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Abstract

Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue,
hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans,
and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis
elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-
carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications
leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of
chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this
process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in
the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for
thiolation of tRNAs having the 59methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display
developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural
function and development.
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Introduction

Regulation at the level of translation is one important way in

which gene activity is controlled in metazoans. Several different

mechanisms have previously been identified by which translation

can be regulated during development or memory formation

[reviewed in 1]. During anterior-posterior patterning of the

Drosophila embryo, the translation of hunchback mRNA in the

posterior region of the embryo is inhibited by binding of a protein

complex to the Nanos response element in the hunchback 39UTR

[2]. In Caenorhabditis elegans, developmental timing is controlled by

the small temporal RNAs, lin-4 and let-7, which act by forming

heteroduplexes with their target mRNAs and, at least in some

cases, suppressing their translation [3]. Translation efficiency is

also regulated by phosphorylation of translational components at

the initiation and elongation steps [4,5]. For example, during

memory formation in mice, translation of ATF4 mRNA is

regulated by phosphorylation of initiation factor eIF2a [6].

Another way in which the efficiency of translation can be

modulated is by covalent modification of nucleosides in the

anticodons of tRNAs. In the decoding of mRNA, modified

nucleosides in the anticodon region, especially position 34 (wobble

position) and position 37, have been suggested to be important for

restriction or improvement of codon-anticodon interactions [7–

10]. In S. cerevisiae, 25% of the tRNA species are covalently

modified by the addition of either carbamoylmethyl (ncm) or

methoxycarbonylmethyl (mcm) side chains to the 59carbon of U34

[11–14]. A subset of these tRNAs contains a further modification

on wobble uridines, addition of a thio group at the 29position

(Figure 1) [11,13,14]. In vivo, presence of an 5-carbamoylmethy-

luridine (ncm5U), an 5-methoxycarbonylmethyluridine (mcm5U)

or an 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) im-

proves reading of both A- and G-ending codons [14–16].

In S. cerevisiae, formation of ncm and mcm side chains present at

59position of wobble uridines requires the Elongator complex [12],

which is composed of six subunits Elp1p – Elp6p [17,18]. Yeast cells

lacking Elongator activity are viable but display multiple defects

including those in PolII transcription and exocytosis [16,18–22].

However, these defects all appear to result from a primary defect in

tRNA modification [16]. Elongator complex is conserved in

eukaryotes and has also been purified from humans [23].

Inactivation of Elongator subunits in multicellular organisms causes

multiple defects including those in development, cell proliferation,

cell migration and neuron projection [24–27]. Recently, Elongator

in mice has been reported to acetylate a-tubulin [27]. However, it is

presently unclear whether Elongator in higher eukaryotes functions

directly in multiple processes or acts on a small number of targets

whose absence leads to pleiotropic defects.

Mutations in the human homologue of yeast ELP1, IKBKAP/

hELP1, have been shown to cause Familial Dysautonomia (FD), a

genetic disorder primarily affecting the sensory and autonomic

nerve systems [28–30]. Human IKAP/hELP1 protein is part of a
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complex of six proteins that also contains the human homologues

of yeast Elongator proteins [23]. Whether Elongator in humans or

other metazoans promotes tRNA modification has not been

reported.

The aim of the present study was to investigate the function of

the Elongator homologues, ELPC-1 and ELPC-3 in the nematode,

C. elegans. In particular, we were interested to determine first,

whether Elongator in metazoans is required for modification of

wobble uridines, and second, whether C. elegans could be

established as a model to study the role of Elongator in modulating

translation within neurons and other tissues. We demonstrate that

Elongator is required in C. elegans for the formation of modified

nucleosides in tRNA, and that Elongator mutants have defects in

neurological and developmental processes associated with reduced

translation. We believe our results also have important implica-

tions for the etiology of FD disease.

Results

C. elegans elpc-1 and elpc-3 Are Required for Synthesis of
mcm5 and ncm5 Side Chains at Wobble Uridines

Searches of the C. elegans protein sequence database with the

yeast or human Elp1p and Elp3p sequences revealed that C. elegans

contains single Elp1p and Elp3p homologues, named ELPC-1 and

ELPC-3, which are encoded by Y110A7A.16 and ZK863.3

respectively [see Materials and Methods for an explanation of gene

nomenclature]. To investigate the function of elpc-1 and elpc-3 in C.

elegans, we used elpc-1(tm2149) and elpc-3(tm3120), deletion mutants

kindly supplied by S. Mitani of the National Bioresource Project,

Japan. The elpc-1(tm2149) deletion removes 275 bp of sequence

spanning parts of exons 7 and 8 (Figure 2A), whereas the elpc-

3(tm3120) removes 356 bp spanning the first half of exon 3 and

contains as well an insertion of four nucleotides in the second half

of exon 3 (Figure S1A). The elpc-3(tm3120) deletion removes part

of a sequence sharing significant homology to the Radical S-

adenosylmethionine (SAM) superfamily [31]. Members of this

family of proteins contain an FeS cluster and use S-adenosylme-

thionine (SAM) to catalyse a variety of radical reactions. The

Elp3p Radical SAM domain has been found to be required for

iron binding in Methanocaldococcus jannaschi [32], and for integrity of

the Elongator complex in yeast [33].

In yeast, Elp1p and Elp3p are required for the formation of

mcm5 and ncm5 side chains of modified nucleosides mcm5U,

ncm5U, ncm5Um and mcm5s2U present at the wobble position in

tRNA [12]. To determine whether their homologues in C. elegans,

ELPC-1 and ELPC-3, also function to promote wobble uridine

tRNA modification, we examined if the mcm5U, ncm5U or

mcm5s2U modified nucleosides were present in tRNA isolated

from wild-type and elpc mutants. Total tRNA isolated from wild-

type worms contained ncm5U and mcm5s2U nucleosides

(Figure 2B and 2D, Figure S1B, S1D). However, no mcm5U

was detected (Figure S2D), implying that modification of uridine in

C. elegans tRNA differs in at least one respect from that in S.

cerevisiae. In contrast to wild-type worms, no mcm5s2U or ncm5U

nucleosides were present in tRNA isolated from elpc-1(tm2149)

mutants (Figure 2C and 2E). Instead, 2-thio uridine (s2U) was

detected in tRNA isolated from the elpc-1(tm2149) mutant but not

from wild-type worms (Figure 2F and 2G). This nucleoside arose

from a failure in the mutant to add the mcm5 side chain of the

mcm5s2U nucleoside. The tRNA modification defect in the elpc-

1(tm2149) mutant was rescued by elpc-1 activity provided by a

transgene (Figure 2C and 2I). Thus, like yeast Elp1p, C. elegans

ELPC-1 is required for the formation of mcm5 and ncm5 side

chains in tRNA. Consistent with the tRNA modification defect in

the elpc-1(tm2149) mutant, tRNA isolated from elpc-3(tm3120)

mutants lacked the mcm5s2U and ncm5U nucleosides and instead

contained s2U (Figure S1).

Synthesis of the s2 group of mcm5s2U in yeast requires Tuc1p

[15,34–38]. The homologue of Tuc1p in C. elegans is encoded by

open reading frame F29C4.6 [39]. In this paper we will refer the

F29C4.6 gene as tuc-1. We analyzed tRNA from tuc-1(tm1297)

mutant worms by HPLC and confirmed that it lacked the

mcm5s2U modification and instead had mcm5U, a nucleoside not

normally found in C. elegans tRNA (Figure S2B, S2C, S2D, S2E).

Furthermore, a transgene containing wild-type tuc-1 DNA

restored formation of mcm5s2U in tRNA (data not shown).

Consistently, tRNA isolated from an elpc-1(tm2149); tuc-1(tm1297)

double mutant lacked both the 59- and 29 side-chains of wobble

uridines and no ncm5U or mcm5s2U nucleosides were observed

(Figure S3).

