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A B S T R A C T   

Neutrophil extracellular traps (NETs) and other factors play a significant role in impacting the 
prognosis of patients with Hepatocellular carcinoma (HCC). Nevertheless, further research is 
warranted to fully elucidate the prognostic implications of NETs in patients with HCC. We 
employed a hierarchical clustering technique to examine the Cancer Genome Atlas-Liver Hepa
tocellular Carcinoma (TCGA-LIHC) data and identified subtypes associated with NETs. Subse
quently, we utilized LASSO regression analysis to identify a distinct gene expression pattern 
within these subtypes. The strength of this signature was further validated through analysis of 
TCGA-LIHC and International Cancer Genome Consortium-Liver Cancer (ICGC-LIRI-JP) data. Our 
findings resulted in the construction of a six-gene signature related to NETs, which can predict 
survival outcomes in HCC patients. To enhance the predictive accuracy of our tool, we developed 
a nomogram that integrates the NETs signature with clinicopathological characteristics. We 
validated the significance of NETs in HCC patients using qRT-PCR and immunohistochemistry 
assays, along with in vitro experiments targeting high-risk genes. Furthermore, our exploration of 
the immune microenvironment uncovered augmented immune-specific metrics within the low- 
risk cohort, implying potential disparities in immune-related attributes between the high-risk 
and low-risk contingents. In summary, the NETs signature we discovered serves as a valuable 
biomarker and provides guidance for personalized therapy in HCC patients.   
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1. Introduction 

Primary hepatic malignancy, colloquially known as hepatocellular carcinoma (HCC), constitutes approximately 75 %–80 % of 
cases and was responsible for around 841,000 new cases globally in 2018, ranking it as the sixth most prevalent malignancy. Moreover, 
HCC is responsible for approximately 782,000 fatalities annually, rendering it the fourth most lethal cancer. The incidence of HCC is on 
a relentless upward trajectory, accompanied by a concerning rise in associated mortality rates [1]. The main treatment for HCC is 
surgery, with additional interventions such as interventional therapy, radiotherapy, chemotherapy, targeted drugs, and immuno
therapy. However, the prognosis for HCC remains poor due to frequent recurrence and metastasis, resulting in a less than 18 % 
five-year survival rate [2]. Traditionally, prognostic assessment of patients with HCC has been heavily reliant upon the 
Tumor-Node-Metastasis (TNM) staging system, which has limitations as it only examines the prognosis of patients at a broader scale 
[3]. With the advancement of gene detection and molecular targeted therapy, the gene expression-based evaluation of prognosis is 
currently a research hotspot [4]. 

Neutrophil extracellular traps (NETs) form when activated neutrophils release granular proteins and chromatin [5]. The formation 
of NETs entails neutrophil demise, a process termed NETosis, which is distinct from apoptosis and necrosis [6,7]. It is important to note 
that NETs occur in many other diseases, including cancer, rheumatoid arthritis, and thrombosis [8–10]. Mounting evidence suggests 
that NETs are implicated in the progression and dissemination of cancer [11,12]. Additionally, NETs promote the inflammatory 
response of HCC tumors and their metastatic potential [13]. However, the extent to which NETs exert a definitive influence on the 
pathogenesis and prognostic trajectory of HCC continues to elude our full understanding. 

The objective of this study was to predict the outcomes and effectiveness of immunotherapy in HCC patients by using molecular 
clustering and prognostic features of NETs. Firstly, HCC patients were categorized into two distinct non-redundant NETs clusters based 
on their expression profiles. Subsequently, we identified marker genes strongly correlated with NETs, which served as predictive 
markers for patient survival in HCC. To enhance the clinical applicability of our findings, we developed a chart combining NETs 
markers with clinical pathological features, thereby improving the predictive accuracy. To further validate the significance of NETs in 
HCC, we conducted qRT-PCR and immunohistochemistry experiments, as well as in vitro experiments targeting high-risk genes. These 
experiments offer further substantiation for the involvement of NETs in HCC progression, underscoring their potential as viable 
therapeutic targets. Furthermore, we investigated the immune microenvironment surrounding HCC tumors and discovered significant 
differences in immune scoring between high-risk and low-risk groups, suggesting potential variations in immune-related character
istics. This finding emphasizes the complex interplay among NETs, tumor microenvironment, and immune response in HCC. In 
summation, our study offers significant insights into personalized treatment strategies for HCC by elucidating the importance of NETs 
and identifying marker genes associated with NETs, thus contributing to improved prognosis and treatment efficacy. 

