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A B S T R A C T   

Over the years, extensive research has highlighted the functional roles of small nucleolar RNAs in various bio
logical processes associated with the development of complex human diseases. Therefore, understanding the 
existing relationships between different snoRNAs and diseases is crucial for advancing disease diagnosis and 
treatment. However, classical biological experiments for identifying snoRNA-disease associations are expensive 
and time-consuming. Therefore, there is an urgent need for cost-effective computational techniques that can 
enhance the efficiency and accuracy of prediction. While several computational models have already been 
proposed, many suffer from limitations and suboptimal performance. In this study, we introduced a novel Graph 
Neural Network-based (GNN) classification model, called SAGESDA, which is implemented through the 
GraphSAGE architecture with attention for the prediction of snoRNA-disease associations. The classifier lever
ages local neighbouring nodes in a heterogeneous network to generate new node embeddings through message 
passing. The mini-batch gradient descent technique was applied to divide the graph into smaller sub-graphs, 
which enhances the model’s accuracy, speed and scalability. With these advancements, SAGESDA attained an 
area under the receiver operating characteristic (ROC) curve (AUC) of 0.92 using the standard dot product 
classifier, surpassing previous related studies. This notable performance demonstrates that SAGESDA is a 
promising model for predicting unknown snoRNA-disease associations with high accuracy. The SAGESDA 
implementation details can be obtained from https://github.com/momanyibiffon/SAGESDA.git.   

1. Introduction 

With the advent of sequencing technologies and technical advance
ments, substantial studies have been conducted to explore the associa
tions between small nucleolar RNAs (snoRNAs) and human diseases. It 
has been increasingly evident that snoRNAs play a critical role in various 
biological processes involved in the development and progression of 
diseases (Zhang and Liu, 2022) such as cancer, hereditary disorders, 
hematopoiesis etc. (Liao et al., 2010) 

These snoRNAs, which measure 60–300 nucleotides in length, are 
unique structural components found throughout the nucleoli of 
eukaryotic cells that regulate the maturation and post-transcriptional 
alteration of ribosomal RNAs(Esteller, 2011). They are classified into 
two groups: box C/D snoRNAs and box H/ACA snoRNAs(Liao et al., 
2010), distinguished by their motifs, architectures, and chemical alter
ations (Reichow et al., 2007). SnoRNAs are integral components of the 
extensively studied ribonucleoprotein complexes known as snoRNPs. 
They belong to a diverse family of short non-coding RNAs that are 
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crucial for ribosome synthesis in all eukaryotes (Dieci et al., 2009). 
Increasing evidence has revealed the transcriptional and post- 

transcriptional regulatory functions of snoRNAs. For example, SNHG2 
has been identified as a tumour suppressor and its downregulation is 
associated with lung cancer (Lin et al., 2020). Additionally, snoRNAs 
such as SNORD115-32 and SNORD114-22 have been implicated in ce
rebral cavernous deformities in the brainstem (Kar et al., 2018), while 
the micro-deletion of SNORD116 is the major cause of Prader Willi 
syndrome (Qi et al., 2016). As a result, understanding snoRNA-disease 
associations (SDA) and other complex disease mechanisms is of great 
importance for identifying biomarkers and advancing disease diagnosis 
and prognosis. 

Traditional clinical studies are time-consuming, labour-intensive, 
and costly, making computational methods highly valuable for 
exploring non-coding RNA-disease interactions (Momanyi et al., 2023). 
Several computational models have demonstrated cost-effectiveness and 
impressive performance in this field. For example, (Chen et al., 2021) 
developed a DBNMDA model based on Boltzmann machine to predict 
the associations between microRNA (miRNA) and diseases, achieving a 
high area under the receiver operating characteristic curve (AUC) values 
through global and local leave-one-out cross-validation (LOOCV). 
Similarly, (Yan et al., 2022) proposed PDMDA based on GNN, which not 
only predicted miRNA-disease interactions but also identified the 
different types of miRNA-disease associations. In the realm of long 
non-coding RNA (lncRNA) and diseases, (Lu et al., 2018) presented the 
SIMCLDA technique for locating probable lncRNA-disease interactions 
based on inductive matrix completion, while (Ping et al., 2018) intro
duced a bipartite network-based predictive model for lncRNA-disease 
interactions based on the data acquired from LncRNADisease, 
Lnc2Cancer, and MNDR databases. In another study, (Lan et al., 2020) 
proposed the LDICDL model for predicting lncRNA-disease associations 
through collaborative deep learning. In this model, matrix decomposi
tion was performed before applying an automatic encoder. To address 
the limitations of matrix decomposition, a hybrid model was developed 
to denoise multiple lncRNA feature information and multiple disease 
feature information. All these computational methods mentioned above 
achieved notable AUC values for predicting known lncRNA-disease 
associations. 