Figure 1. Schematic drawing of the tRNA secondary structure
and modified wobble uridines. (A) Secondary structure of tRNA
with wobble position shown (N). (B) Wobble uridines can be modified to
5-carbamoylmethyluridine (ncm5U), 5-methoxycarbonylmethyl
(mcm5U) or 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U).
doi:10.1371/journal.pgen.1000561.g001

Author Summary

The efficiency of protein synthesis can be modulated by
alterations of various components of the translation
machinery. In translation, transfer RNAs act as adapter
molecules that decode mRNA into protein and thereby
play a central role in gene expression. In the tRNA
maturation process, a subset of the normal nucleosides
undergoes modifications. Modified nucleosides in the
tRNA anticodon region are important for efficient transla-
tion. We found that, in the worm C. elegans, components
of the Elongator complex are required for the formation of
a certain set of tRNA modifications in the anticodon
region. We observed a reduced efficiency of translation as
well as a lower production of neurotransmitters in
Elongator mutant worms. Elongator is conserved in
eukaryotes, and mutations in a subunit of human
Elongator cause a severe neurodegenerative disease,
familial dysautonomia (FD). It is unclear in humans
whether Elongator acts on the translational level through
tRNA modification to regulate neuronal processes. Our
observations in C. elegans, together with the role of yeast
Elongator in translation, show that the function of
Elongator in tRNA modification is conserved. Inactivation
of Elongator may cause neuronal defects by affecting
translation.

C. elegans Elongator Mutants
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Figure 2. C. elegans elpc-1 is required for mcm5 and ncm5 side chain formation at wobble uridines. (A) Schematic drawing of the
distribution of exons and introns of elpc-1. The exons and introns are depicted as boxes and lines, respectively. At top, the line underneath represents
the location of the deletion in elpc-1(tm2149). Below, the structure of the elpc-1::gfp transgene. (B–I) Total tRNA isolated from wild-type and elpc-
1(tm2149) worms was analyzed by HPLC. Wild-type (N2) profiles are shown in the left panels. elpc-1(tm2149) and elpc-1(tm2149); elpc-1::gfp profiles are
in the right panels. Chromatograms were monitored at 254 nm unless otherwise stated. (B,C) The parts of the chromatograms between retention
times 46.4 and 51.5 min are displayed. The arrow in C indicates the expected retention time of mcm5s2U. (D,E) The parts of the chromatograms
between retention times 10.5 and 18 min are displayed. The arrow in E indicates the expected retention time of ncm5U. (F,G) The parts of the
chromatograms between retention times 33 and 39 min are displayed. The arrow in F indicates the expected retention time of s2U. These
chromatograms were monitored at 314 nm. (H,I) The parts of the chromatograms between retention times 48 and 54 min are displayed.
doi:10.1371/journal.pgen.1000561.g002
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An elpc-1::gfp Reporter Gene Is Differentially Expressed
To investigate the expression pattern of C. elegans ELPC-1 in

various tissues, we examined worm strains harboring a transgene

encoding functional, full length ELPC-1 protein fused to GFP.

The transgene contained 435 bp of the promoter region and all 11

introns (Figure 2A). The transgene rescued the tRNA modification

defect in the elpc-1 mutants (Figure 2C and 2I). The fusion protein

encoded by the transgene was preferentially detected in several

tissues including the nervous system (Figure 3). However, its

presence was not uniform. Within the nervous system, ELPC-

1::GFP was seen predominantly in a pair of neurons that control

egg-laying, the HSNs (Figure 3F and 3G), and in chemosensory

neurons in the head (Figure 3A–3E). Within the latter class of

neurons, the ELPC-1::GFP level was particularly high in the ASE,

ADF and ASK pairs of neurons (Figure 3B–3E. For nomenclature

of neurons, see Materials and Methods). Expression was seen both

within the cell bodies (Figure 3B) and along the entire lengths of

the neuronal processes (data not shown). Outside of the nervous

system, a strong ELPC-1::GFP signal was seen in the pharynx (the

feeding organ) (Figure 3A) and the vulva (Figure 3N and 3O), part

of the egg-laying apparatus in the hermaphrodite. In all animals

examined, ELPC-1::GFP expression was also seen in the two CAN

cells (Figure 3H and 3I), which are associated with the excretory

canals and are required for proper function of the excretory

system. In all cells in which ELPC-1::GFP was seen, fluorescence

was restricted to the cytoplasm (Figure 3A). The ELPC-3::GFP

fusion was expressed in the same set of cells (data not shown).

Wobble Uridine tRNA Modifications Promote Efficient
Translation

In S. cerevisiae, defects in wobble uridine tRNA modification are

associated with reduced translation efficiency [14–16,40]. The

yeast elp3 tuc1 double mutant, in which modifications at both the

59and 29positions of the uridine moiety are absent, is lethal [15].

To investigate the influence of wobble uridine modifications on the

efficiency of translation in C. elegans, we examined the effect of elpc-

1, elpc-3 and tuc-1 mutations on b-galactosidase expression in

worms harboring a lacZ transgene driven by heat shock-responsive

elements from the hsp16-1 gene. The induction of lacZ mRNA

upon heat shock was not reduced in strains lacking wild-type elpc-

1, elpc-3 or tuc-1 gene activity, or in elpc-1; tuc-1 double mutant

worms (Table 1). However, b-galactosidase activity was 28% lower

in protein extracts from heat shocked elpc-1; tuc-1 double mutants

than in those from wild-type worms subjected to the same heat

Figure 3. ELPC-1 is differentially expressed in C. elegans. (A–C) Confocal fluorescence micrographs of an hermaphrodite of the genotype elpc-
1(tm2149); svEx557[Pelpc-1::elpc-1::gfp]. The large arrow in A denotes the posterior bulb of the pharynx. The smaller arrows denote sensory neurons in
the head. The arrowhead indicates a body muscle. In B and C, specific sensory neurons in the head are indicated. (D–O) Micrographs of elpc-
1(tm2149); svEx557[Pelpc-1::elpc-1::gfp] worms viewed with either Nomarski differential contrast (DIC) (D,F,H,J,L,N) or fluorescence (E,G,I,K,M,O) optics.
The arrows in D and E indicate an ASK sensory neuron; in F and G, an HSN; in H and I, a CAN cell; in J and K, a PLM neuron; in L and M, a cell in the
intestine. The green fluorescence in O is from cells in the developing vulva. Scale bars denote 10 microns.
doi:10.1371/journal.pgen.1000561.g003
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shock regime (Table 1). A modest (,14–18%) but significant

reduction in b-galactosidase activity was also seen elpc-1(tm2149),

elpc-3(tm3120) or tuc-1(tm1297) single mutant worms (Table 1).

To monitor cell and tissue specific protein synthesis, we used an

established technique, fluorescence recovery after photobleaching

(FRAP) [41]. The rate of protein synthesis in different cells and

tissues was measured using GFP reporters. We used gcy-5::gfp and

mec-4::gfp which are expressed in ASER and 6 touch cell neurons

respectively, and myo-3::gfp which is expressed in the body wall

muscle. In all reporter fusions examined, photobleached wild type

animals showed a significant recovery of GFP signal within

5 hours (Figure 4, Figure S4). However, animals with the elpc-

1(tm2149) or elpc-3(tm3120) mutations had a slower GFP signal

recovery, indicating a reduced rate of protein synthesis (Figure 4,

Figure S4). Cycloheximide, an inhibitor of translation, was used to

confirm that the recovered GFP signal was due to newly

synthesized protein. In animals treated with cycloheximide, no

significant recovery of GFP signal was observed (Figure 4, Figure

S4). Together, these experiments demonstrate that an absence of

uridine modification in tRNA is associated with a reduction in

translation efficiency in C. elegans.

elpc-1 and elpc-3 Mutants Show Defects in Neuronal
Function

elpc-1 and elpc-3 single mutants were viable and fertile and they

were able to move normally on the bacterial lawn. Furthermore,

the chemosensory neurons in which ELPC-1::GFP and ELPC-

3::GFP are strongly expressed are present at their normal positions

and have normal morphology (Figure S5). Among these neurons

(Figure 3A–3E), the ASE pair of sensory neurons is required for

experience-dependent behaviors elicited by different salt concen-

trations [42]. Wild-type worms normally chemotax towards NaCl.

