053581.t001
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termed Component Share Ratio (CSR) to measure the degree of

overlap between two network components regulated by two

distinct blocks (Materials and Methods). This value ranges from 0

to 1; the higher the score, the more overlap between two network

components, with 1 indicating that two blocks regulate identical

network components.

We divided 423 pairs of blocks that exhibited a CSR value into

two groups: 211 block pairs were located on the same

chromosome and 212 on different chromosomes. Next, we

calculated the significance of the differences between the two

groups and found that block pairs on the same chromosome

exhibited significantly higher CSR values (log-transformed)

compared to block pairs on different chromosomes (P = 4.9165e-

051, Figure 2B). In this study, a higher CSR value reflects a higher

gene composition and function similarity between two blocks’

perturbed network modules. It is observed that the regulator-pairs

(LD block-pairs) on the same chromosome have much higher CSR

values. Moreover, the network modules regulated by the blocks on

the same chromosomes, especially on adjacent regions, are

enriched in metabolic processes, signaling pathways and enzyme

catalyzed processes. It is suggested that LD blocks on the same

chromosomes, especially adjacent blocks tend to involve in the

regulation of common or correlated functions. This phenomenon

may reflect the coordinated regulation requirement of genes

involved in related metabolic or regulatory processes [29,30]. In

addition, some network modules perturbed by block-pairs on

separate chromosomes also have high CSR values; this may imply

the universality and genetic complexity of the yeast genome in the

regulation of molecular networks.

Biological Features of the Allele-specific Sub-networks
Associated with Blocks

We evaluated the biological features of these allele-specific sub-

networks. We classified 2286 genes from all of the sub-networks

into 85 functionally related gene groups (or classes) (F1–F85) with

enrichment score . = 1.3 (equivalent to non-log scale 0.05) using

the Functional Classification Tool provided by DAVID [35,36],

with 833 genes not included in any group. Next, we performed

functional enrichment analysis using hypergeometric distribution

and detected 158 enrichment relationships (FDR,0.05 P,0.0039)

between 87 sub-networks and 48 functional groups. Using blocks

to represent their associated sub-networks, these enrichment

relationships are presented as a bipartite graph between 87 blocks

(triangle) and 48 functional groups (circle) (Figure S3).

To create an intuitive display of the role that different

chromosome segments (LD blocks) played in molecular network

regulation or perturbation, we filtered out 57 relationships

between 36 blocks and 16 functional groups (57 red edges in

Figure S3). For each enrichment relationship between a block and

a functional group, we extracted the perturbed interactions

associated with the block and belonging to the enriched functional

group. We re-constructed a network, shown in Figure 3, by

combining all of the interactions extracted; the functional modular

regulation mode of genetic variations on the multi-layer integrated

molecular network can be seen. Different chromosomal regions

(blocks) that control or affect different parts or modules of the

network exhibit intuitive biological features and trigger the

modification of specific cellular functions. For instance, blocks

on chromosome III (B29–B31) and X (B144) (yellow rectangles)

are associated with a network module containing 14 enzymes

(black box). This module is generally annotated as the ‘‘methio-

nine biosynthetic process’’ (enrichment significance: P = 8.0E–27),

and nine enzymes are located in the metabolism pathway-‘‘sulfur

metabolism: reduction and fixation’’. Moreover, some functional

groupings are found to be under the control of common blocks.

For example, blocks on chromosome XIV (B219–B222) are

associated with the cellular component ‘‘mitochondrial ribosome’’

and also regulate other functional classes, such as glycolysis, ATP

binding, transcription, and the cell cortex. The mitochondrial

ribosome is responsible for the biosynthesis of protein components

crucial to the generation of ATP in the eukaryotic cell. Similar

cases are the perturbation of blocks B237–B238 (simultaneously

influencing oxidative phosphorylation and mitochondrial inner

membrane), B111 (nuclear chromatin and nuclear division), and

B29–B30 (methionine biosynthetic process and branched chain

family amino acid biosynthetic processes). Most of the joint

perturbations by blocks reflect the coordination among different

biological processes, molecular functions, and cellular components

in a certain cellular function, and ATP (ATP binding) is one of the

most generic sites (targeted by B179–B184, B228, etc.) in these

processes (Figure 3).

Application in Understanding Small-molecule Drug
Response in Yeast

We utilized the model of genetic perturbing networks discussed

above to gain a systematic understanding of small molecule

perturbagen (SMP) response in genetically distinct yeast individ-

uals. Firstly, we conducted linkage analysis between 324 pheno-

types (segregant final yields of 100 SMPs at multiple time points

and concentrations) and 2,956 genetic markers previously

genotyped in the segregants [6,25]. We identified 1470 QTLs

with an absolute value t statistic score .3.28 (FDR,0.05) using a

method identical to eQTL mapping, and 201 QTLs were in

concordance with previous studies [25], covering nearly 92% of

the original result (219 QTLs with a logarithm of the odds (lod)

score§4). Because all time points and concentrations of each SMP

were used as independent phenotypes, we combined QTLs

associated with the same SMP but different concentrations and

time points, and obtained QTLs for 92 SMPs. The position

distribution for the QTLs along the genome is shown in Figure 4A.

Furthermore, for 91 SMPs, we obtained a sub-network perturbed

by QTLs associated with each SMP response trait. Among these

SMP response associated sub-networks, 16 were significantly

enriched for known drug targets based on the entire chemical–

protein interactions set obtained from the STITCH database [37],

such as hydrogen peroxide (H2O2) (P = 5.70E–06) and menadione

(P = 3.50E–07) (Figure 4B and Table 3). In total, 22 high-

confidence (SCORE§700) yeast chemical–protein interactions

Figure 1. The changing pattern of molecular networks under allele-specific context determined by LD blocks. (A) Hierarchical
clustering on the perturbed interactions based on the association matrix between blocks and their perturbing interactions in PPI, PDI, KPI, and EEI
networks, respectively, in which rows represent blocks and columns represent interactions. In each of the four sub-matrices, blocks associated with
less than ten interactions are filtered out. The columns are reordered according to hierarchical clustering. The rows colored correspond to B20. (B) The
allele-specific sub-network associated with B20. The sub-network is composed of 142 PPIs, 54 PDIs, 93 KPIs, and 26 EEIs, which are marked with green,
red, blue and orange, respectively. Nodes marked with red are proteins constituting a GO cellular component (nuclear lumen), and PPIs among these
genes are regulated by B20. Nodes marked with green are enzymes from a KEGG pathway (DNA-directed RNA polymerase activity), and their EEIs are
regulated by B20.
doi:10.1371/journal.pone.0053581.g001
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Figure 2. A summary of the sub-graph properties of the sub-networks associated with LD blocks. (A) The characteristic path length
among genes in the same allele-specific sub-networks is significantly shorter compared to a randomization test. Moreover, the density and in-degree
ratio of these sub-networks are significantly greater compared to a randomization test. Boxes of light color represent the distribution of the sub-
graph properties (characteristic path length, density, in-degree ratio) of allele-specific sub-networks, and the black boxes correspond to random ones.
(B) The panel shows the difference in CSR values between block pairs on the same chromosomes and on different chromosomes. P-values are
calculated using the Wilcoxon rank-sum test.
doi:10.1371/journal.pone.0053581.g002

Allele-Specific Behavior of Molecular Networks

PLOS ONE | www.plosone.org 6 January 2013 | Volume 8 | Issue 1 | e53581



were found in SMP associated networks, such as hydrogen

peroxide, which targets the proteins (SOD2, CYB2); rapamycin,

which targets the proteins (TOR2, LST8); and staurosporine, which

targets the protein (YPL236C). This suggests that these sub-

networks potentially reflect the molecular mechanisms of the drug

action. Taking hydrogen peroxide (H2O2) as an example, the sub-

network response to it is highly enriched for the GO biological

processes ‘ergosterol metabolic process’, ‘lipid biosynthetic pro-

cess’, and ‘oxidation reduction’ (P,5.7E–24, P,2.1E–19, and

P,2.1E–7). The expression levels of the majority of the genes

annotated to these GO terms were down-regulated in response to

H2O2 in wild type (Figure 5, green triangles in left branch under

allele state from RM). This observation is in concordance with the

report by Pedroso and Folmer [38,39] in which the adaptation to

H2O2 was observed to repress the expression of genes (ERG3,

ERG6, ERG7, ERG25, FEN1) coding for enzymes involved in both

ergosterol biosynthesis and lipid metabolism in wild strains. The

QTLs associated with H2O2 are located on chromosome XII and

chromosome XIII. A LD block on chromosome XII contains the

candidate gene HAP1 (YLR256W), which encodes a heme-

responsive zinc-finger transcription factor whose expression varies

according to oxygen levels in the cell, thus regulating oxygen

dependent gene expression. As shown in Figure 5, HAP1 serves as

an important regulator and it regulates most of the proteins

associated with H2O2 response. It has been previously reported

that HAP1 with a Ty1 insertion induces expression changes of

sterol biosynthesis genes [40]. Additionally, it is a known drug

target of H2O2 and is included in the STITCH database. By

utilizing our proposed model, we were able to identify molecular

network components that respond to small-molecule drugs; this

provided insight into how networks states changed from wild-type

to mutant-type when responding to SMPs (Figure 5). Character-

izing molecular network states that underlie complex traits, such as

drug response, potentially provides a comprehensive view, which

in turn could potentially lead to the direct identification of genes or

pathways underlying drug response processes and aid in the

elucidation of the functional roles of these genes with respect to

drug response. Thus, based on the modeling of genetic perturbing

networks that respond to SMP, we investigated the potential

biological application of drug function and drug target prediction,

and investigated whether our results would uncover new and

possibly non-intuitive relationships between biochemical path-

ways.

In the SMP associated networks, we observed many perturbed

interactions (ASCP and ASDP) between known drug targets and

other uncharacterized genes in drug response, allowing for

potential drug target predictions. Comparing between known

drug target genes and other genes, we found that, in response to

SMPs, ASCP or ASDP interactions tend to occur among drug

target genes. Therefore, we predicted candidate drug targets based

on their connecting degree with known drug targets in SMP

associated networks. The candidate genes listed in Table S2 were

all connected to §6 known drug targets. Among them, 59% (10/

17) were found to exhibit resistance to the chemicals analysed in

this study [41,42,43,44,45,46,47,48,49]. INO4, as an example,

which is a transcription factor associated with phospholipids

synthesis, shows differential interactions with nine genes targeted

by eight drugs. Of these drugs, rapamycin, cycloheximide,

lycorine, cerulenin, nocodazole, and resveratrol are classical cell

proliferation inhibitors that are extensively utilized in cancer

therapy and cell synchronization in molecular biology experiments

[41,42,46,47]. It has also been reported that gene INO4 may be

affected by bleomycin and fenpropimorph, and the mutant type

will produce resistance. These two drugs are both antibiotics and

have been considered for use in cancer treatment. INO4 is seen as

a potential drug target, particularly because it potentially plays a

role in cell growth inhibition, and even cancer pathology.

Regarding the other candidate genes, RPN4, STE12, FKH2 and

CIN5 are also transcription factors that regulate important

biological processes, such as RNA transcriptional elongation,

MAPK signaling pathway, and proteasome genes expression.

YCK3, PKP2, PKP1, and SKM1 are important kinases and exhibit

serine/threonine kinase, casein kinase and mitochondrial protein

kinase activity. FBA1 is fructose 1,6-biophosphate aldolase, which

is required for glycolysis and gluconeogenesis. These genes exhibit

certain functional features as drug targets, and published reports

demonstrate that they exhibit reactions with certain known drugs

and compounds; the natural or induced mutations will lead to

mutant phenotypes. These annotations suggest that our genetic

perturbing network results may be effective in drug target

prediction.

Moreover, we conducted pathway enrichment analysis for each

SMP associated network using DAVID based on KEGG. We

detected 207 enrichment relationships (Beniamini,0.05) between

45 SMPs and 22 KEGG pathways (Figure S4). It has been

demonstrated that multiple pathways are involved in a SMP

response. This suggests that cooperation among pathways may

exist in the process of small molecular drug responses and that

there is the possibility of discovering new and non-intuitive

relationships between biochemical pathways. We found that 124

pairs of pathways were involved in at least one common SMP

response. Literature mining results based on PubMatrix [50] have

provided strong independent evidence for the correlation among

these pathways, 58% (72/124) of the pathway pairs co-occurred in

at least one reference (detailed information for pathway pairs

involved in .9 common SMPs is listed in Table S3). Some

pathway pairs are already recognized as correlated pathways

based on KEGG. Ten SMPs (cycloheximide, parthenlide,

menadione and rapamycin et al.) clustered in the center of

SMP-pathway graph (red rectangle area in Figure S4) targeted

approximately the same pathways. These pathways all relate to

protein biosynthesis, and are in concordance with the protein

translation inhibition functional role of these SMPs. Some internal

mechanisms of the SMP effects can be indicated in the SMP-

pathway graph. For instance, glycolysis/gluconeogenesis is co-

targeted by valinamycin, rapamycin, tunicamycin and fccp.

However, the main effect of these four drugs is not regulation of

the glucose distribution. A number of references suggest

valinamycin plays a role in the glycolysis process by changing

potassium concentration [51], rapamycin could influence the

whole body glucose turnover [52], tunicamycin has the ability to

Table 2. Summary of topological properties of the allele-
specific sub-networks and their Z-scores.

All ASN Random

Mean Mean ,Z. p-value Mean

Char.path length 2.857 2.0548 212.34 5.57e–035 4.27

Density 0.004 0.2226 21.51 1.18e–102 0.046

In-degree ratio N.A. 0.0175 18.42 8.43e–076 0.0065

Topological properties of the yeast integrated network (All), the allele-specific
sub-networks associated with blocks (ASN), and the random sub-networks
(Random). The average Z-scores and the p-values for the observed properties of
allele-specific sub-networks are also listed, respectively. N.A. not applicable.
doi:10.1371/journal.pone.0053581.t002
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regulate glycoprotein synthesis [53], and fccp could modulate the

aerobic glycolysis by changing P2X7 receptor activity [54]. A

similar situation also appears in mismatch repair, proteasome,

MAPK signalling pathway, etc. Interestingly, some biochemical

pathways with non-intuitive relationships are targeted by common

drugs such as pyruvate metabolism and steroid biosynthesis.

Pyruvate metabolism and steroid biosynthesis seldom appear in

the same physiological progress; however, in this study, we found

that they are co-targeted by 6 SMPs. A study concerning feto-

maternal metabolism suggested a high cholesterol consumption in

the fetal compartment for cellular membrane synthesis and steroid

biosynthesis, and the important intermediate process changes the

Figure 3. Biological features of the allele-specific sub-networks associated with LD blocks. A reconstructed network created by
combining all of the allele-specific perturbed interactions associated with the 36 blocks and belonging to their enriched 16 functional groups. The
genes belonging to different functional groups are marked with the same colors as in figure S3; also, chromosome blocks are marked using the same
colors as their regulating functional classes. Functional annotation was conducted for each dyed gene module using DAVID based on GO and KEGG,
and the most enriched functional item covering total genes (100%), along with its significance level (p-value), is presented near the dyed gene
module. The gene module marked yellow is mainly associated with blocks on chromosome III (B29–B31) and X (B144); the lower right corner is a
schematic representation of the metabolic pathway: sulfur metabolism, reduction and fixation, and nine enzymes in the module annotated to the
pathway are marked with red rectangles.
doi:10.1371/journal.pone.0053581.g003
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blood pyruvate concentration and stimulates pyruvate metabolism

[55]. This suggests that some new and possibly non-intuitive

relationships between biochemical pathways may be observed

based on our results.

Furthermore, in a previous study [56] it has been shown that

genotyped markers can be used to predict the drug response (i.e.,

sensitivity or resistance) of the 104 individual genotyped yeast

strains used in this study; they trained support vector machine

(SVM) classifiers using 1, 10, 50, 100, 200, 500 and 1000 highest

ranked marker(s) based on the linkage signals (lods value) between

genotyped markers and SMP responses, and found the greatest

marker-based prediction accuracy for each SMP response. In our

study, for each SMP (at multiple time points and concentrations),

we chose to use the markers perturbing its associated sub-network

to perform the prediction, and obtained greater prediction

accuracy for 65 SMP phenotypes (Figure S5). This finding

indicates that the genetic variations that exhibit an effect on the

molecular network state may be the more robust signal of

phenotype variation.

We compared different SMPs responses; the QTLs associated

with 53 SMPs were located in 84 block regions. As shown in

Figure 6A, the two-dimensional hierarchical clustering result on

the genetic association matrix reflects the genetic regulatory

relationships between 84 blocks and 53 SMPs. We found that the

response to SMP was a genetically complex trait, however,

different SMPs primarily linked to specific chromosomal regions

(blocks). Additionally, we performed functional enrichment

analysis as described above for the sub-networks associated with

53 SMPs and we identified functional enrichment relationships

between 45 SMPs and 33 functional classes. The two-dimensional

hierarchical clustering (shown in Figure 6B) also indicated that

different SMPs targeted particular functional classes. By compar-

ing the two matrices, we found that certain SMPs associated with

similar LD blocks usually shared common biological functions. For

example, the SMPs indicated in orange clustered in Figure 6A are

also highly correlated based on the functional association matrix in

Figure 6B. Almost all of these seven compounds (aside from

niguldipine) participate in the biological progress ‘‘inhibition of

protein translation’’, and they are all important drugs or precursor

compounds in cancer treatment. Secondly, SMPs associated with

different genetic blocks may also target common functional classes

or pathways. For instance, rapamycin and cycloheximide,

indicated by red rectangles in Figure 6A, only had one LD block

in common, but targeted common biological processes such as

carboxylic acid biosynthetic process, organic acid biosynthetic

process, mitochondrial translation, nitrogen compound biosyn-

thetic process, and protein serine/threonine kinase activity. These

two SMPs are structurally unrelated and target different proteins,

however, they both exhibit cell proliferation inhibition, and also

similarly inhibit protein translation in cells [25] and are both

important immunosuppressant drugs extensively used in organ

transplantation [57,58]. Taking rapamycin and parthenolide as

another example, they are less common on a genetic basis, but in

fact, they play a similar role in the biological context (induce cell

apoptosis) and clinical effect (kill cancer cells) [57,59] which is

indicated more clearly in the functional association matrix

(Figure 6B).

Discussion

Networks and their variants provide an effective way to model

biological systems and study their complex behavior. To

understand the molecular and genetic basis of phenotypic

variation, it is important to dissect the dynamic behavior of

networks under genetic perturbations. In this study, we dissected

the effects of genetic variations (SNPs) on an integrated

interactome in yeast. Our results demonstrated that the inter-

actome exhibited allele-specific behavior under genetic perturba-

tions; the variants can be utilized to determine how genotypes

affect small-molecule drug responses mediated by molecular

networks in yeast.

In this study, in order to model how genetic variations are

mediated by a network of molecular interactions in the cell, we

proposed two types of allele-specific perturbations on interactions,

termed ASCP and ASDP. In both cases, a genetic locus exerted a

different influence on the transcriptional program of interactions

for cases in which the locus exhibited distinct (alternative) alleles.

ASCP and ASDP enable the assessment of variations at the genetic

level that affect the expression of a gene and aid in the

understanding of how these variations then alter the transcrip-

tional program of interactions between the gene and its interactors

in networks from two distinct aspects. In addition, we chose to

analyze a hybrid interactome containing protein-protein, protein-

DNA, kinase-protein, and enzyme-enzyme interactions. This

allowed us to investigate several different mechanisms of action

associated with genetic perturbations that normally occur because

genetic perturbations may manifest through gains or losses of

regulatory, signaling, and protein-complex interaction capabilities.

If the interactome is represented as a static network, more

complex patterns of interactions that depend on temporal, spatial,

or condition-specific contexts may be masked [60]. Rachlin et al.

[60] reported the changing patterns of interactions from one

Table 3. Summary of enrichment analysis of known drug
targets in the sub-networks associated with 16 small-molecule
drug responses.

Compound
response m k x N p q (,0.05)

hexylresorcinol 1 96 1 6063 0 0

rapamycin 265 966 76 5799 2.59E–08 2.59E–07

menadione 149 637 36 5915 3.50E–07 2.10E–06

staurosporine 123 755 35 5941 4.21E–07 2.10E–06

cycloheximide 188 365 28 5876 2.04E–06 8.15E–06

hydrogen
peroxide

314 205 26 5750 5.70E–06 1.90E–05

anisomycin 33 450 10 6031 1.44E–05 4.11E–05

ascomycin 10 1007 6 6054 0.000257504 0.000643761

tamoxifen 33 147 4 6031 0.001073139 0.002384754

doxorubicin 109 123 7 5955 0.001565578 0.003131156

cerulenin 57 391 9 6007 0.003105336 0.005646066

mastoparan 10 206 2 6054 0.003885136 0.005977133

niguldipine 4 611 2 6060 0.003767185 0.005977133

tomatine 9 238 2 6055 0.004206531 0.00600933

gliotoxin 24 124 2 6040 0.01234541 0.016460546

clotrimazole 26 70 1 6038 0.035718741 0.044648426

x represents the number of known targets for the SMP drawn from the sub-
network associated with the SMP; k represents the number of genes in the sub-
network associated with the SMP; m represents the number of known drug
targets for the SMP in the background gene set; n represents the number of
genes in the background gene set excluded the known drug targets for the
SMP; p-value is calculated as 1-phyper(x, m, n, k), where phyper is a function
used in R.
doi:10.1371/journal.pone.0053581.t003

Allele-Specific Behavior of Molecular Networks

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e53581



biological context to another using a biological context network

model. In our study, we demonstrated that the dynamic

interactome exhibited a modular changing pattern under allele-

specific context. Our findings suggest that the dynamic inter-

actome can be viewed as a mosaic of overlapping sub-networks,

each associated with an allele-specific context determined by a LD

Figure 4. The QTLs distribution and drug targets enrichment of SMPs. (A) The QTLs distribution along the whole genome for 53 small-
molecule drugs. QTLs associated with different SMPs are marked with various colors. (B) The sub-networks responding to the SMP response of
hydrogen peroxide and menadione. Red nodes are known drug targets included in the STITCH database.
doi:10.1371/journal.pone.0053581.g004
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block. The allele-specific perturbation analysis that we introduce

in this study connects chromosome regions (blocks) and network

modules. Such modular structures may confer selective advantage

by minimizing the impact of genetic variants outside of the

module. The modules associated with the blocks exhibit significant

functional roles, which is in concordance with the conclusion of

Wu et al. [61] who demonstrated the association between eQTLs

and functional gene sets. It is suggested that the possible functional

role of these genetic variations could be mediated through the

regulation of network modules. In addition, we observed that some

regulator-pairs (LD block pairs), especially adjacent blocks co-

regulated particular metabolic processes, signaling pathways or

enzyme catalyzed processes (Figure 3). This may reflect the

synergistic effect for combinations of loci in the regulation of

common or correlated functions, which has some relevance with

the epistatic interactions in a statistical genetic context.

In humans, many pharmacogenomics studies that assess the role

of natural genetic variation in cellular response to small-molecule

drugs are limited by small sample size and the inability to rapidly

screen large numbers of drugs and phenotypes [62,63]. Previous

studies have shown that naturally recombinant yeast strains

provide a suitable model for the study of therapeutically relevant

complex traits (i.e, small-molecule drug response) [25,64,65] and

may also serve as a model for personalized medicine [56]. In this

study, we used a panel of 104 yeast strains designed to screen the

drug response of 100 diverse small molecules in parallel. This

method potentially aids in the discovery of common and specific

mechanisms underlying various small molecule drugs. Moreover,

our novel approach seeks to identify molecular network compo-

nents that respond in trans to the genetic loci that drive variations

in drug response, unlike the classic genetics approach that assesses

the role of natural genetic variation in the cellular response to

small-molecule drugs by identifying candidate genes underlying

genetic loci. Literature mining results have provided strong

independent evidence for the effectiveness of our allele-specific

perturbing networks in the elucidation of small-molecule responses

in yeast.

Figure 5. The state of the sub-networks in response to hydrogen peroxide in segregants inherited alleles from RM and BY. Solid
edges indicate correlated expression between proteins in one allele state, whereas that organization is lost in another allele state (dotted line). Edge
colors represent diverse interaction types between proteins, whereas node colors represent changes in gene expression between wild and mutant
groups; green denotes down-regulation and red denotes up-regulation. Triangle nodes present genes annotated in ‘ergosterol metabolic process’,
‘lipid biosynthetic process’, and ‘oxidation reduction’. Nodes with dark edges are known drug targets of hydrogen peroxide based on Stitch2
database.
doi:10.1371/journal.pone.0053581.g005

Allele-Specific Behavior of Molecular Networks

PLOS ONE | www.plosone.org 11 January 2013 | Volume 8 | Issue 1 | e53581



Allele-Specific Behavior of Molecular Networks

PLOS ONE | www.plosone.org 12 January 2013 | Volume 8 | Issue 1 | e53581



Materials and Methods

Data
Microarray and genotype data sets were obtained from a

genome-wide eQTL study in yeast by Brem and Kruglyak [6]

consisting of whole genome expression data for 112 yeast strains

genotyped across 2956 genetic markers. Missing genotype data

were imputed using a standard hidden Markov model algorithm

implemented in R/qtl [66]. Missing expression data were imputed

using the K = 15 nearest neighbors method [67].

We assembled a hybrid network of yeast from large-scale high-

throughput screens and several interaction databases, totaling

66,569 unique pairwise interactions (160,730 non-unique interac-

tions) among 6,064 proteins (genes), which contained 25,301

protein-protein interactions (the two proteins a and b display

physical binding) obtained from the DIP database

(Scere20101010) [68], 12681 protein-DNA regulatory interactions

(a binds upstream of the gene encoding b) obtained from Beyer

et al. (with log-likelihood score.4) [69], 28,785 phosphorylation

events (a is a kinase that phosphorylates b) obtained from the Yeast

Kinase Interaction Database (KID) [70], and 3,486 enzyme-

enzyme metabolic relationships linked by common metabolites (a

and b are enzymes that operate on at least one common

metabolite) extracted from KEGG [71].

Heritability Estimations
Heritability was calculated using the formula:

h2~(s2
s {s2

p)=s2
s ,

In which s2
s and s2

p stand for the variance among phenotype

values in the segregants and the pooled variance among parents,

respectively [6]. We determined the significance of heritabilities

via permutation: for each transcript, we combined all BY, RM,

and segregant trait values, and then reassigned values to null

parents and null segregants at random from this pool, and the h2

statistics were recomputed. Therefore, forB~1000 permutations

of the trait values we obtained a set of null statistics

h0b
1 , . . . ,h0b

6353,b~1, . . . ,B. The P value for hi,i~1, . . . ,6353 was

calculated as:

pi~
XB

b~1

#fj : h0b
j §hi,j~1, . . . ,6353g

6353:B
:

FDRs were computed according to [72], and the FDR = 0.05

cutoff was h2.0.669.

Genome-Wide eQTL Mapping and SMP Response QTL
Mapping

Because there are only two different alleles at each SNP locus in

yeast (0 and 1), we tested the linkage between a marker and a

transcript by partitioning the segregants into two groups according

to marker genotype (0 or 1) and comparing the expression levels

between the groups with the two-sample t statistic. The t statistic

for the ith marker and the jth transcript is noted as tij .

We assessed significance via permutations. Specifically, the

group labels on the segregants were randomly scrambled, and the t

statistics were recomputed. Therefore, for B~100 permutations of

the array labels we obtained a set of null statistics

t0b
1j , . . . ,t0b

1118j ,b~1, . . . ,B,j~1, . . . ,4500. The P value for tij was

calculated as:

pij~
XB

b~1

#fk : t0b
kj §tij ,k~1, . . . ,1118g

1118:B

To adjust for multiple tests, we used FDR = 0.05 cutoff which

corresponds to a P-value cutoff of 2.5610E-4. Similarly, we used

the t-test and permutation to detect QTLs for SMP response traits.

Identify Allele-specific Perturbation of Interaction
A schematic representation of the two models of allele-specific

perturbation on interaction we defined in this study is provided in

Figure 7. In one case, two interacting genes in the network were

both targeted by an eQTL. We called this an allele-specific co-

perturbation of interaction (ASCP) associated with the eQTL. In

the other case, two interacting genes exhibited a significant

difference in correlation of expression under different genotype

groups of an eQTL. We called this type an allele-specific dys-

perturbation of interaction (ASDP) associated with the eQTL.

In the left model, ASCP interactions are detected based upon

the results of eQTL mapping above. ASCP indicates that two

interacting genes both exhibit differential expression under the

regulation of an eQTL. In the right model, the segregants are

divided into two groups according to a specific eQTL genotype,

because there are only two different alleles at each SNP locus in

yeast (0 and 1). Next, we calculated the change in Pearson

correlation coefficient of the expression of the two interacting

genes according to the following equation:

Dys~Dcormar ker ~0(p1,p2){cormar ker ~1(p1,p2)D

where cormar ker ~0(p1,p2)and cormar ker ~1(p1,p2) denote the

Pearson correlation coefficient for expression vector of a target

gene (p1) targeted by the eQTL and its network interactor (p2) in

the subgroup of samples with an allele 0 and an allele 1 at the

specific SNP locus or eQTL, respectively. Thus, we obtain an

estimate of the degree of dys-perturbation of an interaction by a

SNP allele. To determine whether deviation in expression

correlation between the two SNP allele groups is significant, we

randomly reassigned the segregants to the two groups 1000 times

and recalculated the Dys. Therefore, the P-value for ASDP of an

interaction by an SNP or eQTL was given as the frequency of the

values of the random Dys being greater than the value of the real

Dys divided by 1,000. We controlled for multiple hypotheses using

the false discovery rate, and only pairs with FDR over 0.05 were

considered significantly ASDP.

Figure 6. Comparison of the genetic and molecular basis of different SMP responses. (A) Hierarchical clustering of 53 selected SMPs
shows clustering of genetic analogs. Columns represent 84 LD blocks; rows represent 53 SMPs. Black cell indicates that the QTLs located in the block
are associated with the SMP. (B) Hierarchical clustering of 45 selected SMPs shows clustering of functional analogs. Columns represent 33 functional
classes; rows represent 45 SMPs. Black cell indicates that the sub-network responding to the SMP is enriched in the functional class. SMP names are
listed on the right-hand side of the clustergram.
doi:10.1371/journal.pone.0053581.g006
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Randomization Test
To generate random networks that preserve the degree

distribution of the input network, we utilized the integrated

network as a seed network, and we then selected two edges at

random and replaced them by two new edges (by random edge

swapping), as described by Malsov and Sneppen [73]. We then

repeated this until every edge in the network was rewired an

average of 100 times. A total of 1000 randomized networks were

generated using the above procedure to determine the Z-score and

p value.

Component Overlap Measure
To measure the overlap between two network components we

defined a score termed the Component Share Ratio (CSR). The

CSR score is calculated as the number of genes that occur in the

intersection set of the two network components divided by the

union of the two components.

CSRij~
size(Ci\Cj)

size(Ci|Cj)

where Ci and Cj denote network components regulated by the ith
block and the jth block, respectively.

Enrichment Analysis of Known Drug Targets
We used hypergeometric distribution to test the enrichment of

known drug targets in a SMP response associated sub-network,

using the following formula:

p~1{
Xx{1

i~0

m

i

� �
n

k{i

� �

mzn

k

� �

where x represents the number of known targets for the SMP

drawn from the sub-network associated with the SMP; k represents

the number of genes in the sub-network associated with the SMP;

m represents the number of known drug targets for the SMP in the

background gene set; n represents the number of genes in the

background gene set excluded the known drug targets for the

SMP.

Supporting Information

Figure S1 Global properties of the ASCP and ASDP
effect on networks. (A) The line chart shows the ratio

tendencies of ASCP and ASDP in various types of interactions

Figure 7. A schematic representation of two models of allele-specific perturbation of interaction: ASCP (left) and ASDP (right).
doi:10.1371/journal.pone.0053581.g007

Allele-Specific Behavior of Molecular Networks

PLOS ONE | www.plosone.org 14 January 2013 | Volume 8 | Issue 1 | e53581



including PPI, PDI, KPI, EEI, and other particular types (PPIs

belonging to the protein complexes; transcriptional regulation

relations between TFs, TF-TF; phosphorylation events between

kinase, K-K). The results indicate that the ratio of ASCP and ASDP

exhibits significant differences in particular types of interactions

compared to the four basic types of interactions. (B) CPN and DPN

are generated by assembling all the ASCP and ASDP interactions,

respectively. The CPN consists of 2184 ASCP interactions among

1375 genes and the DPN consists of 2416 ASDP interactions among

1821 genes. The different colors of edges represent different

interaction types: PPI (green), PDI (red), KPI (blue), EEI (orange).

(C) Degree distribution of the CPN and DPN. The examination of

the degree distribution of both CPN and DPN reveals a power-law

with a slope of 20.392 and R2 = ,0.85 and a slope of 20.37 and

R2 = ,0.89 respectively. (D) Venn diagrams show the number of

nodes (large intersection) and interactions (small intersection) that

overlap between CPN and DPN.

(TIF)

Figure S2 Hierarchical clustering on the association
matrix between blocks and their perturbed interactions
in the integrated network. Rows represent interactions and

columns represent blocks. Blocks associated with less than ten

interactions are filtered out.

(TIF)

Figure S3 A bipartite graph between 87 blocks and 48
functional groups, with triangles representing blocks and
ovals representing functional groups. A total of 57 relation-

ships (between 36 blocks and 16 functional groups) marked red are

screened out, because each of the 36 blocks perturbed more than

five interactions among genes belonging to the same functional

group. The 16 functional groups are marked with different colors.

(TIF)

Figure S4 207 enrichment relationships (Benia-
mini,0.05) between 45 SMPs and 22 KEGG pathways.
Rectangles represent pathways, while diamonds represent SMPs.

(TIF)

Figure S5 Comparison of the marker-based prediction
accuracy of SMP responses. Blue dots present the greatest

marker-based prediction accuracies for SMP responses calculated

using 1, 10, 50, 100, 200, 500 and 1000 highest ranked marker(s)

to train the SVM in a previous study [56]. Red dots present the

marker-based prediction accuracies calculated in this study, using

the makers perturbing the SMP associated sub-networks to train

the SVM.

(TIF)

Table S1 Cis-acting or trans-acting regulation models
between the genetic loci and their perturbed ASCP and
ASDP interactions. ‘Same chr’ denotes that two interacting

genes are located on the same chromosomes, while ‘Diff chr’

denotes that two interacting genes are located on separate

chromosomes. The value in each cell denotes the number of

ASCP or ASDP interactions belonging to the particular category.

(DOC)

Table S2 Candidate drug target genes.

(DOC)

Table S3 The pathway pairs involved in more than 9
common SMPs. The third column denotes the number of

common SMPs that a pathway pair is involved in. The fourth

column represents the number of references that a pathway pair

co-occurred. The fifth column represents the ratio value which is

calculated as the frequency of a pathway pair co-occurrence/the

frequency of an individual pathway occurrence in PubMed. The

pathway pairs appearing in bold and italics are already known as

correlated pathways based on KEGG.

(DOC)
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