Compared to these types of RNA-based link prediction models, such 
as drug-disease (Yu et al., 2021), lncRNA-disease (Yu et al., 2021) (Ping 
et al., 2018) miRNA-disease (Yan et al., 2022) and circular RNA 
(circRNA)-disease (Yang and Lei, 2021) associations, there is still lack of 
sufficient computational methods for predicting snoRNA-disease asso
ciations. Nowadays, there are only a few research tools on the re
lationships between snoRNAs and diseases. (Sun et al., 2022) introduced 
the PSnoD methodology based on bounded nuclear norm regularization 
(BNNR). Using the 5-fold stratified shuffling, this matrix completion 
approach achieved an AUC of 0.90 and an area under the 
precision-recall curve (AUPRC) of 0.55. Another network-based model, 
called iSnoDi-LSGT, was proposed by Zhang and Liu (2022). This model 
incorporated snoRNA sequences and disease similarity as local similarity 
constraints, utilizing network embedding technology to extract snoRNA 
and disease characteristics. Global topological constraints were then 
calculated to identify snoRNA-disease associations. Similarly, Liu et al. 
(2021) presented GCNSDA, a graph neural network (GNN)-based model 
for snoRNA-disease associations identification. By leveraging the 
bipartite graph of snoRNAs and diseases, GCNSDA achieved an average 
AUC of 0.8865 using the advanced GNN algorithm and 5-fold 
cross-validation. However, a notable constraint of this model was its 
limited applicability to the prediction of novel snoRNAs or diseases, 
requiring graph reconstruction and model retraining when new snoR
NAs or diseases were introduced. 

In summary, while substantial progress has been made in under
standing snoRNA-disease associations, computational models for pre
dicting these interactions are still relatively scarce. However, the 
existing computational models have demonstrated cost-effectiveness 

and impressive performance, paving the way for further advancements 
in this area of research. 

To address the limitations identified in previous studies, this research 
introduces the SAGESDA model for predicting potential snoRNA-disease 
associations. The approach involves constructing a heterogeneous 
snoRNA-disease network by integrating snoRNA similarity, disease 
similarity, and snoRNA-disease association networks. These networks 
are then divided into mini-batches to extract snoRNA and disease em
beddings from multiple perspectives using three heterogeneous net
works. The GraphSAGE GNN framework is employed to generate new 
node embeddings, resulting in a comprehensive representation that 
combines snoRNA and disease characteristics as edge features. The po
tential associations are predicted using the dot product classifier. This 
novel model aims to overcome the challenges faced by previous ap
proaches and provide improved predictions for snoRNA-disease 
associations. 

2. Materials and methods 

2.1. Datasets 

In this study, the dataset used was obtained from Sun et al. (2022) 
which was deemed reliable for efficient prediction (Zulfiqar et al., 
2022). The dataset consists of 27 diseases, 220 snoRNAs and 459 known 
snoRNA-disease associations. The original source of this dataset is the 
Mammalian ncRNA-Disease Repository (MNDR) v3.1 (http://www.rn 
a-society.org/mndr/), which curates experimentally verified and pre
dicted ncRNA-disease associations from the literature and other relevant 
resources (Ning et al., 2021).The snoRNA-disease associations were 
represented in an adjacency matrix A ∈ R(sn×dn) where variables sn and 
dn represent the total number of snoRNAs and diseases, respectively. 

2.2. SnoRNA and disease pairwise similarity 

To obtain snoRNA pairwise similarity information (SS), we utilized 
the similarity information provided by Sun et al. (2022). Following the 
implementation of k-mer (4-mer) for feature extraction, they obtained a 
fixed length of numeric vectors from the different length sequences 
which led to an s × 4k feature matrix denoted as Fs×4k using a sample set 
of snoRNAs denoted as S. Subsequently, the Tanimoto coefficient which 
evaluates the angle difference and length difference between the two 
vectors using dot products and square lengths in the denominator was 
applied to calculate the snoRNA pairwise similarity (Lipkus, 1999; 
Kryszkiewicz, 2013). Additionally, recording both the angle and length 
variances can improve the performance of specific domains (Anastasiu 
and Karypis, 2017), thus the vector similarity for real-valued vectors can 
be determined as given in Eq. (1) using the Tanimoto coefficient, which 
extends the Jaccard similarity coefficient (Ayub et al., 2020). 

d
(
sisj
)
=

〈sisj〉
‖ si ‖2 + ‖ sj ‖2 − 〈sisj〉

(1)  

where sisj refers to the vector dot product of snoRNAs si and sj calculated 
as shown in Eq. (2), while ‖ si ‖=

̅̅̅̅̅̅̅̅̅̅̅
〈sisj〉

√
refers to the Euclidean distance 

between the two snoRNAs. 

〈sisj〉=
∑n

k=1
si,k × sj,k (2) 

To determine the disease pairwise similarity (DS), we adopted the 
semantic similarity approach based on directed acyclic graphs (DAG) 
proposed by Wang et al. (Tao, 2019). The DAG principle states that the 
semantic similarity between two diseases is influenced by the number of 
shared ancestors they have. The contribution of similarity is also 
weighted based on the proximity of the ancestors to the target node. 
Thus, common ancestors may have different impacts on the semantic 
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similarity score for diseases, with closer common ancestors indicating 
higher similarity between the diseases. This strategy was employed 
because the MeSH terms were organized in a hierarchical tree-like 
structure, resembling a standard DAG graph. The relevant disease 
Mesh ID and the gene ID of each snoRNA are listed in the MNDR data. 
MeSH, developed by the National Library of Medicine (NLM), is a 
controlled vocabulary used for indexing, cataloguing, and searching 
articles related to health and bio-medicine in repositories like Pub
Med/MEDLINE(Lipscomb, 2000). Fig. 1 illustrates the feature distribu
tions of the disease and snoRNA similarity matrices used in our proposed 
model. 

2.3. Heterogeneous network construction 

In contrast to homogeneous networks, heterogeneous networks 
consist of nodes and edges of various types, each associated with un
structured contents (Zhang et al., 2019). For instance, a user-based 
network may depict associations between users and items, while an 
academic graph may represent relationships between authors and pa
pers. After obtaining datasets containing snoRNA and disease pairwise 
similarities and their association network, we identified a total of 459 
known associations between 220 snoRNAs and 27 diseases. The asso
ciation information was then presented in an adjacency matrix A ∈

R(sn×dn), where Aij is equal to 1 if there exists a known association be
tween snoRNA i and disease j, and 0 otherwise. With snoRNA and dis
ease nodes as the two types of nodes, we constructed a heterogeneous 
graph G = (V,E) that incorporates snoRNA and disease nodes along with 
their corresponding edges based on A, the graph structure is shown in 
Fig. 2, illustrating the snoRNA-disease associations and two-way mes
sage passing for feature aggregation. The graph data object was gener
ated comprising 247 nodes and 459 edges, which were further split into 
training, validation and test sets using the RandomLinkSplit function 
from PyTorch Geometric to facilitate model training and evaluation. The 
function randomly divides the edges in a way that the training split does 
not include edges from other splits, while the validation split does not 
include the edges found in the test split set. Therefore, 80% of the graph 
data was used for training, 10% for evaluation and 10% for testing. In 
the training edges, 70% were used for message passing and 30% for 
supervision, this was determined by the disjoint_train_ratio parameter of 
the RandomLinkSlit function which was set to 0.3. Also, fixed negative 
edges were generated at a rate of 0.1 for model evaluation, while during 
training, the negative edges were generated on the fly with mini batches 
generated at a negative sampling rate of 0.2. 

According to the definitions provided by Chen et al. (2022), a het
erogeneous network is denoted as G = (V, E, D, R), where V represents 
the collection of nodes i.e., snoRNA and disease nodes, E denotes the 

collection of edges in the network, D signifies the set of node types 
denoted as D = {D1,D2, ...,Dn, ...,DN}(N≤ |V|), R represents the set of 
edge types. Each node vi ∈ V belongs to a given type of node and can be 
represented as φ(vi) = Dn ∈ D(1≤ n≤ N). The total number of node 
types is represented by N = |D|. For a given edge ej = (vivj) ∈ E, it be
longs to a given relation type indicated as φ(ej) ∈ R, where the number 
of edge types can be defined as M = |R|. Corresponding to another 
definition by Chen et al. (2022), in the proposed network embedding, a 
mapping function f : V→X ∈ R|V|×b, b≪|V| is trained to generate new 
vector representations of the nodes, which capture both the structural 
and semantic links between different nodes. The heterogeneous network 
developed for the proposed model is described based on the known in
teractions, as indicated in Eq. (3). 