However, pre-incubation in normal salt concentrations in the

absence of nutrients elicits an aversion response to NaCl when

worms are subsequently tested in chemotaxis assays [43]. In this

salt learning assay, worms that have grown at normal salt

concentrations and in the presence of abundant nutrients are first

starved for four hours in the presence or absence of salt and then

assayed for their chemotactic response to NaCl. Since we observed

strong expression of ELPC-1 and ELPC-3 in ASE neurons

(Figure 3B and 3C, data not shown), we tested elpc-1 and elpc-3

mutants in a salt learning assay. At 20uC, the mutants behaved as

wild type (Figure 5A). At 25uC, wild-type worms exposed to

100 mM NaCl in the absence of nutrients moved away from

NaCl, whereas elpc-1 or elpc-3 mutants treated in the same way

continued to chemotax towards the NaCl (Figure 5C). In the elpc-1

mutant, this defect was partially rescued by the elpc-1::gfp construct

(Figure S6). Thus, C. elegans elpc-1 and elpc-3 are required for an

experience-dependent change in behavior. In contrast, in tuc-1

mutant worms no statistically significant changes were observed

(Figure 5).

Ablation of the ASE neurons leads to an inability to chemotax

towards certain water-soluble compounds including Na+, Cl2,

lysine and biotin [44]. elpc-1 and elpc-3 mutants were able to

chemotax both to water soluble and volatile compounds at all

temperatures tested (Figure S7). When elpc-1 or elpc-3 mutants

were grown at 20uC to the time at which the chemosensory

neurons have developed and then shifted to 25uC, salt learning

was abnormal (Figure 5B). Together, these observations suggest

that the salt learning defect seen in elpc-1 and elpc-3 mutants is not

caused by a defect in the development of the ASE chemosensory

neurons or in their ability to detect salt.

The Level of a Neuropeptide::GFP Reporter in Neurons Is
Reduced in elpc Mutants

Since neuronal function in metazoans is known to be

dependent upon the ability to synthesize and secrete neurotrans-

mitters and neuropeptides, we tested whether these processes

were abnormal in C. elegans elpc-1 and elpc-3 mutants. One

established assay for examining the synthesis and secretion of

neuropeptides involves a heterologous fusion protein, ANF::GFP.

The prodomain of a preproANF–GFP fusion protein can be used

as a reliable fluorescent reporter of dense-core vesicle transport

and exocytosis in rat PC12 cells, as well as in D. melanogaster and

C. elegans neurons [45–47]. In C. elegans, ANF::GFP is secreted by

neurons into the pseudocoelomic space from where it is rapidly

cleared by three pairs of coelomocytes [47]. In elpc-1 and elpc-3

mutants, we observed a reduced accumulation of ANF::GFP in

coelomocytes (Figure 6C and 6D), which could be caused by

either less synthesis or reduced secretion of ANF::GFP from

neurons. In both wild-type and elpc mutant worms carrying the

ANF::GFP transgene, the fusion protein was visible in neurons,

but the GFP signal was weaker in elpc mutants that was also

reflected by western blot (Figure 6A and 6B). As there was no

significant reduction of ANF::GFP mRNA in elpc mutants, the

lower production of ANF::GFP was at the posttranscriptional

level (Figure 6A and 6B).

To investigate whether elpc-1 and elpc-3 also affected extracel-

lular levels of a neurotransmitter, we examined whether the

mutants showed increased resistance to aldicarb, an inhibitor of

acetylcholinesterase present in the synaptic cleft. Wild-type worms

exposed to aldicarb immediately hypercontract and then die after a

few hours because they are unable to reduce synaptic levels of

acetylcholine secreted by neurons [48]. Mutants with reduced

acetylcholine-mediated signaling are partially or completely resis-

tant to the drug. Aldicarb-resistant mutants fall into two classes,

those that have pre-synaptic defects resulting in reduced synthesis or

secretion of acetylcholine and those in which the fault lies in the

post-synaptic neurons [49]. elpc-1 and elpc-3 mutants showed greater

resistance to aldicarb than that displayed by aex-6(sa24) (Figure 6E),

which has been described previously as being partially resistant to

the drug [50]. elpc-1(tm2149) mutant harboring the elpc-1::gfp

transgene on an array behaved as wild type in the aldicarb assay

Table 1. Lack of Wobble Uridine tRNA Modification Affects
Translation Efficiency.

Strains b-gal activity lacZ mRNA/tbb-2 mRNA

N2a 312.57617.15 (100.0%) 1.0060.09

elpc-1(tm2149)a 267.84619.84* (85.7%) 0.9060.05

elpc-3(tm3120)a 257.3969.37* (82.3%) 0.9260.07

tuc-1(tm1297)a 264.54614.66* (84.6%) 0.8960.12

N2b 322.4364.57 (100.0%) 1.0060.08

elpc-1(tm2149);
tuc-1(tm1297)b

233.4066.34** (72.4%) 1.2860.22

aThe strains were grown at 20uC before heat-shock at 33uC. The difference of b-
gal activity (mean6SD) between N2 and elp-1(tm2149), elp-3(tm3120) or tuc-
1(tm1297) was analyzed by student’s t test (*p,0.01). For the QRT-PCR data
(mean6SD), the lacZ mRNA was normalized against tbb-2 and ubc-2 mRNA
(data not shown). In the table are the ratios between lacZ and tbb-2 mRNA.
There is no reduction on mRNA level in the mutant strains.

bThe strains were grown at 15uC before heat-shock at 33uC. The reduction of b-
gal activity (mean6SD) in elp-1(tm2149); tuc-1(tm1297) is significant compared
to the wild type (**p,0.001). The lacZ mRNA level (mean6SD) was also
normalized against tbb-2 and ubc-2 mRNA (data not shown).

doi:10.1371/journal.pgen.1000561.t001

C. elegans Elongator Mutants
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(Figure S8). elpc-1 and elpc-3 mutant worms showed normal response

to levamisole (Figure 6F), which activates the post-synaptic

acetylcholine receptor [49], suggesting a defect in the pre-synaptic

compartment. These results suggest that either less acetylcholine is

produced in the neurons or less acetylcholine is released from the

neurons in the elpc-1 and elpc-3 mutants.

C. elegans elpc-1 and elpc-3 Mutants Have Normal Levels
of Acetylated a-tubulin

Recently it was shown that mouse ELP3 protein can acetylate a-

tubulin in vitro [27]. Thus one possibility is that the neural defects

seen in mice with reduced Elongator activity is caused by aberrant

a-tubulin function. Acetylation of a-tubulins in a wide variety of

Figure 4. The elp-1(tm2149) and elpc-3(tm3120) mutants are defective in fluorescence recovery after photobleaching. (A) Images of
mec-4::gfp reporter in wild type, elpc-1, elpc-3 and tuc-1 backgrounds before photobleaching (left), after photobleaching (middle) and 5 hours
recovery (right). The images at the bottom are of the mec-4::gfp reporter strain treated with the cycloheximide. (B) Quantification of GFP pixel
intensities before photobleaching, after photobleaching and 5 hours recovery. The number of worms examined of each strain is given under the
graph. Error bars represent standard deviations. Two asterisks indicate a significant fluorescence recovery after 5 hours incubation by student’s t test
(**p,0.001).
doi:10.1371/journal.pgen.1000561.g004

C. elegans Elongator Mutants
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species occurs on a conserved lysine residue at position 40. In C.

elegans, there is a single a-tubulin with a lysine at this position,

MEC-12 [51]. To investigate whether Elongator in C. elegans

promotes acetylation of a-tubulin, we examined acetylation in elpc-

1 or elpc-3 mutants. As previously reported, an antibody that

recognizes lysine 40-acetylated a-tubulin in various species, 6-11B-

1, could detect the residue in extracts from wild-type worms but

not those from the mec-12(e1607) mutant. However, we observed

no reduction in the levels of acetylated MEC-12 in elpc-1 or elpc-3

mutants (Figure S9A). Furthermore, unlike elpc-1 or elpc-3 mutants,

mec-12(e1607) is not aldicarb resistant (Figure S9B).

Synthetic Effects in elpc-1; tuc-1 Double Mutants Indicate
a Role for ELPC-1, ELPC-3, and TUC-1 in Development

In humans, IKBKAP/hELP1 expression is not confined to the

nervous system but is also seen in many other cell types [29,52,53].

In C. elegans, we also observed ELPC-1::GFP expression in several

non-neuronal tissues (Figure 3). However, in an otherwise wild-

type genetic background, although they grow slower than wild-

type and had reduced fertility at 25uC (Table 2), the development

of elpc-1 or elpc-3 mutants is not grossly disturbed. In yeast, elp1 and

elp3 deletion strains are also viable. However, yeast cells lacking

both ELP3 and TUC1, which therefore lack both mcm5 and s2

groups of tRNAs having the nucleoside mcm5s2U34, are not viable

[15]. In the course of analyzing elpc-1; tuc-1 double mutant worms,

we observed that the strain could be propagated at 15uC but not at

25uC. The elpc-1(tm2149); tuc-1(tm1297) double mutant hermaph-

rodites raised at 15uC for different periods of time were shifted to

25uC and then examined both for their own development and also

for their ability to give rise to viable progeny. When 4th larval stage

(L4) hermaphrodites were shifted to 25uC, they continued to

develop and became fertile adults. However, the eggs they laid

arrested development during embryogenesis (Figure 7A–7D). The

arrest did not occur at one specific embryonic stage but rather at

different stages in different embryos. Some embryos were arrested

either prior to enclosure with relatively few cells (,100 cells)

(Figure 7A); or at the 3-fold stage (Figure 7D). However, the

majority were arrested during or immediately after morphogenesis

(Figure 7B and 7C). Similar defects were seen in elpc-3; tuc-1

double mutants (Figure S10). Thus ELPC-1, ELPC-3 and TUC-1

likely function at multiple times during embryogenesis. No

synthetic defects were seen in elpc-1; elpc-3 double mutants,

suggesting that Elongator function is abolished in both elpc-1 and

elpc-3 single mutants.

Temperature shift experiments with 1st or 2nd stage larvae (L1

or L2) also indicated a role for ELPC-1, ELPC-3 and TUC-1 in

development of the vulva and for generation of germ cells. When

L1 or L2 larval hermaphrodites containing both the elpc-1(tm2149)

and tuc-1(tm1297) mutations were raised at 15uC and shifted to

25uC, they developed to become small sterile adults. Inspection of

the shifted animals at high magnification indicated that vulval

development was invariably abnormal (Figure 7I and 7J, Figure

S10I, S10J). In wild-type worms, the three progenitors of the

vulva, P5.p, P6.p and P7.p are induced to adopt vulval fates: they

divide to give rise to 22 cells that together form a tube through

which the eggs are laid in adult hermaphrodites. In the

temperature-shifted elpc-1; tuc-1 and elpc-3; tuc-1 double mutants,

the divisions of P5.p, P6.p and P7.p failed to occur properly and

significantly fewer vulval cells were formed (Figure 7I and 7J,

Figure S10I, S10J). At the L3 stage, when the vulval developmen-

tal fates are induced, expression of the elpc-1::gfp reporter was

upregulated in P5.p, P6.p and P7.p as well as in their immediate

descendants (Figure S11), suggesting that one or more of the

signaling pathways mediating vulval cell fate specification controls

elpc-1 expression. Inspection of the gonads of the temperature

shifted double mutants revealed that the overall organization of

the germline was relatively normal (data not shown). However, the

oocytes completely failed to mature (Figure 7E and 7F, Figure

Figure 5. The elp-1(tm2149) and elpc-3(tm3120) mutants show a
salt chemotaxis learning defect. For each strain there are three
conditions. ‘NaCl’ indicates worms that were preconditioned on a plate
containing 100 mM NaCl for 4 hours prior to the chemotaxis assay.
‘Mock’ indicates that worms were pretreated on NaCl-free plate for
4 hours before assay. ‘Naive’ indicates worms that were assayed
without any preconditioning. The chemotaxis index after 30 min of
assay is displayed. The assay was repeated four times. Error bars denote
standard deviations. Asterisk indicates a significant difference from wild
type N2 (*p,0.01 by student’s t test). (A) Young adult worms that had
been raised at 20uC. (B) Temperature shifted animals. Synchronized
eggs were grown at 20uC to the 2nd larval stage (L2). L2 larvae were
then shifted to 25uC and cultured until they had become young adults.
(C) Young adult worms from a strain that had been maintained at 25uC
for several generations.
doi:10.1371/journal.pgen.1000561.g005
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Figure 6. Neurons in the elpc-1(tm2149) and elpc-3(tm3120) mutants show reduced production of neuropeptide. (A) Fluorescence
micrographs showing the nerve ring in worms harboring a transgene encoding ANF::GFP. (B) At top, western blot of protein extracts from worms of
the indicated genotypes that contained the ANF::GFP transgene. The same amount of protein was loaded in each lane. The blot was probed with an
antibody against GFP. Below, ANF::GFP transcripts were quantified by Real-time PCR. No significant difference was observed in the levels of ANF::GFP
mRNA (Student’s t test, p.0.05), which were normalized to tbb-2 mRNA. (C) Micrographs showing coelomocytes in worms carrying the ANF::GFP
transgene. Those on the left were viewed with DIC optics. Those on the right are of the same worms viewed with fluorescence optics. Dashed lines
indicate the locations of the coelomocytes. Note that the intensity of GFP fluorescence in EG3344 and tuc-1(tm1297) coelomocytes is higher than that
in elpc-1(tm2149) and elpc-3(tm3120) mutant worms. (D) Graph showing the normalized pixel intensities of confocal images of coelomocytes (CC). The
number of coelomocytes measured for each strain is shown on the bar. The strongest pixel intensity per coelomocyte of ANF::GFP in any worm tested
was arbitrarily set to 1. Error bars represent standard deviations. Two asterisks indicate the significant difference from control worms by student’s t
test (**p,0.001). (E) Aldicarb sensitivity assays. The proportion of worms still able to move is plotted against time for the six different genotypes. N2
is the wild-type control; aex-6(sa24) is a strain previously shown to display increased resistance to aldicarb, and tom-1(ok285) is hypersensitive to
aldicarb. (F) Levamisol sensitivity assays were performed in the same way as aldicarb assays. N2 is the wild-type control. lev-11 is a strain previously
shown to be resistance to levamisol.
doi:10.1371/journal.pgen.1000561.g006
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S10E, S10F); the sperm were highly vacuolated and grossly

abnormal (Figure 7G and 7H, Figure S10G, S10H). These

observations imply that elpc-1 and elpc-3 also function in

development of non-neuronal tissues.