2. Approaches and procedures 

2.1. Data extraction and process 

Gene expression data in the Fragments Per Kilobase of transcript per Million mapped reads (FPKM) format were acquired from The 
Cancer Genome Atlas database (TCGA-LIHC, https://portal.gdc.cancer.gov). 370 HCC tumor samples and 53 normal samples, along 
with their respective clinical information are included in this dataset. A colon was used to introduce the source of the data: R software 
was used to split TCGA-LIHC into training and test groups, with a ratio of 1:1 (see Supplementary Table S1). Additionally, 232 HCC 
tumor samples along with their corresponding prognostic data were retrieved from the ICGC database (ICGC-LIRI-JP) for external 
validation. Within Supplementary Tables S2 and 69 associated genes, as identified in an earlier study, are additionally cataloged [14]. 

2.2. Consensus clustering of NETs-associated genes 

Cluster classification of HCC was performed using the R packages "limma" and "ConsensusClusterPlus" [15]. We used the R package 
’survival’ to examine the correlation between clusters and overall survival rate. Single quotation marks were used around "survival". 
Heat maps and Kaplan-Meier curves were created using the R packages ’pheatmap’, ’survival’, and ’survminer’ [16]. Differential gene 
expression was assessed using the ’limma’ package, identifying genes with an absolute log fold change (FC) > 1 and an FDR <0.05 as 
differentially expressed genes (DEGs) between the two clusters. Leveraging the CIBERSORT algorithm as a molecular scalpel, we 
meticulously dissected the differential distribution of immune cell subsets between the designated cohorts, thereby elucidating the 
intricate variations in immune cell infiltration patterns. 

2.3. Identification of the NETs-related signature 

Prognostic DEGs were identified via univariate Cox regression analysis. To construct a NETs-related signature, a rigorous two-step 
process was meticulously implemented. Firstly, LASSO regression analysis was employed, followed by multivariate Cox regression, 
culminating in the selection of six genes that collectively define this unique molecular signature [17,18]. Employing their median 
expression levels as the demarcation point, HCC patients were meticulously classified into two distinct subgroups. Subsequently, 
Kaplan-Meier analysis was conducted to perform an in-depth comparison of overall survival rates between these subgroups. 
Leveraging the statistical prowess of the ’survival’, ’survminer’, and ’timeROC’ R packages [19], comprehensive subgroup analyses 
were conducted to assess overall survival. Furthermore, receiver operating characteristic (ROC) curves were generated to assess the 
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predictive performance of the NETs-related risk score. To facilitate clinical decision-making, a comprehensive nomogram was 
developed, incorporating the NETs-related risk score alongside other clinically relevant factors. The accuracy of this nomogram was 
rigorously assessed through the construction of a calibration graph and multifactor ROC analyses at various follow-up intervals, 
including 1-, 3-, and 5-year timepoints. 

2.4. Immune microenvironment characterization 

To elucidate the immunological landscape of distinct subgroups, a multipronged approach was employed. The ESTIMATE algo
rithm quantified the relative abundance of immune cells (ImmuneScores) and stromal cells (StromalScores) within the tumor 
microenvironment [20]. To evaluate the distinct immune cell infiltration pattern between different subgroups, we performed 
MCPCOUNTER, QUANTISEQ, EPIC, XCELL, TIMER, CIBERSORT, and CIBERSORT-ABS analyses. We employed single-sample gene set 
enrichment analysis (ssGSEA) to discern variations in immune cell infiltration and immune function across the two groups [21]. 
Moreover, the Immunophenoscore (IPS) gauged the susceptibility to immunotherapy in high-risk and low-risk subgroups [22,23]. 

2.5. Enrichment profiling of the NETs signature 

DEGs between high- and low-risk HCC were identified by screening the TCGA-LIHC dataset. In subsequent analyses, gene ontology 
(GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were harnessed to elucidate enriched pathway signatures associated 
with the differentially expressed genes. To delineate the functional divergence between high-risk and low-risk patients, gene set 
variation analysis (GSVA) was meticulously employed to unravel disparities in potential biological function. 

2.6. Pharmacodynamic sensitivity profiling 

We investigated the predictive ability of a NETs signature for both chemotherapy and targeted therapeutics. An algorithm utilizing 
the ’pRRophetics’ R package was employed to compare drug sensitivity between subtypes. Half-maximal inhibitory concentration 
(IC50) values serve as a quantitative metric of drug efficacy in modulating specific biochemical or biological processes, providing a 
measure of the drug’s potency in inhibiting a given molecular target [24]. 

2.7. Quantitative real-time PCR analysis (qRT-PCR) 

A total of eight tumor samples and eight control samples were collected from patients diagnosed with liver cancer at the First 
Hospital of Ningbo City (License number: 068A01). Total RNA was extracted from the experimental samples using Trizol reagent 
(Glpbio, California, USA), adhering to the manufacturer’s prescribed protocol. Reverse transcription was performed using Vazyme’s 
procedure to synthesize cDNA. Target gene quantification was achieved utilizing the SYBR Green Mix Kit (Vazyme), with β-actin 
serving as the reference gene for normalization. Relative gene expression levels were calculated using the 2− ΔΔCt method. 

2.8. Immunohistochemistry staining 

Following the instructions provided by the reagent manufacturer, liver tissue sections from patients with hepatocellular carcinoma 
were dewaxed and rehydrated, followed by antigen retrieval using citric acid. Subsequently, the sections were blocked with hydrogen 
peroxide and goat serum. After overnight incubation at 4 ◦C with primary antibodies (CYP26B1, CCR7, CABYR, SLC1A5, HAVCR1, and 
STC2) (1:100 dilution), the sections were washed. Horseradish peroxidase-conjugated secondary antibodies were subsequently 
incubated with the sections at 37 ◦C for a duration of 1 h. Immunohistochemical staining was performed using hematoxylin and 
diaminobenzidine (DAB) as the chromogen. Image acquisition was performed using a Leica microscope. 

2.9. Cell culture and treatment 

Huh7 human hepatoma cells, sourced from the FuHeng Cell Center in Shanghai, China, were maintained in Dulbecco’s Modified 
Eagle Medium (DMEM) supplemented with 10 % fetal bovine serum (FBS) from Gibco, USA. Cells were cultured under standard 
conditions at 37 ◦C in a humidified atmosphere with 5 % CO2. Transfection experiments were performed by introducing siRNA tar
geting the HAVCR1 gene into Huh7 cells using Lipofectamine 2000 reagent (Invitrogen, USA). Post-transfection, cell supernatants 
were collected and analyzed for NETs using an enzyme-linked immunosorbent assay (ELISA) kit (Beyotime, China). The assessed 
markers included MPO-DNA complexes and neutrophil elastase (NE). The assay was performed following the kit’s instructions, and the 
optical density (OD) at 450 nm was measured in the final step. Cell viability assessments were performed in accordance with the 
manufacturer’s protocol utilizing the Cell Counting Kit-8 (CCK-8) (Beyotime, China). Absorbance measurements were subsequently 
obtained at a wavelength of 450 nm. 

2.10. Statistical analysis 

GraphPad Prism 9 and R software (version 3.6.2) were performed for conducting the statistical analyses. The software tools were 
used to compare the two groups under investigation. Significant differences were determined using either the Wilcoxon test or t-test 
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Fig. 1. NETs clusters and clinical characteristics between HCC samples in two clusters. (A) Two NETs clusters were defined using consensus 
clustering analyses. (B) KM curve indicated that NETs cluster 2 had a longer survival time than NETs cluster 1. (C) Heatmaps showed the rela
tionship between NETs clusters and clinical features and NETs expression in HCC patients. (D) The differences in immune cell infiltration between 
the two clusters. 
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Fig. 2. Construction of the prognostic signature. (A) LASSO coefficient profiles (y-axis) of the gene sets and the optimal penalization coefficient 
(l) via 3-fold cross-validation based on partial likelihood deviance. (B) The dotted vertical lines represent the optimal values of l. The top x-axis has 
the numbers of gene sets, while the lower x-axis displays the logarithm of λ. (C) The risk score and its corresponding survival outcomes for each case 
are presented. (D) The heatmap displays the expression levels of six genes among two risk groups. (E) The K-M curve demonstrates a worse prognosis 
for patients in the high-risk group. (F) The AUC values for 1-year, 3-year, and 5-year survival. 

Fig. 3. Validation of the prognostic signature. (A, B, C) Kaplan-Meier (KM) curves indicate that patients in the high-risk group had a worse 
prognosis in TCGA-test, TCGA-all, and ICGC-LIRI-JP datasets. (D, E, F) The AUC values for 1-year, 3-year, and 5-year survival in TCGA-test, TCGA- 
all, and ICGC-LIRI-JP datasets are provided. 
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depending on data distribution. P values less than 0.05 were deemed statistically significant, ensuring reliable results. 

3. Results 

3.1. NETs-related consensus clusters in HCC 

To examine how NETs-related gene expression correlates with the classification of HCC, we conducted consensus clustering 
analysis. TCGA-LIHC was divided into two subgroups (C1 and C2) based on the expression of genes related to NETs, as shown in 
Fig. 1A. We observed a significantly worse overall survival (OS) of HCC in subgroup C1 compared to C2 (Fig. 1B). Fig. 1C illustrates the 
interrelationship among NETs clusters, diverse clinical characteristics, and the gene expression associated with NETs. 

Given the crucial involvement of immune cells in the development and advancement of HCC, we scrutinized the unique patterns of 
immune cell infiltration across the two clusters. Cluster 2 exhibited higher proportions of M2 macrophages, NK cells, resting mast cells, 
and monocytes compared to cluster 1. In contrast, cluster 2 had lower proportions of M0 macrophages, memory CD4 T cells, neu
trophils, and Tregs compared to cluster 1. The analysis revealed distinct immune cell populations between the two clusters (Fig. 1D). 

3.2. Development of the NETs-related prognostic signature 

Subsequently, we performed a univariate Cox analysis and identified 196 prognostic DEGs. This analysis resulted in the 

Fig. 4. Validation of the prognostic value of NETs signature in different clinical characteristics groups.  
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construction of a 6-gene NETs signature (CYP26B1, CCR7, CABYR, SLC1A5, HAVCR1, and STC2) (Fig. 2A and B). Risk score=
(CYP26B1 × (0.30454) + SLC1A5 × (0.16716) + HAVCR1 × (0.38717) + STC2 × (0.27510) + CCR7 × (− 0.87163) + CABYR ×
(0.27934)). 

Patients with elevated risk scores exhibited a heightened mortality rate compared to their counterparts with diminished risk scores, 
as determined by the median score (Fig. 2C). We conducted a comparative analysis of the expression levels of these 6 genes between 
the two distinct risk groups (Fig. 2D). Furthermore, we observed that low-risk patients had a significantly better survival outcome than 
high-risk patients (P < 0.001), as shown in Fig. 2E. The ROC curve demonstrated the stability of the NETs signature, with AUC values of 
0.852, 0.806, and 0.805 at 1, 3, and 5 years, respectively, as shown in Fig. 2F. 

We subsequently segregated the HCC samples within the test dataset into distinct risk strata: high-risk and low-risk. Our 

Fig. 5. Construction and assessment of nomogram. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C) Pre
diction of nomogram in the TCGA-train dataset. (D) Calibration plots for the nomogram. (E, F, G) Multifactor AUC values for 1-year, 3-year, and 5- 
year survival. 
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comprehensive analysis unveiled that the cohort of HCC patients harboring diminished risk demonstrated a more auspicious prog
nostic trajectory compared to their counterparts with elevated risk, a trend that remained consistent across diverse datasets, 
encompassing TCGA-test, TCGA-all, and ICGC-LIRI-JP (Fig. 3A–C). The AUC values of 1-, 3-, and 5-year in TCGA-test were 0.734, 
0.753, and 0.719, respectively (Fig. 3D). The AUC values of 1-, 3-, and 5-year in TCGA-all were 0.810, 0.740, and 0.705, respectively 
(Fig. 3E). Moreover, in ICGC-LIRI-JP, the AUC values for 1 year, 3 years, and 5 years were 0.672, 0.678, and 0.837, respectively, as 
depicted in Fig. 3F. We also validated the prognostic predictive capability of the NETs signature across various clinical subgroups 
within the TCGA dataset. Our results demonstrated that the NETs signature can accurately predict the prognosis of patients in various 
clinical subgroups, including age >65 (P = 0.011), age≤65 (P < 0.001), male (P < 0.001), G1-2 (P < 0.001), G3-4 (P = 0.027), N0 (P <
0.001), stage I-II (P = 0.005), T1-2 (P < 0.001), and T3-4 (P = 0.038) (Fig. 4). We then compared previously published HCC risk models 
for accuracy and predictive ability. NETs signature outperformed previously established signatures by calculating and comparing their 
AUC and C-index values, demonstrating the novel signature may be having a promising predictive application (Supplementary 
Fig. S1). 

3.3. Constructing a novel nomogram for HCC 

Both univariate and multivariate analyses consistently demonstrated that our NETs-related signature retains its status as an in
dependent prognostic factor (P < 0.001), as supported by the findings in Fig. 5A and B. To optimize the prognostic potential of the 
NETs signature, we developed an innovative nomogram by integrating the NETs signature and clinical features using the training 
dataset (Fig. 5C). The calibration curves of the novel nomogram (Fig. 5D) displayed a robust predictive value for prognosis. 
Furthermore, we compared the prognostic forecasting value of the nomogram with that of clinical characteristics such as gender, 
grade, and age using ROC analysis. The AUC values at 1-, 3-, and 5-year intervals for the novel nomogram were 0.766, 0.742, and 
0.739, respectively (Fig. 5E–G). 

To corroborate the aforementioned analytical findings, we proceeded to validate the expression profiles of the differentially 
expressed genes. Firstly, qRT-PCR experiments were conducted, revealing significantly higher expression of HAVCR1, STC2, CABYR, 
CYP26B1, and SLC1A5 genes in clinical HCC patient samples compared to the normal group. Conversely, the expression of the CCR7 
gene was significantly lower (Fig. 6). Furthermore, the immunohistochemistry staining outcomes provided corroboration for the 
expressional disparities of the six genes between clinical patients with HCC and the control group (Fig. 7A). Based on the risk co
efficients of these differentially expressed genes in HCC (Fig. 2A and B), we selected HAVCR1, which had the highest risk coefficient, 
for regulation. Specifically, siRNA transfection techniques were employed to interfere with the expression of the HAVCR1 gene in 
Huh7 cells. The CCK8 experiment results demonstrated that after knocking out the HAVCR1 gene, the proliferation ability of Huh7 
cells decreased relative to the negative control group (Fig. 7B). This finding further validates the significant role of the HAVCR1 gene in 

Fig. 6. mRNA expression levels of NETs between the normal group and tumor group. The qRT-PCR experimental results of the genes HAVCR1, 
STC2, CABYR, CYP26B1, SLC1A5, and CCR7 in clinical samples from patients with HCC. 
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HCC cell proliferation. Considering that the level of NET is primarily assessed by measuring the concentrations of MPO and NE [25,26], 
supernatants from Huh7 cells after si-HAVCR1 transfection were collected, and the levels of MPO and NE were detected using ELISA. A 
marked reduction in MPO and NE levels was observed in the si-HAVCR1 group relative to the negative control group, as shown in 
Fig. 7C. This further confirms the regulatory function of the HAVCR1 gene in modulating the level of NET in HCC cells. 

These findings suggest that the new nomogram prognostic model based on these six NETs (CYP26B1, CCR7, CABYR, SLC1A5, 
HAVCR1, and STC2) exhibits excellent predictive performance. 

3.4. Evaluation of the tumor microenvironment in two subgroups 

HCC is strongly influenced by the tumor microenvironment [27]. According to ESTIMATE analysis, the high-risk group exhibited 
lower ImuneScores, StromalScores, and ESTIMATEScores (Fig. 8A). ssGSEA analysis found that the high-risk HCC group had lower 
infiltration levels of NK cells, pDCs, CD8+ T cells, Dendritic Cells (DCs), iDCs, Mast cells, Tfh, Th1, Th2, B cells, Neutrophils, T helper 
cells, and Tumor-infiltrating lymphocytes (TILs) compared to the low-risk HCC group (Fig. 8B). Low-risk patients demonstrated 
improved immunologic functions, as evidenced by Fig. 8C. