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Abstract

Background: It is now well documented that postnatal exposure to certain chemicals has been reported to increase
the risk of autism spectrum disorder. Propionic acid (PA), as a metabolic product of gut microbiotaandas a commonly
used food additive, has been reported to mediate the effects of autism. Results from animal studies may help to
identify environmental neurotoxic agents and drugs that can ameliorate neurotoxicity and may thereby aid in the
treatment of autism. The present study investigated the ameliorative effects of natural bee pollen against acute and

sub-acute brain intoxication induced by (PA) in rats.

Methods: Twenty-four young male Western Albino ratswere enrolled in the present study. They were classified into
four equal groups, eachwith6 rats. The control group received only phosphate buffered saline; the oral buffered
PA-treated groups (Il and Ill) received a neurotoxic dose of 750 mg/kg body weight divided in 3 dose of 250 mg/
kg body weight/day serving asthe acute group and 750 mg/kg body weight divided in 10 equal dose of 75 mg/
kg body weight/day as the sub-acute group. The fourth group received 50 mg bee pollen for 30 days after PA-acute

intoxication.

Results: The obtained data showed that the PA-treated groups demonstrated multiple signs of brain toxicity, as
indicated by a depletion of serotonin (5HT), dopamine and nor-adrenaline, together withan increase in IFN-y and
caspase 3. Bee pollen was effective in ameliorating the neurotoxic effect of PA. All measured parameters demonstrated
minimal alteration in comparison with thecontrol animal than did those of acute and sub-acute PA-treated animals.

Conclusions: In conclusion, bee pollen demonstrates anti-inflammatory and anti-apoptotic effects while ameliorating

the impaired neurochemistry of PA-intoxicated rats.
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Background

A developmental state is the most dominant, host-related
factor that affects its response to environmental toxicants.
The immature rat brain is morevulnerable toneurotoxic
agents than is the adult animal. The single most crit-
ical factor of the pattern of damage induced by neuro-
toxic agents is thetiming of exposure. As later stages
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of neurodevelopment depend upon the successful
completion of early stages, minor disturbances during
brain development may cause drastic damage in the
future, and neurodevelopmental process are differen-
tially sensitive to specific neurotoxins [1]. Additionally, be-
cause different brain regions develop at differenttimes
during prenatal and postnatal life, a chemical may produce
impairment in different functionaldomains, depending
upon the time of exposure [1].

Recently, the behavioral, neuropathological and bio-
chemical abnormalities following exposure to propionic
acid (PA) neurodevelopment toxicity were recorded as
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etiological factors of autism. As this short chain fatty
acid is used as a food additive and is produced by cer-
tain bacterial species that are known as propionibacter-
ia(e.g., Clostridium difficile and Klebsiella pneumonia),
it may provide a link between dietary, enterobacterial
metabolites, and a genetic predisposition for the subse-
quent etiology of persistent autistic features in exposed
rat pups [2, 3].

A growing body of evidence implicateshyperserotone-
mia, immunological disturbances, oxidative stress and
poor detoxification ability together with elevation of pro-
apoptotic markers in the peripheral blood of autistic pa-
tients [3—8]. Different animal models have been produced
to investigate the environmental contribution, possible
causes, and potential treatments of autism. Among the
several animal models that have so far been tested, the rat
model appears to be an excellent translational system be-
cause detailed data are already available on the genetics
and behavioral phenotyping of various strains [9]. The
etiology ofpersistent autistic features in rat pups were
recorded through a panel of biomarkers related to oxi-
dative stress [2, 9], neuroinflammation [3], and abnormal
neurotransmission [10], together with autistic behavioral
changes [11].

Bee pollen is a natural product that is composed of amino
acids, lipids, flavinoids, vitamins and micronutrients. It
demonstrates antifungal, antimicrobial, anti-inflammatory,
and immunostimulating effects [12, 13]. Pollen is a rich
source of fat-soluble vitamins, such as vitamin A, E and D,
together with water-soluble vitamins, such as B1, B2, B6,
and C. Bee pollen is known to have detoxification activity
and can remove heavy metals (e.g., mercury and lead) and
drugs (e.g., antibiotics and anti-inflammatory preparations).
Pollen also demonstrates anti-inflammatory mechanisms
through the inhibition of the activities of cyclooxygen-
ase and lipoxygenase, the enzymes that are responsible
for the conversion of arachidonic acid intotoxic com-
pounds as prostaglandin and leukotrienesas inducers of
acute and chronic inflammatory conditions in different
tissues [14, 15].

The recently recorded apitherapeutic mechanism of
pollen is attributed to its antimicrobial activity and
potency to induce regeneration of damaged tissues
[16]. It has also been shown that the ethyl alcohol
extract of pollen has antibiotic activity against Gram-
positive pathogenic bacteria,including Klebsiella pneumo-
nia (A propionobacteria)and Pseudomonas aeurgionsa,
and against fungi, such as Candida albicans. Theresponsi-
bility for this activity lies in flavonoids and phenolicacids
[17, 18]. The antioxidant effects of these components are
largely related to their free radical scavenging activity. It is
the most important components that can treat oxidative
stress as an etiological factor and a potential treatment
target of autism [19].
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This information initiates our interest to test the thera-
peutic effects of bee pollen on selected biomarkers that
are known to be clinically impaired in autistic patients
and in a rodent model of autism.

Methods

The experimental assays for this study were performed on
24 young (approximately 21 days old) male western albino
rats (45 to 60 g). The animals were fed on standard pellet
diet, water ad libitum and were maintained in a controlled
environment under standard conditions of temperature
and humidity with an alternating light- and dark-cycle.
Rats were obtained from the animal house of the phar-
macy college, King Saud University, and were randomly
assigned to four groups of six rats each. The first group
consisted of rats to which only phosphate buffered saline
was administered and were used as a control group. The
second group of rats were given an oral neurotoxic dose
(750 mg PA/kg body weight over 3 days at a dose of
250 mg PA/kg body weight/day) and served as the acutely
treated group. The third group was treated with 750 mg
PA/kg body weightover 10 days at a dose of 75 mg PA/kg
body weight/day) and served as the sub-acutely treated
group. The fourth group received bee pollen (50 mg/kg
body weight/day for 30 days) [12]. Bee pollen used in the
present study is first elite product, 100 % natural,
imported for Wadi Al-Nahilone of the largest marketing
company in Saudi Arabia (www.wadialnahil.net). The four
groups of rats were housed under controlled temperature
(21 £ 1 °C) with ad libitum access to food and water. The
protocol of the present work was approved by the Ethics
Committee at the King Saud University, and all experi-
ments were performed in accordance with the guidelines
of the National Animal Care and Use Committee.

Tissue preparation

At the end of the experiment, the rats were anesthetized-
with carbon dioxide and decapitated. The brains were re-
moved from the skull and were dissected into smallpiecesto
be homogenized either in distilled water (10 times w/v)
(For the assay of IFy and caspase-3) or perchloricacidforthe
neurotransmitter assay.

Assay of neurotransmitters (NA, DA and 5HT)

The concentrations of NA, DA, 5-HT were determined in
brain homogenates using high-performance liquid chro-
matography with electrochemical detection (HPLC-ED)
[20]. Brain tissue was homogenized in 150 ul 0.1 M per-
chloric acid containing 0.4 mM sodium metabisulphiteu-
singan ultrasonic cell disrupter. Thehomogenates were
then centrifuged at 10,000 x g at 4 °C for 25 min, and the
supernatants were filtered through a 0.22 m filter (Sigma)
and frozen at -70 °C until analysis.
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Filtrate was injected into the HPLC system, which con-
sisted of a quaternary gradient delivery pump Model HP
1050 (Hewlett-Packard), a sample injector Model 7125
(Rheodyne, Berkeley), and an analytical column ODS 2
C18, 4.6 x 250 mm (Hewlett-Packard) that was protected
by guard column (Lichnospher 100 RP-18, 4 x 4 mm) with
a particle size of 5 um (Hewlett-Packard). The mobile
phase was comprised of 0.15 M sodium dihydrogen phos-
phate, 0.1 mM EDTA, 0.5 mM sodium octanesulphonic
acid, 10-12%methanol (v/v) and 5 mM lithium chloride.
The mobile phase was adjusted to pH 3.4 with phosphoric
acid, filtered through 0.22 m filter (Sigma) and degassed
with helium. A column temperature of 32 °C and a flow
rate of 1.4 ml/min were used.

The electrochemical detector model HP 1049 A
(Hewlett-Packard) with a glassy carbon workingelectrode
was used at a voltage setting of +0.65 Vfor monoamines.
The detector response was plotted and measured using a
chromate-integrator. The concentration of NA, DA, 5-HT
in each sample was calculated from the integrated chro-
matographic peak area and expressed asng/100 mg wet
tissue.

Assay of interferon gamma

IFNy was measured using an ELISA kit, a product of
Thermo Scientific (Rockford, IL, USA), according to the
manufacturer’s instructions. A polyclonal antibody specific
for human [FNywas pre-coated onto a 96-well microplate.
IFNy in standards and samples were sandwiched by the
immobilized antibody and biotinylated polyclonal anti-
body specific for IFNy, which was then recognized by a
streptavidin-peroxidase conjugate. All unbound material
was then washed away, and a peroxidase enzyme substrate
was added. The color development is stopped, and the in-
tensity of the color is measured at 550 nm and subtracted
from absorbance at 450 nm. The minimum level of IFNy
detected by this product is less than 2 pg/ml.

Assay of Caspase3

Caspase3 was measured using an ELISA kit, a product of
Cusabio (Cusabio, Wuhan, China). The microtiter plate
provided in this kit was pre-coated with an antibody spe-
cific for caspase3. Standards or samples were then added
to the appropriate microtiter plate wells with a biotin-
conjugated antibody preparation specific for caspase3.
After that, avidin conjugated to horseradish peroxidase
(HRP) was added to each microplate well and incubated.
A TMB (3, 3, 5, 5’tetramethyl-benzidine) substrate solu-
tion was then added to each well. Only the wells that
contained caspase3, biotin-conjugated antibody, and
enzyme-conjugated avidin would exhibit a change in
color. The enzyme-substrate reaction was terminated by
the addition of a sulfuric acid solution, and color change
was measured spectrophotometrically at a wavelength of
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450 nm =2 nm. The concentration of caspase 3 in the
samples was then determined by comparing the optical
density (O.D.) of the samples withthe standard curve.

Statistical analysis

The data were analyzed using the statistical package for
the social sciences (SPSS, Chicago, IL, USA). The results
were expressed as the mean + S.D. All statistical compar-
isons between the control and PA and pollen-treated rat
groups were performed using a one-way analysis of vari-
ance (ANOVA) test complemented with the Dunnett
test for multiple comparisons. Significance was assigned at
the level of P <0.05. A receiver operating characteristics
curve (ROC) analysis was performed. The area under the
curve (AUC), cutoff values, and degree of specificity and
sensitivity were calculated. The area under the curve
(AUC) provides a useful metric for comparing different
biomarkers, whereas an AUC value close to 1 indicates an
excellent predictive marker, a curve that lies close to the
diagonal (AUC =0.5) has no diagnostic utility. An AUC
close to 1 is always accompanied by satisfactory values
of specificity and sensitivity of the biomarker. Pearson’s
correlations were performed between the measured
parameters.

Results

The brain homogenates levelsof IFy, nor-adrenaline,
5HT, dopamine and caspase-3 in addition to their per-
centage change relative to control of all the tested
groups,are presented in Table 1. As revealed in Fig. 1,
the acute PA—treated group exhibited a significant in-
crease of IFy (148.6 %) and caspase-3 (119.7 %), with a
concomitant decrease of the three measured neuro-
transmitters, NA (66.1 %), DA (64.8 %) and 5HT (61.00 %),
in comparison with thecontrol. Likewise, the treatment
with a subacute dose of PA in group III significantly in-
creased IFy (123.9 %) and caspase-3 (119.7 %),with a drastic
decrease in NA (58.5 %), DA (52.9 %) and 5HT (50.1 %)in
comparison withthe control group. Comparison between
group II and group III showed thatsuba-cute mode of treat-
ment provedto be more neurotoxin than acute one.
(Table 1). The brain homogenate of bee pollen treated ani-
mals also showed improvement in all the tested parameters
as shown in Table 1.

Regarding the Pearson's correlations between the mea-
sured parameters, Table 2 and Fig. 2 demonstrate the sig-
nificantpositive correlations betweenIFY and caspase 3
(R=0.567; p =0.004), nor-adrenaline and 5HT (R = 0.817;
p=0.001), nor-adrenaline and dopamine (R =0.864;
p =0.0015) and 5HT and dopamine (R =0.935; p = 0.001).
IFY was significantly associated with nor-adrenaline
(R = -0.665; p = 0.001), 5HT (R = —0.582; p = 0.003) and
dopamine (R = -0.604; p = 0.002). There was also a sig-
nificant negative correlation between 5HT ~ caspase 3
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Table 1 The mean +S.D and percentage changes of the four measured parameters in brain homogenates of PPA-acute and
sub-acuteintoxicated rats and pollen-treated rats in comparisonwiththecontrol animals

Parameter Group N Mean £S.D. Percent change P value* P value**
IFY (pg/100 mg) Control 6 82.82+752 100.00

PPA-acute 6 123.05+6.58 148.57 0.001

PPA-sub-acute 6 102.60 +£5.08 123.87 0.001 0.001

Pollen 6 8740+ 209 105.52 0203 0.001
Nor-adrenaline (ng/100 mg) Control 6 492+061 100.00

PPA-acute 6 325+036 66.12 0.001

PPA-sub-acute 6 288+032 5849 0.001 0.086

Pollen 6 3.79£0.15 7718 0.005 0.013
5-HT (ng/100 mq) Control 6 6.20+0.78 100.00

PPA-acute 6 3.78+0.56 61.00 0.001

PPA-sub-acute 6 3.11+£0.18 50.07 0.001 0.029

Pollen 6 436 £ 042 70.36 0.005 0.069
Dopamine (ng/100 mg) Control 6 2112+272 100.00

PPA-acute 6 13.69+0.80 64.81 0.001

PPA-sub-acute 6 11172129 52.92 0.001 0.002

Pollen 6 16.09+0.71 76.20 0.005 0.001
Caspase 3 (u/100 mg) Control 6 11266 +4.20 100.00

PPA-acute 6 13479 +3.27 119.65 0.001

PPA-sub-acute 6 152.57 +897 13543 0.001 0.003

Pollen 6 12423 +2.89 110.28 0.001 0.001

*P value between control group and other groups
**p value between PPA-acute group and other groups

(R=-0.870; P=0.001) and dopamine ~ caspase 3 (R =
-0.870; P =0.001).

Receiver operating characteristics curves are collect-
ively presented as curve A, B and C in Fig. 3. Area under
the curve (AUC), cutoff values, sensitivity and specificity
are listed in Table 3.

Discussion
Different animals can be used for acute and sub-acute
testing of toxicity, but they may vary with respect to the

route of toxin administration. For oral administration,
the preferred rodent species is the albino rat (Wistar),
and the test substance is usually given in a single dose
by gavage [21].

Table 1 demonstrates the acute and sub-acute toxic ef-
fects of PA together with the therapeutic potency of bee
pollen. Elevated IFN- y can easily show the neurotoxic
effect of PA [22]. It was shown that [FN-y—activated as-
trocytes become neurotoxic through the activation of
STAT 3 signal transducer, and so STAT3 inhibitors may
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Table 2 Pearson correlations between the measured

parameters

Parameters R (Person correlation) Sig.

IFY ~ Nor-adrenaline —0.665¢ 0.001 NP
IFY ~5-HT ~0.582° 0003 NP
IFY ~ Dopamine —0.604° 0002  NP°
IFY ~ Caspase 3 0.567¢ 0.004 pe
Nor-adrenaline ~ 5-HT 0817¢ 0.001 pe
Nor-adrenaline ~ Dopamine 0.864° 0.001 p?
Nor-adrenaline ~ Caspase 3 -0.781¢ 0.001 NP
5-HT ~ Dopamine 0.935° 0.001 pe
5-HT ~ Caspase 3 —0.850° 0.001 NP
Dopamine ~ Caspase 3 —-0.870¢ 0.001 NP

?Positive Correlation
PNegative Correlation
“Correlation is significant at the 0.01 level

have an anti-neurotoxic effect. Based upon this mechan-
ism, the therapeutic effect of bee pollen, presented in
Table 1, demonstrated a non-significant difference between
pollen-treated group and control animals (P <0.203),which
can be explained by its specific inhibitory mechanism ofan-
giogenic processes, among which is STAT3 inhibition.
Moreover, it can be related to the anti-inflammatory effect
of bee pollen. Flavonoids, as major components of pollen,
are efficient in decreasing the expression of the inflamma-
tory signaling pathway. This always helps to inhibit the ex-
cessive release of nitric oxide and COX-2 expression
through the prevention of NF-kBactivation [23-25]. This
can be supported by the fact that NO, COX-2 and NF-kB
activation are all recorded as etiological mechanisms re-
lated to autism [26-28]. Elevated IFN-y can be related to
the recorded 5HT depletion as a neurotransmitter known
to be depleted in a PA-induced rodent model of autism [3].
IFN-y induces indoleamine 2,3-dioxygenase as an enzyme
that catalyzes the breakdown of tryptophan, resulting in
serotonin depletion [29].

It was generally believed that while brain function is as-
sociated with hunger or satiety changes, its functionis in-
dependent of metabolic changes associated with food
consumption. However, in 1971, Fernstrom and Wurtman
[30] proved that under certain conditions, the protein-to-
carbohydrate ratio of a meal could affect the concentra-
tion of a particularbrain neurotransmitter. For example,
the brain turnover of two catecholamine neurotransmit-
ters, dopamine and norepinephrine, can be greatly af-
fected by ingestion of their amino acid precursor, tyrosine,
when neurons that release these monoamines are firing
frequently. In addition, serotonin, a neurotransmitter in-
volved in the regulation of a variety of brain functions,
such as sleeping, pain sensitivity, aggression, and patterns
of nutrient selection, have also been shown to be affected
by dietary constituents, which are given either as ordinary
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foods or in purified supplement. Based upon this,it can be
suggested that neurotransmitters could be affected by pre-
cursor availability or other peripheral factors that are gov-
erned by food consumption [31].

Table 1 demonstrates theneurotoxic effect of PA altering
the level of DA, 5HT, and NA. Moreover, the therapeutic
effect of bee pollen was clear as it ameliorated the re-
corded neurotoxic effect of PA, thereby demonstrating less
significant differencesin comparisonwiththe control. This
effect can be attributed to the nutritional fact that pollen
contains 22.7 % of protein on average, including 10.4 % of
essential amino acids,among which is phenylalanine (pre-
cursor of tyrosine) and tryptophan. Bee pollen contains
0.69 £ 0.003 % and 2.693 + 0.476 %of free and total trypto-
phan, respectively [32]. The reported ameliorating effect of
pollen can be attributed to its tryptophan content, as clin-
ical evidence indicates that social impairment, as a core
symptom in autism, is related to inadequate brain 5-HT
stores [33, 34] and thattryptophandepletionworsens autism
symptoms. This can also be supported by reports from
parents that their autistic children consume less trypto-
phan than do their peers. A recent study by Zhang et al.
[35] demonstrates that mouse sociability is reduced by
acute tryptophan depletion and can be enhanced by tryp-
tophan supplementation.

Apoptosis, as a type of programmed cell death, requires
specialized cellular machinery, including a family of cyst-
eine proteases known as caspases [36]. Among these cas-
pases, caspase-3 is a potent effector of neuronal death
during brain development and under certain pathological
conditions [37]. Based upon this fact, the neurotoxic effect
of PA together with the therapeutic effect of bee pollen
can easily be observed in Table 1 and Fig. 4. While acute
and sub-acute PA neurotoxicity demonstrated an almost
20 and 35.43 % increase in the concentration of caspase3,
respectively, bee pollen demonstrated that a reduction in
caspase 3 was only 10 % higher in comparisonwiththecon-
trol. Increase of caspase 3 as a marker of PA neurotoxicity
can be related to the elevation of amyloid beta A that
was previously reported in the autistic brain. Elevation of
amyloid precursor protein (APP) is usually followed by
caspase-3 activation, which causes both apoptosis and the
proteolytic processing of APP that results in Apformation
[38, 39]. The effect of bee pollen on caspase 3 can be at-
tributed toitsantioxidant effect of flavonoid. It is well
documented that flavonoids might protect against apop-
tosis of hippocampal neurons through suppressing caspa-
sesandthemitochondrial pathway [40].

Based upon the results of the present study, bee pollen
can be suggested as a treatment strategy for autistic chil-
dren that suffer from detoxification deficiencies, demon-
strated chronic inflammation and abnormal gut microbiota
[41-44]. This suggestion is supported with some recent
studies that demonstrated the detoxifying [45], anti-
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inflammatory [46, 47], and anti-microbial effects of bee

pollen [13, 17, 18].

Table 2 and Fig. 1 demonstrate the positive correla-
tions between the three measured neurotransmitters (5-
HT, dopamine and nor-adrenaline). This can ascertain

the impairment of brain neurochemistry by PA and also
the therapeutic effects of bee pollen. A positive correl-
ation between IFN-y and caspase 3 demonstrates the
role of neuroinflammation in neuronal loss. This can
find support in the work of Lopez-Ramirez et al. [48],
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Table 3 ROC curve of the measured parameters in acute, sub-acute and pollen-treated groups in all groups

Group Area under the curve Best Cutoff value Sensitivity % Specificity %
IFY (pg/100 mg) PPA-acute 1.000 111.370 100.0 % 100.0 %
PPA- sub-acute 0.667 94.260 100.0 % 66.7 %
Pollen 0.769 91.450 100.0 % 722 %
Nor-adrenaline (ng/100 mg) PPA-acute 0.741 3.685 100.0 % 61.1 %
PPA- sub-acute 0912 3.360 100.0 % 833 %
Pollen 0.653 3510 100.0 % 556 %
5-HT (ng/100 mg) PPA-acute 0.639 4450 100.0 % 50.0 %
PPA- sub-acute 0.954 3.585 100.0 % 889 %
Pollen 0593 3.840 100.0 % 500 %
Dopamine (ng/100 mg) PPA-acute 0676 15.005 100.0 % 66.7 %
PPA- sub-acute 0.991 12.920 100.0 % 944 %
Pollen 0.667 15.005 100.0 % 66.7 %
Caspase 3 (u/100 mg) PPA-acute 0.667 129.310 100.0 % 66.7 %
PPA- sub-acute 1.000 140.835 100.0 % 100.0 %
Pollen 0.667 129310 100.0 % 66.7 %

which proves that high TNF-a and IFN-y levels were asso-
ciated with caspase-3/7 activation, which is directly related
to blood-brain barrier damage through the alteration of
the phenotype and function of brain endothelial cells.
Conversely, negative correlations between the impaired
neurotransmitters and bothIFN-y and caspase 3 suggest
that amelioration of neurotransmitters through the avail-
ability of their amino acids precursors (e.g., tyrosine and
tryptophan) in bee pollen can help to reduce the elevated
concentrations of IFN-y and caspase-3 as markers of neu-
roinflammation and apoptosis, respectively.

Table 3 and Fig. 2 demonstrate the area under the curve
(AUCQ), specificity and sensitivity of the measured parame-
ters in acute and sub-acute PA intoxicated rats together
with bee pollen—treated animals. Asall measured parame-
ters recorded satisfactory values of AUC, sensitivity and
specificityserve as markers for sub-acute PA neurotoxicity
and as less predictive values for the ameliorating effects of
bee pollen (AUC range of 0.6-0.769), while IFY is sug-
gested to be a good marker for acute PA toxicity given
that the AUC is equal to 1 and that it is 100 % specific and
sensitive [49].

Male western albino rats (45to 60g)

/ |
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™~

Control group (n=6)
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Acute- treated group (n=6)
250mg PA/kg/body weight /day.
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followed by
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Conclusion

Acute and sub-acute orally administered propionic acid
resulted in changes in biochemical parameters. The alter-
ation of neurotransmitters, cytokines and pro-apoptotic
markers observed can be related to oxidative stress in-
duced by PA. Bee pollen, due to the biological properties
of its components (in particular, phenolic compounds and
amino acid composition), has been determined to exhibit
strong free radical scavenging and antioxidant activity.
Therefore, it has been concluded that bee pollen can be
used safely to ameliorate oxidative stress, neuroinflamma-
tion, poor detoxification, and abnormal gut microbiota as
mechanisms involved in the etiology of autistic features.
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