The developmental defects in the elpc-1; tuc-1 double mutant

were rescued by extrachromsomal arrays harboring the elpc-1::gfp

transgene. When elpc-1(tm2149); tuc-1(tm1297) double mutant

hermaphrodites raised at 15u were allowed to lay eggs at this

temperature for two hours and the eggs subsequently shifted to

25u, the progeny invariably arrested either during embryogenesis

or during early larval stages (n = 65). However, 60% (n = 40) of

elpc-1(tm2149); tuc-1(tm1297); svEx808[elpc-1::gfp Punc-122::gfp]

embryos raised grew to become adults with normal vulval

development. 15% of these adults gave rise to some live larval

progeny indicating partial rescue of both the germline defect and

the requirement during early embryogenesis. A second array,

svEx806[elpc-1::gfp Punc-122::gfp] also rescued although not quite as

efficiently: 40% of embryos grew to become adults.

Discussion

Here we show that the elpc-1 and elpc-3 genes, homologues to

yeast ELP1 and ELP3, are required for formation of the ncm5 and

mcm5 side chains present in the wobble nucleosides, ncm5U and

mcm5s2U in C. elegans tRNA. Worms with mutations in elpc-1 or

elpc-3 show a defect in a salt learning assay, associated with

reduced expression of neuropeptide and slow accumulation of

acetylcholine in the synaptic cleft. elpc-1::gfp and elpc-3::gfp

reporters are strongly expressed in certain sensory neurons

including ASE, required for salt learning. elpc-1 and elpc-3 mutant

phenotypes are strongly exacerbated by mutations in tuc-1, which

is required for the formation of 2-thio group in the mcm5s2U

modified wobble nucleosides.

The Role of ELPC-1 and ELPC-3 in tRNA Modification
Although a requirement for the Elongator complex for the

modification of wobble uridines in yeast tRNA is well documented

[12], studies on the role of Elongator in this process in metazoans

have not been previously reported. Our results demonstrating that

ELPC-1 and ELPC-3 are required for the addition of mcm5 and

ncm5 side chains to uridine residues in C. elegans tRNA imply that

Elp1p and Elp3p function has been conserved in evolution. Our

results also confirm, however, that differences exist in tRNA

modification in eukaryotes. In yeast there are 13 tRNA species

with a uridine at the wobble position. Of these, eleven contain the

nucleoside ncm5U, ncm5Um, mcm5U or mcm5s2U [11–14]. In our

analysis of C. elegans wild-type tRNAs, we found ncm5U and

mcm5s2U but not mcm5U. This observation is consistent with an

earlier investigation showing that mcm5U is not present in tRNAs

isolated from calf liver [54]. For example, nucleoside 34 in

tRNA
Arg
UCU from yeast has mcm5U [55], whereas that from calf

liver has mcm5s2U [56]. These findings suggest that mcm5U might

be absent from tRNAs in metazoans.

In yeast, Elongator was suggested to participate in three distinct

cellular processes: transcriptional elongation, polarized exocytosis

and formation of modified wobble uridines in tRNA [12,21,22].

Strong genetic evidence was provided that the pleiotropic

phenotypes seen in yeast, including those in transcription and

exocytosis, were caused by a translational dysfunction due to lack

of mcm5 and ncm5 side chains at wobble uridines [16]. This

suggests that the physiological relevant role of Elongator complex

in this organism is in the formation of modified nucleosides in

tRNA, i.e. wobble uridine tRNA modification is crucial for the

translation of mRNAs that encode proteins important for

transcriptional elongation and polarized exocytosis. Cellular

localization studies primarily placed Elongator subunits in the

cytosol in yeast, mouse and human cells [22,23,27,57–60]. As

modifications in the anticodon region normally take place in the

cytosol [61], such a localization is consistant with a role in wobble

uridine modification. In C. elegans, we did not observe any

fluorescence of ELPC-1::GFP in the nucleus suggesting that

Elongator in this organism functions in the cytosol.

Translation Is Less Efficient in elpc-1 and elpc-3 Mutants
In elpc-1 and elpc-3 mutants, we observe reduced expression of

an ANF::GFP neuropeptide reporter. Given that ANF::GFP

mRNA levels are normal in the mutants, the reduction in

ANF::GFP accumulation could in principle be explained either by

increased degradation of the protein or by decreased translation.

Since tRNAs are intimately involved in protein synthesis, we

believe it more likely that ELPC-1 and ELPC-3 affect ANF::GFP

levels by promoting translation. Further evidence indicating a role

for Elongator in translation is that the recovery of GFP signals

after photobleaching in strains with gcy-5::gfp, mec-4::gfp and myo-

3::gfp reporter genes is slower in Elongator mutants than in wild

type. The effect of Elongator on translation is also consistent with

the synthetic effects we observe in elpc-1; tuc-1 and elpc-3; tuc-1

double mutants. The reduction in accumulation of b-galactosidase

activity in elpc-1 or elpc-3 single mutants (in which the mcm5 side

chain of mcm5s2U containing tRNAs is absent) is similar to that

seen in tuc-1 single mutants (in which the s2 side chain is absent). In

the double mutants (in which both the 29and 59modifications are

lost) the efficiency of translation is further reduced. An explanation

for the reduced efficiency of translation in C. elegans worms lacking

elpc-1 or elpc-3 activity is that the modifications of uridine residues

at the wobble position aid codon-anticodon interactions [7–10].

Table 2. elpc-1(tm2149), elpc-3(tm3120) and tuc-1(tm1297) Worms Display Temperature Sensitive Fecundity and Life Cycle Defects.

Number of eggs produceda Length of reproductive cycle (hours)b

20uC 25uC 20uC 25uC

N2 255636 (100.0%) 172628 (100.0%) 68.961.2 (100.0%) 54.661.1 (100.0%)

elpc-1(tm2149) 303677 (118.8%) 42613** (24.4%) 80.360.9** (116.5%) 67.861.1** (124.2%)

elpc-3(tm3120) 292648 (114.5%) 56616** (32.6%) 81.261.1** (117.9%) 65.562.3** (120.0%)

tuc-1(tm1297) 274662 (107.5%) 44633** (25.6%) 78.561.7** (113.9%) 64.764.7** (118.5%)

aThe total numbers of progeny of 20 worms of each genotype were determined. Asterisks represent significant difference from wild type N2 (***p,0.0001 by student’s t test).
bThe time between an egg being laid and the worm it gave rise to producing progeny was measured for 10 worms of each genotype (mean6SD, **p,0.001 by

student’s t test).
doi:10.1371/journal.pgen.1000561.t002
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Figure 7. Defects seen in temperature-shifted elpc-1; tuc-1 double mutants. Micrographs of eggs and larvae viewed with Nomarski DIC
optics. (A–D) Embryos arrested prior to (A), during (B,C) or after (D) morphogenesis. (E,F,G,H) Parts of the germline in young adult hermaphrodites.
The arrows in E and F indicate oocytes. Note that those in the elpc-1; tuc-1 worm have not matured. The arrows in G and H denote sperm. Those in
the elpc-1; tuc-1 worm have grossly abnormal morphology. (I,J) The vulva during the L4 stage. In the elpc-1; tuc-1 double mutant, fewer cells are
present and morphogenesis of the vulva to form the tube through which the eggs are laid is abnormal. Scale bars denote 10 microns.
doi:10.1371/journal.pgen.1000561.g007
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Experiments in vivo with S. cereverisiae, suggest that the primary

function of the mcm5U, ncm5U and mcm5s2U nucleosides is to

improve binding to A- and G- ending codons, decoded by tRNAs

containing these modified nucleosides [14–16]. For tRNAs

normally modified at both the 29and 59positions, the absence of

either modification (or both) did not lead to any obvious

misreading of U- or C-ending codons [15,16]. Thus, presence of

modifications at wobble uridines in tRNAs appears to promote the

rate of elongation during translation rather than its fidelity.