G=(V,E,D,R), =
[

SS AT

A DS

]

(3)  

Fig. 1. SnoRNA and disease matrices’ pairwise similarity distribution demonstrating the degree of correlation for specific snoRNA and disease pairs. A pair cor
relation that is weaker and stronger, respectively, is indicated by the values closer to 0 and 1. 

Fig. 2. An illustration of the heterogeneous graph G = (V, E) comprising the 
two types of nodes (snoRNA and disease nodes) and their edges indicating the 
known associations between two adjacent nodes. The dark and light green 
nodes represent the disease and snoRNA nodes, respectively, while the undi
rected links represented by two direction arrows were set to facilitate two-way 
message-passing during node feature aggregation. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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2.4. Case study 

After training and testing the SAGESDA model, a case study was 
conducted to further validate and assess the effectiveness of the model in 
predicting snoRNA-disease associations. In this case study, a specific 
disease and its associated snoRNAs were selected to generate a sub- 
graph, which served as the testing data for the model. Known associa
tions between the selected disease and associated snoRNAs were 
intentionally removed from the sub-graph to simulate previously unseen 
data. To evaluate the predictions, the top ten scores obtained from the 
model were ranked in descending order, with higher scores indicating a 
high likelihood of association and vice-versa. For this case study, two 
diseases namely, lung neoplasms and stomach neoplasms, were selected 
due to their high prevalence worldwide. Lung cancer, also known as 
lung neoplasms, is the leading cause of cancer-related deaths globally 
(Tao, 2019), while gastric cancer, also known as stomach neoplasms, 
ranks fifth and fourth globally in incidence and fatality, respectively 
(Sung et al., 2021). The top ten predicted snoRNAs associated with lung 
neoplasms and stomach neoplasms were then verified by the RNADi
sease v4.0 database (Chen et al., 2023). Eight out of the top 10 snoRNAs 
predicted to be associated with both lung and stomach neoplasms were 
successfully confirmed as shown in Table 1, a clear indication of the 
SAGESDA’s effectiveness in accurate prediction of snoRNA-disease 
associations. 

3. Theory / calculation 

The proposed method, known as SAGESDA, utilizes multiple graph 
neural networks (GNNs) and is developed using the GraphSAGE 
framework along with a dot product classifier for the prediction of 
probable snoRNA-disease interactions. To achieve this, the snoRNA and 
disease pairwise similarity data, along with their known associations, 
are mapped into three heterogeneous networks. These networks are then 
utilized in a three-layer GraphSAGE network for training, resulting in 
the generation of snoRNA and disease embeddings. These embeddings 
serve as the final feature representations for predicting snoRNA-disease 
associations. The link-level prediction is performed using a dot product 
classifier, which identifies likely associations. The complete SAGESDA 
process is illustrated in Fig. 3. 

3.1. The GraphSAGE with attention 

GraphSAGE (Graph Sampling and Aggregation) is a framework for 
GNNs that enables inductive representation learning. It generates node 
embeddings, which are low-dimensional representations capturing both 
structural and semantic information of each node. Unlike other GNN 
frameworks that rely on a single fixed graph, GraphSAGE is capable of 
generalizing to new nodes efficiently (Afoudi et al., 2023). It achieves 
this by using the immediate neighbourhood of each node to train its 
embedding (Zhang et al., 2020). This approach allows for the anticipa
tion of embeddings for unseen nodes without requiring model retraining 

(Hamilton et al., 2017). 
GraphSAGE collects node information through aggregator functions, 

considering a specific number of hops away from the target node. Each 
iteration involves two essential operations: sampling and aggregation. 
For each node u, a fixed number of neighbours are chosen using a 
random walk-based sampling strategy during the sampling phase i.e., 
N(u) = {v1, v2, ..., vn}(v∈ G), and in the aggregation phase, the embed
dings of the sampled neighbours are combined to create a new repre
sentation for the central node, denoted as u (Zhang et al., 2020). This 
process is illustrated in Eq. (4), where the mean aggregation function is 
applied. 

h(k)
u = σ

(
W.MEAN

( {
h(k− 1)

u

}
∪
{

h(k− 1)
u ,∀v∈N(u)

}))
(4)  

where σ (.) refers to the non-linear activation function, W is the weight 
matrix, v is the neighbours of the target node u, hk− 1

u refers to the pre
vious node representation, while the aggregated neighbourhood node 
information in the layer k can be represented as hk

N(u). In addition to 
considering feature significance (Zulfiqar et al., 2022), the Graph 
Attention Network (GAT) introduced multi-head attention, enabling the 
model to selectively attend to different neighbours based on their 
importance and various input feature elements across different heads. 
GAT learns multiple representations of each graph, capturing complex 
interactions to improve performance, as described in Eq. (5), where 
αuv =

1
|N(u)| refers to the weighing factor determining the importance of 

the message of node v to node u. 

hk
u = σ

(
∑

v∈N(u)

αvuWkhk− 1
v

)

(5) 

For two-way message passing, Eq. (4) was adjusted as shown in Eq. 
(6), where mk

j,i represents the incoming message from node j to node i in 
layer k, and N′(i) represents the set of nodes sending messages to node i. 
The neighbouring node representations and incoming messages from the 
nodes that send messages to node i are used as the inputs for the ag
gregation function. This function applies a non-linear activation func
tion σ and estimates the mean of the representations and incoming 
messages. The resulting vector becomes the updated representation of 
node i in the next layer of the network. 

AGGRERATE
({

hk
j : j∈N(i)

}
∪
{

mk
j,i

: j∈N′(i)
})

=

(
1

|N(i)| + |N′(i)|

(
∑

j∈N(i)

hk
j +

∑

j∈N′(i)

mk
j,i

))

(6) 

To deploy the SAGESDA network, we combine multiple heteroge
neous networks trained using similarity and direct interaction infor
mation for snoRNA and disease nodes, as shown in Eq. (7). Here, G 
represents the combined heterogeneous graph, n is the total number of 
combined networks, Vi and Ei denote the nodes and edges in the ith 

Table 1 
The top 10 snoRNA predictions associated with Lung and Stomach neoplasms as obtained by the SAGESDA model, confirmed via the RNADisease database.  

Lung neoplasms Evidence Stomach cancer Evidence 

snoRNA ID RNA Symbol snoRNA id RNA Symbol 

692235 SNORD103B Confirmed 692198 SNORD78 Confirmed 
767569 SNORD113-9 Confirmed 8944 SNORD73A Confirmed 
767577 SNORD114-1 Confirmed 26770 SNORD79 Confirmed 
692084 SNORD13 Unconfirmed 692215 SNORD112 Unconfirmed 
595097 SNORD16 Confirmed 94161 SNORD46 Confirmed 
9301 SNORD27 Confirmed 9301 SNORD27 Confirmed 
26798 SNORD51 Confirmed 26818 SNORD33 Confirmed 
26788 SNORD60 Confirmed 619564 SNORD72 Confirmed 
767566 SNORD113-6 Confirmed 100113382 SNORD105B Confirmed 
100033454 SNORD115-16 Unconfirmed 692234 SNORD103A Unconfirmed  
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GraphSAGE network, and Di and Ri are the node and edge types of Vi and 
Ei, respectively. 

G=
⋃n

i=1
(ViEiDiRi) (7) 

Combining multiple graphs captures relationships from different 
perspectives, and shared weights across the graphs facilitate learning of 
common representations and information sharing between the graphs. 
Also, Di and Ri ensure accurate identification of nodes from each distinct 
network in the final graph G. To obtain edge-level embeddings for link 
prediction, we perform feature aggregation between the two adjacent 
nodes vi and vj using a dot product as shown in Eqs. (8) and (9). This 
efficient calculation allows us to derive edge embeddings that reflect the 
similarity between nodes in the embedding space. 

vi,j = σ
(
W.CONCAT

(
vivj
))

(8)  

vi.vj =
∑n

x=1
vivj (9)  

where vi,j in Eq. (8) refers to the edge-level embedding, σ refers to the 
activation function, and W and CONCAT refer to the weight matrix and 
concatenation operation, respectively. 

To control node contribution and prevent data overfitting, we 
introduce a penalty factor λ through a linear layer applied to the output 
embedding M, as shown in Eq. (10) which represents the first input of 
the SAGESDA. The result is then normalized to obtain the final node 
embeddings Ms and Md for snoRNAs and diseases, respectively. 

M =

[
λ ∼ SS AT

A λ ∼ DS

]

(10)  

where λ is a value ranging from 0 to 1, with 0 or 1 denoting that M is only 
contributed to by either DS or SS, respectively. As a result, a λ value in- 

between enables a trade-off between DS and SS contributions. 

4. Results and discussion 

4.1. Implementation findings 

The proposed SAGESDA model aims to predict snoRNA-disease as
sociations by training three heterogeneous networks using a three-layer 
GraphSAGE network. This approach generates a rich set of final node 
embeddings that facilitate the prediction of potential associations. The 
model utilizes shared weights across different graphs to learn common 
node representations, enabling it to learn from multiple perspectives and 
capture detailed embeddings. To evaluate the performance of SAGESDA, 
we used the testing data and measured the AUC as the primary evalu
ation metric, where a higher AUC value indicates better model perfor
mance and vice versa. Besides, SAGESDA performance was evaluated 
based on the area under the precision-recall curve (AUPRC) and the F1- 
score for enhanced evaluation. AUC refers to a single scaler value 
popularly adopted in machine learning models to provide an aggregate 
measure of the model’s ability of discriminating between different 
classes in classification tasks by evaluating the trade-off between true 
and false positive rates (Zhu et al., 2023; Zhang et al., 2023a; Zou et al., 
2023). AUPRC on the other hand considers the trade-off between the 
model’s precision and recall (Yang et al., 2023; Zhang et al., 2022). 

By implementing a dot-product classifier, we successfully obtained 
the final embeddings and predicted potential associations based on the 
similarity scores between adjacent snoRNA-disease nodes. The dot 
product methodology calculates the cosine similarity between two node 
vectors u and v, represented as score(u, v) = (u.v) / (‖ u ‖‖ v ‖), where 
(u.v) denotes the dot product and ||u|| and ||v|| refer to the Euclidean 
norms of the vectors u and v, respectively. The similarity score ranges 
between − 1 and 1, with a higher score indicating a stronger association 
between the two vectors, and vice versa. 

Fig. 3. An illustration of the proposed SAGESDA model for the prediction of snoRNA-disease associations. The dot product classifier is primarily used to forecast 
potential interactions, while sampling and aggregation via the GraphSAGE framework helps to obtain low-dimensional data. 
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To maintain the continuous nature of the similarity scores and rank 
the anticipated links based on their strength, we avoided using a 
threshold value. Instead, we evaluated the model performance by 
computing the AUC score over the predictions and corresponding 
ground-truth edges from the evaluation data, which includes both pos
itive and negative edges. SAGESDA achieved an AUC of 0.92 and an 
AUPRC of 0.90 as depicted in Fig. 4 (A) and 4 (B), respectively, along
side the training loss curve in Fig. 4 (C). The model also attained an F1- 
score of 0.80 indicating a balance between precision and recall. This 
performance was achieved using a learning rate of 0.00001 and 1500 
epochs, which were determined as the optimal and most significant 
parameters for SAGESDA. The model was implemented using the 
PyTorch geometric deep learning library version 2.1.0. 

The performance of the SAGESDA, as a state-of-the-art GNN-based 
approach, exhibited a significant improvement compared to previously 
proposed models for snoRNA-disease associations, such as PSnoD (Sun 
et al., 2022) and GCNSDA (Liu et al., 2021), which obtained AUCs of 
0.90 and 0.8865, respectively. 

In addition to comparing SAGESDA with other specifically designed 
models for snoRNA-disease associations, we evaluated its performance 
against a few other non-coding RNA-based computational models dis
cussed in the literature. For instance, DBNMDA (Chen et al., 2021) 
attained an AUC of 0.9184 in global LOOCV, while PDMDA (Yan et al., 
2022) obtained an average AUC of 0.7917 across three study tasks 
related to miRNA-disease associations. IMCLDA (Lu et al., 2018) ach
ieved an AUC of 0.8237, and Ping et al. (2018) reported 0.9292 using the 
MNDR database for the prediction of lncRNA-disease interactions. 
Table 2 contains a summarized comparison through which SAGESDA 
proves to be a reliable model for snoRNA-disease association prediction, 
outperforming previous models and demonstrating its effectiveness in 
this field. 

4.2. Interpretation and analysis 

SnoRNAs, a class of non-coding RNA molecules, play a crucial role in 
RNA processing and modification, and emerging evidence has high
lighted their involvement in various diseases, including cancer, neuro
degenerative disorders, and metabolic diseases etc. (Mannoor et al., 
2012; Liu et al., 2020; Zhang et al., 2021; Ning et al., 2022; Ren et al., 
2022). Understanding the associations between altered snoRNA 
expression levels and these diseases can offer valuable insights into their 
underlying molecular mechanisms (Liu et al., 2020; Zhang et al., 2021, 
2023b; Ricciuti et al., 2016; Ren et al., 2023). To predict potential as
sociations between snoRNAs and diseases, one promising approach is 
the utilization of Graph Neural Networks (GNN), a cutting-edge tech
nique capable of capturing the intricate relationships between snoRNAs 

and diseases through heterogeneous networks. GNNs provide an effec
tive means of modelling the complex interplay between snoRNAs and 
diseases, opening avenues for improved prediction and understanding of 
their associations. 

In this study, we introduced SAGESDA, a novel model based on the 
GraphSAGE GNN architecture, for the prediction of potential snoRNA- 
disease associations. SAGESDA leverages three heterogeneous net
works, along with a dot-product classifier for link prediction. The model 
was trained on a three-layer GraphSAGE network, and mini-batch 
loaders were utilized to generate sub-graphs for the model input. By 
incorporating these networks and employing GraphSAGE, SAGESDA 
offers an innovative approach to effectively capture the intricate re
lationships between snoRNAs and diseases, enhancing the accuracy and 
reliability of association predictions. This enriches the dataset given the 
initial low snoRNA-snoRNA and disease-disease similarity scores with 
the majority ranging between 0 and 0.2 as seen in Fig. 1. While the 
model’s performance was not directly affected by the low similarity 
scores, it is evident that most of the items are not strongly correlated. 

The utilization of mini-batch loaders played a crucial role in 
enhancing the efficiency of the model. By updating model parameters 
more frequently using smaller sub-datasets, the computational effi
ciency was improved. Additionally, processing a reduced amount of data 
at each iteration facilitated the model’s ability to handle larger datasets, 
while simultaneously improving its generalization performance. This 
capability is particularly advantageous for biological networks, which 
tend to be extensive and intricate (Blundell et al., 2015). Furthermore, 
mini-batch loaders mitigated the risk of over-smoothing, a common 
challenge in GNN. Over-smoothing occurs when models generate similar 
embeddings for different nodes, resulting in the loss of valuable infor
mation and limiting the model’s capacity to capture diverse graph in
formation (Hamilton et al., 2017). Hence, the utilization of mini-batch 
loaders in our approach effectively addressed these issues, contrib
uting to the overall effectiveness and robustness of the model. 

Moreover, to regulate the contribution of each node during feature 
aggregation and prevent data overfitting, a penalty factor λ was intro
duced through a linear layer (Li et al., 2017). This addition significantly 
improved the performance of the model. However, the incorporation of 

Fig. 4. An illustration of the testing AUC (A) and AUPRC (B) obtained by the SAGESDA using the dot product classifier, and the model training loss curve (C).  

Table 2 
The SAGESDA model performance in comparison with other baseline models 
previously proposed.  

Model AUC Association Data 

SAGESDA 0.92 SnoRNA - disease data (originally from MNDR) 
PSnoD 0.90  
GCNSDA 0.8865   
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multi-head attention using the Graph Attention Network (GAT) frame
work increased the model’s time complexity. The attention mechanism 
required additional computations, and the GraphSAGE-based model 
involved multiple rounds of neighbourhood aggregation. Despite the 
increased time complexity, the superiority of SAGESDA in learning 
edge-specific weights and emphasizing the most relevant neighbouring 
nodes outweighed this drawback. Similar to attention mechanisms, 
SAGESDA excelled at identifying and selecting the most important 
neighbours while disregarding less relevant ones. To evaluate the per
formance of SAGESDA, popular metrics such as the AUC were employed 
and the performance was compared to that of other previously proposed 
models. The results obtained using the dot-product classifier demon
strated that SAGESDA outperformed other baseline models and achieved 
state-of-the-art performance in predicting potential snoRNA-disease 
associations, achieving an impressive AUC of 0.92. 

Note that we specifically employed a dot-product classifier for link 
prediction due to its simplicity and strong performance, particularly in 
scenarios with a large number of potential associations, as seen in the 
prediction of snoRNA-disease associations. The dot-product classifier is 
also notably powerful, especially on embedding-based models where the 
dot product between two adjacent nodes can be an effective measure of 
association based on the dot products. Additionally, during model 
training, we observed that reducing the learning rate improved the 
model performance. The best results were obtained with a learning rate 
of 0.00001 and the Adam optimizer, trained over 1500 epochs. The loss 
curve is illustrated in Fig. 4 (C), with a steady downward trend as the 
model learns. However, some notable peaks in the loss curve occurred as 
a result of a challenging batch of data, leading to a temporary spike in 
loss. 

While the GraphSAGE GNN architecture relied heavily on local 
neighbourhood information in this study, SAGESDA introduced several 
key innovations. Firstly, it leveraged local neighbourhood information 
to generate more accurate and reliable node embeddings, enhancing 
prediction efficiency. This is particularly crucial for large graphs where 
high time complexity poses a significant challenge. Secondly, SAGESDA 
employed multiple heterogeneous graphs, enabling detailed node rep
resentations by capturing essential information from different perspec
tives. Thirdly, the model incorporated a penalty factor that effectively 
regulated each node’s contribution, preventing data overfitting. Another 
significant contribution was the ability to compute node embeddings for 
new snoRNA or disease nodes without requiring model retraining. This 
overcomes a major limitation of previous studies such as GCNSDA (Liu 
et al., 2021), which necessitated graph reconstruction and model 
retraining when introducing new snoRNAs or diseases. 

With the SAGESDA, it becomes possible to generate node embed
dings for newly introduced snoRNA or disease nodes and predict their 
associations with existing nodes. This is achieved with the help of the 
GraphSAGE architecture, which learns a function to create embeddings 
by aggregating and combining features from the local neighbourhood 
rather than the entire fixed graph. Despite the remarkable success of 
SAGESDA, it is important to acknowledge the model’s major limitations 
of high time complexity, which increased notably after the introduction 
of multi-head attention and the model’s high reliance on local neigh
bourhood. Besides, the model was implemented on a single dataset due 
to limited availability of compatible datasets. Therefore, future studies 
can be aimed at addressing these issues for improved model capacity. 
Other classification techniques can also be implemented for the classi
fication of edges to determine the potential snoRNA-disease associations 
for further improvement of the SAGESDA’s performance. Also, the 
SAGESDA model utilized the GraphSAGE architecture which was found 
to be the most suitable, however, future studies can implement other 
architectures for comparison with the performance of the SAGESDA. 

5. Conclusion 

As studies continuously highlight the significant role of snoRNAs in 

the emergence and progression of complex human diseases such as 
cancer, cardiovascular diseases, neurodegenerative diseases, etc., there 
is a pressing need for efficient computational models that can identify 
potential snoRNA-disease associations. The development of such models 
holds great promise in enhancing disease diagnosis, prognosis, and 
treatment by providing valuable insights into disease pathogenesis and 
potential therapeutic targets. 

In this study, we proposed the SAGESDA model, based on the 
GraphSAGE GNN architecture, which has demonstrated promising per
formance compared to existing methods, achieving an AUC of 0.92. The 
high performance of SAGESDA positions it as a valuable tool in the 
healthcare sector. For example, it can assist researchers in identifying 
potential snoRNA-disease associations, leading to the development of 
new diagnostic and therapeutic strategies. Additionally, it can also 
contribute to the prediction of potential drug side effects by identifying 
snoRNAs associated with adverse drug reactions. Furthermore, the 
model supports the prioritization of drug targets by identifying snoRNAs 
linked to disease-specific molecular pathways. Hence, the model has 
significant implications for disease diagnosis, treatment, and drug 
development. Moreover, the SAGESDA model addresses several limita
tions identified in previous studies, making it a guiding principle for 
future experimental research. By overcoming these limitations, the 
model paves the way for further advancements in the field. Overall, the 
development of the SAGESDA model fills a crucial gap in computational 
models for snoRNA-disease associations and opens up new research 
avenues, ultimately contributing to improved healthcare outcomes. 
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