There are examples of tRNA modification mutants that show

temperature sensitive (ts) phenotypes, suggesting a reduced

functionality of the hypomodified tRNA at the elevated temper-

ature [16,62,63]. In yeast, elp and tuc1 mutations result in

hypomodification of tRNA
Lys

mcm5s2UUU
and tRNAGln

mcm5s2UUG

[12,15]. In the anticodon loop, both tRNAs are rich in uridines

that have a low stacking potential, and in tRNA
Lys

mcm5s2UUU
, mcm5

and s2 of U34 are required for a canonical anticodon loop structure

[64]. Therefore, we believe that the temperature sensitive

phenotype observed in elpc and tuc-1 single mutants and enhanced

in elpc-1; tuc-1 and elpc-3; tuc-1 double mutants is caused by

destabilization of anticodons in hypomodified tRNAs, resulting in

further weakening of codon-anticodon interactions.

elpc-1 and elpc-3 Function in the Nervous System
The higher levels of expression of the elpc::gfp reporters within

the nervous system of C. elegans is consistent with the finding that

the most severe defects of elpc-1 or elpc-3 single mutants are

observed in nervous system. It is interesting to note that a strong

expression of Elongator subunits was also observed in the nervous

system of mice [27]. A possible explanation for the greater

requirement for Elongator in neurons is that neurons have

markedly higher rates of protein synthesis than most other cell

types [41,65,66]. It is also striking that in both C. elegans and mice,

expression within the nervous system is not uniform. Perhaps

different neurons have different rates of translation.

In C. elegans and other metazoans, neuronal function is

dependent upon the ability to synthesize and secrete neurotrans-

mitters and neuropeptides. In elpc-1 and elpc-3 mutants, the

production of ANF::GFP neuropeptide is reduced at the

posttranscriptional level. Thus Elongator mutations might cause

the neurological defects by impairing the translation of neuro-

peptides. In addition, our findings that elpc-1 and elpc-3 mutants

appear to have reduced levels of acetylcholine in the synaptic cleft

suggest that Elongator is required for the production or secretion

of neurotransmitter. Since elpc-1::gfp and elpc-3::gfp are expressed

in a set of chemosensory neurons, the salt chemotaxis learning

defect displayed by Elongator mutant worms is likely to be a

consequence of inefficient communication among various neu-

rons due to low production of neurotransmitters or neuropep-

tides. It is interesting to note that mutations in the human ELP1

gene, also called IKBKAP, cause the neurodegenerative disease,

Familial Dysautonomia (FD) [28,29]. Furthermore, association

studies in humans have revealed that variants at the ELP3 locus

confer increased risk for the neurodegenerative disorder Amyo-

trophic Lateral Sclerosis (ALS) [67]. Neuronal defects are also

observed in Drosophila, Zebrafish and mouse with reduced

function of ELP3 [27,67].

Conflicting reports exist concerning the origin of the defects

caused in human cells by a reduction in hELP1/IKAP levels

[25,26,52,68,69]. Recently, in mice Elongator was suggested to

catalyze a-tubulin acetylation [27]. However, our observations

that acetylation is not obviously abnormal in C. elegans elpc-1 or elpc-

3 mutants suggest that the neuronal defects observed in Elongator

mutants in the worm are not caused by a failure to acetylate a-

tubulin.

In contrast to the elpc-1 and elpc-3 mutants, tuc-1 mutants do not

display defects in either the salt learning assay or in secretion of

ANF::GFP. In yeast, the growth defects of Elongator mutants are

more pronounced than those of the tuc mutants [15,16]. One

possible explanation for these differences might be that the

absence of the s2 modification has less effect on codon-anticodon

interactions than the absence of ncm5- and mcm5-groups.

Alternatively, the effects on salt learning might be caused by

reduced expression of a protein encoded by an mRNA rich in

codons decoded by tRNAs harboring solely the 59modification.

Synergistic Effects with tuc-1 Indicate Roles for ELPC-1
and ELPC-3 Outside of the Nervous System

Previous studies on ELP1 and ELP3 function in vertebrates have

focused on their roles in neurons. While we have shown that

ELPC-1 and ELPC-3 are important for nervous system function in

the worm, our results clearly demonstrate that they also act in non-

neural tissues. Although their expression is far from ubiquitous, the

expression of ELPC::GFP reporters is clearly not restricted to

neurons. More importantly, the defects in temperature-shifted elpc-

1; tuc-1 and elpc-3; tuc-1 double mutants indicate that Elongator is

also involved in embryogenesis and vulval development. The

phenotypes observed suggest that tRNA modification is a

mechanism by which the efficiency of translation is modulated

during metazoan development.

Concluding remarks
Our observations suggest that Elongator acts in neurological

and developmental processes in C. elegans by modulating

translation. An important task in the future is to identify the

mRNAs whose translation is dependent on Elongator activity.

Identification of these mRNAs might help in the understanding of

the molecular mechanisms of Elongator-related human diseases.

Materials and Methods

Nomenclature of Genes and Neurons
The names of genes in the text have been given according to

existing nomenclature rules for S. cerevisiae, C. elegans and humans.

The yeast ELP1 gene encodes a protein, Elp1p; the equivalent

gene in C. elegans, elpc-1 encodes ELPC-1; in humans, IKBKAP/

hELP1 encodes IKAP/hELP1. The respective mutant alleles are

elp1 (S. cerevisiae) and elpc-1(tm2149) (C. elegans). Neurons in C. elegans

have three-letter names e. g., ASE. These names are not acronyms

or abbreviations.

Strains
C. elegans worms were cultured and handled as described

previously [70]. All strains were maintained at 20uC unless likewise

indicated. All are derived from the wild-type strain, Bristol N2 [70].

For routine propagation, worms were maintained on nematode

growth medium (NGM) plates [70]. The following mutations were

used in this study. Linkage group (LG) I, tom-1(ok285) [71–73], aex-

6(sa24) [50], lev-11(x11) [74]; elpc-1(tm2149), LG III, mec-12(e1605),

mec-12(e1607) [75], LG IV, tuc-1(tm1297) [39]; LG V, elpc-3(tm3120).

The transgenes used were ubIn5[hsp16::lacZ] [76], oxIs180[Paex-3::

ANF::gfp] [47], svEx557[Pelpc-1::elpc-1::gfp], zdIs5 I[mec-4::gfp lin-15(+)]

[77], svEx666[lin-25::HA myo-3::gfp], svEx806[elpc-1::gfp Punc-122::gfp],

svEx808[elpc-1::gfp Punc-122::gfp], adEx1262[gcy-5::gfp lin-15(+)] [78].

The elpc-1, elpc-3 and tuc-1 deletion mutants were backcrossed eight

times with wild-type N2 before use.
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Plasmid Construction
To generate the elpc-1::gfp fusion, the entire elpc-1 coding region

together with 435 base pairs of DNA upstream of the start ATG

was amplified by using primers 59-AAAAGCATGCTCCGG-

TACGGTATGTGGC-39 and 59-AAAACTGCAGTGGGAAA-

ACTGAAG CAAATGAA-39. The PCR product was subcloned

into pPD95.77 GFP expression vector between PstI and SphI sites.

DIC and Immunofluorescence Microscopy of Nematodes
A Leica DMRB microscope equipped with both Nomarski

differential interference contrast and epifluorescence optics was used

to view worms at high magnification. Images were captured with a

Deltpix CCD camera and software (Deltapix, Copenhagen). Confocal

microscopy was performed on a Leica TCS SP2 confocal microscope.

Confocal images were captured using Leica confocal software.

tRNA Isolation and HPLC Analysis
Techniques described by Gaur et al. (2007) were used with

minor modifications to isolate and analyze tRNA from C. elegans

worms. For each strain, worms from twenty 9 cm culture plates

containing mixed-stage populations of worms were used. After

extensive washing with M9 buffer, the worm pellets were frozen in

the liquid nitrogen and then thawed in the presence of 0.5 volumes

of TRIzol (Invitrogen). A tissue-grinder (Kontes) was used to break

open the worms. After extraction of the lysate with chloroform,

followed by addition of isopropanol, total RNA was sedimented by

centrifugation. tRNA was separated from other types of RNA by

using methods described previously [79]. Purified tRNA was

digested with Nuclease P1 for 16 h at 37uC and then treated with

bacterial alkaline phosphatase for 2 h at 37u. The hydrolysate was

analyzed by high pressure liquid chromatography with a Develosil

C-30 reverse-phase column as described [79]. ncm5U, mcm5U,

mcm5s2U and mcm5Um have all been found on wobble uridines in

S. cerevisiae tRNA. We did not examine C. elegans tRNA for the

presence of ncm5Um because P1 and BAP cannot digest the

dinucleotide ncm5UmpX to nucleosides [80].

RNA Isolation and Quantitative RT–PCR
Total RNA was extracted with the aid of a BIO-RAD Aurum

total RNA mini kit according to the instruction manual. Real-time

PCR was carried out in 25 ml reaction mixes. iScript one-step RT-

PCR kit with SYBR green (BIO-RAD) and the iCycler iQ Real-

Time PCR Detection System (BIO-RAD) were used. The data

were normalized to tbb-2 and ubc-2 mRNA levels. Six independent

assays were performed for each strain analyzed.

b-Galactosidase Assay
For each strain analyzed, one 6-cm plate containing a

population of well-fed worms was subjected to a 2 h heat shock

at 33u. The worms were washed from the plate with M9 salt

solution, sedimented, washed once in M9 and then once in

breaking buffer (100 mM Tris-HCl, 1 mM DTT, 20% glycerol).

After resuspension in 250 ml of breaking buffer containing Roche

protease inhibitor cocktail, the worms were broken open by

sonication. Five 2 sec pulses at maximum effect were used. The

extracts were transferred to microcentrifuge tubes and worm

debris was sedimented by centrifugation at 13,000 rpm for

15 min. b-galactosidase activity in the cleared extracts was

measured using standard protocols [81].

Fluorescence Recovery after Photobleaching (FRAP)
The assay was performed as described in detail by Kourtis and

Tavernarakis [41]. Worms carrying the gcy-5::gfp, mec-4::gfp or myo-

3::gfp reporters were mounted on the agarose pad in the presence of

levamisol and photobleached with light from an HBO 103W/2

mercury lamp (OSRAM). A 636 objective was used for

photobleaching gcy-5::gfp and mec-4::gfp strains, a 206objective for

myo-3::gfp strains.

Chemotaxis Assay
Salt chemotaxis assays were performed as described by Ward

[82] and Bargmann and Horvitz [44]. All the assays were carried out

at room temperature (ca. 21.5uC) on 9 cm agar plates containing

5 mM KH2PO4 pH 6.0, 1 mM CaCl2, 1 mM MgSO4 and 2% agar.

N2, elpc-1(tm2149), elpc-3(tm3120) and tuc-1(1297) strains were

maintained at 25uC for at least three generations prior to being

assayed. The salt gradient with a peak 0.5 cm from one edge of the

plate was formed overnight by placing a block of agar measuring

approximately 5 mm in each dimension and containing 100 mM

NaCl, 5 mM KH2PO4 pH 6.0, 1 mM CaCl2, 1 mM MgSO4 and

2% agar. In each single test, 80–100 young adult worms were washed

three times in 5 mM KH2PO4 pH 6.0, 1 mM CaCl2, 1 mM MgSO4

and then placed in the center of the assay plates. Before the worms

were placed on the assay plate, 1 ml of 0.5 M sodium azide was

spotted both at the salt gradient peak and at the opposite side of the

plate to capture the worms moving to those areas. The numbers of

worms at different positions on the plate were counted every 10 min

after the start of the assay. The formula A{C
N

was used to calculate the

chemotaxis index. In this equation, A was the number of worms at

the attractant area, C the number of worms at the control spot, and N

the total number of worms placed on the plates. Each experiment was

repeated at least 4 times. For chemotaxis assays with isoamyl alcohol,

the odorant was dropped on the assay plate immediately prior to the

addition of worms to the plate.

Salt Learning Assay
The assay was performed as described [43], with minor

modifications. For each assay, adult worms were washed off the

culture plates with chemotaxis washing buffer (5 mM KH2PO4

pH 6.0, 1 mM CaCl2, 1 mM MgSO4) and then washed three times

in the same buffer. For the naive condition, worms were washed and

then assayed immediately without further incubation. The other

worms were conditioned respectively on nematode growth medium

(NGM) plates containing 100 mM NaCl, or on NaCl-free NGM

plates for 4 hours. After conditioning, worms were collected again

and placed on the assay plates. After 30 min, the numbers of worms

in the NaCl spot (A) and the control region (C) were counted. The

index was calculated using the formula, A{C
AzC

.

Western Blot
ANF::GFP levels were measured by western blotting using an anti-

GFP antibody (Clontech, JL-8). 50 L4 larvae of each genotype were

collected, boiled in SDS sample buffer for 5 min and loaded onto a

10% SDS PAGE. Quantification of imaging pixel intensity was

performedby NIHimage J.Tomeasure acetylateda-tubulin levels by

western blot, protein was extracted from young adult worms. To

avoid protein degradation, worms were suspended in ice-cold

extraction buffer containing proteinase inhibitors and rapidly frozen

in liquid nitrogen. The frozen pellets were ground to a powder in a

mortar. 20 mg protein was loaded on the gel in each lane. The dilution

of anti-lys40-acetylated-a-tubulin antibody (abcam, 6-11B-1) was

1:1000, and of anti-a-tubulin antibody (Sigma, B-5-1-2) was 1:2000.

Measurment of Aldicarb and Levamisol Sensitivity
The assays were performed as described by Mahoney et al. [49].

25–30 worms were used for each genotype. The assay was
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performed blind in triplicate at room temperature (ca. 21.5uC).

The worms were cultivated at 25uC prior to being assayed.

Quantification of ANF::GFP Fluorescence in
Coelomocytes

The assay was performed as described by Speese et al. [47].

Fluorescence confocal micrographs were made of coelomocytes.

The intensity of GFP fluorescence in captured images in grey scale

was measured with the aid of the NIH ImageJ software.

Supporting Information

Figure S1 C. elegans elpc-3 is required for mcm5 and
ncm5 side chain formation at wobble uridines. (A) The

diagram shows the genomic structures of elpc-3 and ZK863.4,

which is suggested to be in the same operon. The exons and

introns are depicted as boxes and lines respectively. At top, the line

underneath represents the location of the deletion in elp-3(tm3120).

Below, a representation of predicted motifs in the ELPC-3 protein:

the Radical S-adenosyl methionine (Radical-SAM) [31], and

histone acetyltransferase (HAT) domains [83]. The region deleted

in elpc-3(tm3120) is indicated by a line beneath. (B–G) Chromato-

grams of total tRNA isolated from wild-type and elpc-3(tm3120)

worms analyzed by HPLC. Wild-type (N2) profiles are shown in

the left panels; elpc-3(tm3120) profiles are shown in the right

panels. Chromatograms were monitored at 254 nm, unless

otherwise stated. (B,C) The parts of chromatograms between

retention times 46 and 51.5 min are displayed. The arrow in C

indicates the expected retention time of mcm5s2U. (D,E) The parts

of the chromatograms between retention times 11 and 18 min are

displayed. The arrow in E indicates the expected retention time of

ncm5U. (F,G) The parts of the chromatograms between retention

times 31 and 37 min are displayed. The arrow in F indicates the

expected retention time of s2U. Chromatograms were monitored

at 314 nm.

Found at: doi:10.1371/journal.pgen.1000561.s001 (0.55 MB TIF)

Figure S2 tuc-1 in C. elegans is required for 2-thio
wobble uridine tRNA modification. (A) The schematic

structure of tuc-1. Exons and introns are represented by boxes

and lines, respectively. The line underneath indicates the region

deleted in tuc-1(tm1297). (B–E) Chromatograms showing total

tRNA isolated from wild-type (N2) and tuc-1(tm1297) worms

analyzed by HPLC. N2 profiles are shown in the left panels; tuc-

1(tm1297) profiles are shown in the right panels. Chromatograms

were monitored at 254 nm. (B,C) The parts of the chromatograms

between retention times 46.2 and 51.6 min are displayed. The

arrow in C indicates the expected retention time of mcm5s2U.

(D,E) The parts of the chromatograms between retention times 35

and 42 min are displayed. The arrow in D indicates the expected

retention time of mcm5U.

Found at: doi:10.1371/journal.pgen.1000561.s002 (0.43 MB TIF)

Figure S3 Formation of ncm5, mcm5 and s2 side chains
is abolished in elpc-1; tuc-1 double mutants. (A–F) Total

tRNA isolated from wild type, elpc-1(tm2149) or elpc-1(tm2149); tuc-

1(tm1297) worms was analyzed by HPLC. Wild-type (N2) and elpc-

1(tm2149) profiles are shown in left panels. elpc-1(tm2149); tuc-

1(tm1297) profiles are in right panels. Chromatograms were

monitored at 254 nm, unless otherwise stated. (A,B) The parts of

chromatograms between retention times 48.5 and 53.5 min are

displayed. The arrow in the right panel indicates the expected

retention time of mcm5s2U. (C,D) The parts of the chromatograms

between retention times 11 and 18 min are displayed. The arrow

in the right panel indicates the expected retention time of ncm5U.

(E,F) The parts of the chromatograms between retention times 33

and 39 min are displayed. The arrow in the right panel indicates

the expected retention time of s2U. Chromatograms were

monitored at 314 nm.

Found at: doi:10.1371/journal.pgen.1000561.s003 (0.45 MB TIF)

Figure S4 The elp-1(tm2149) and elpc-3(tm3120) mu-
tants are defective in fluorescence recovery after photo-
bleaching. Quantification of fluorescence signals in worms

carrying gcy-5::gfp (A) or myo-3::gfp (B) reporters. The pixel

intensities in wild type, elpc-1, elpc-3 and tuc-1 backgrounds before

photobleaching, after photobleaching, and after 5 hours recovery

are shown. In ‘gcy-5::gfp+CHX’, fluorescence recovery was

measured in the presence of cycloheximide (CHX). The number

of worms examined of each strain is denoted under the graph.

Error bars represent standard deviations.

Found at: doi:10.1371/journal.pgen.1000561.s004 (0.67 MB TIF)

Figure S5 Neuronal morphology in elpc-1, elpc-3 and
tuc-1 mutant worms is normal. (A, C, E, G, I, K)

Micrographs of hermaphrodite worms fed with DiI viewed with

Nomarski DIC optics. The arrows denote three amphid neurons,

ASI, ADL and ASK. (B, D, F, H, J, L) The same worms viewed

with fluorescence optics. Note that DiI efficiently labels the

neurons in the mutant worms, indicating that the outgrowth of the

neuronal processes was normal.

Found at: doi:10.1371/journal.pgen.1000561.s005 (5.94 MB TIF)

Figure S6 The salt chemotaxis learning defect of elpc-
1(tm2149) is rescued by an elpc-1::gfp construct. Worms

were synchronized and raised at 25uC to the young adult stage.

The chemotaxis index after 30 min of assay is displayed. The assay

was repeated four times. Error bars denote standard deviations.

Two asterisks indicate a significant difference between elpc-1 and

elpc-1; elpc-1::gfp (**p,0.001 by student’s t test).

Found at: doi:10.1371/journal.pgen.1000561.s006 (0.20 MB TIF)

Figure S7 elpc-1, elpc-3, and tuc-1 chemotax to both
NaCl and isoamylalcohol. (A, B) Chemotaxis to NaCl (A) and

isoamyl alcohol (B) is shown. The chemotaxis indices were plotted

against time for four different genotypes. For each genotype, 80–

100 young adult worms that had been raised at 25uC were placed

on a plate equidistant from the attractant and a control spot. The

numbers of worms at the NaCl (or isoamylalcohol) and the control

spots were counted every 10 minutes for 1 hour. Each assay was

repeated for 4 times.

Found at: doi:10.1371/journal.pgen.1000561.s007 (0.26 MB TIF)

Figure S8 The increased aldicarb resistance of the elpc-
1(tm2149) mutant is complemented by elpc-1::gfp. The

proportion of worms still able to move is plotted against time. 25–

30 worms were used for each genotype. The assay was performed

blind in triplicate at room temperature (ca. 21.5uC). The worms

were cultivated at 25uC prior to being assayed.

Found at: doi:10.1371/journal.pgen.1000561.s008 (0.22 MB TIF)

Figure S9 Acetylated a-tubulin levels are not decreased
in Elongator mutants. (A) Western blot of whole animal

lysates for wild type (N2), elpc-1, elpc-3, mec-12(e1605) and mec-

12(e1607). Both acetylated a-tubulin and a-tubulin migrated just

above 50 KDa. Top, blotted with anti-lys40-acetylated-a-tubulin

antibody at a dilution of 1:1000. Bottom, blotted with anti-a-

tubulin antibody at a dilution of 1:2000. Lys40 acetylated a-

tubulin signals were normalized to that of a-tubulin, and the

amount of lys40 acetylated a-tubulin was expressed relative to

the corresponding value in the wild type strain, which was set to

1. NA, not applicable. (B) mec-12(e1607) worms are not resistant
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to aldicarb. The proportion of worms still able to move is plotted

against time. 25–30 worms were used for each genotype. The

assay was performed blind in triplicate at room temperature (ca.

21.5uC). The worms were cultivated at 25uC prior to being

assayed.

Found at: doi:10.1371/journal.pgen.1000561.s009 (0.66 MB TIF)

Figure S10 Defects Seen in Temperature-shifted elpc-3;
tuc-1 Double Mutants. Micrographs of eggs and larvae viewed

with Nomarski DIC optics. (A–D) Embryos arrested prior to (A),

during (B,C) or after (D) morphogenesis. (E,F,G,H) Parts of the

germline in young adult hermaphrodites. The arrows in E and F

indicate oocytes. Note that those in the elpc-3; tuc-1 worm have not

matured. The arrows in G and H denote sperm. Those in the elpc-

3; tuc-1 worm have grossly abnormal morphology. (I,J) The

descendants of P5.p, P6.p and P7.p during the L4 stage. The

arrows in I denote the descendants of P5.p, P6.p and P7.p. In the

animal shown, these three cells adopted the 3u cell fate and divided

just once. In wild-type worms, P6.p adopts the 1u cell fate whereas

P5.p and P7.p adopt the 2u fate. The 1u and 2u fates involve three

rounds of cell division; the descendants of P5.p, P6.p and P7.p

together form a tube through which the eggs are laid. The arrow

in J denotes the tube as it is forming. Scale bars denote

10 microns.

Found at: doi:10.1371/journal.pgen.1000561.s010 (2.42 MB TIF)

Figure S11 ELPC-1::GFP is expressed during vulval cell
fate specification. Micrographs of an L3 hermaphrodite worm

of the genotype elpc-1(tm2149); svEx557[Pelpc-1::elpc-1::gfp] viewed

with either Nomarski differential contrast (DIC) (A) or fluorescence

(B) optics. The arrows denote the six descendants of P5.p, P6.p

and P7.p.

Found at: doi:10.1371/journal.pgen.1000561.s011 (1.58 MB TIF)
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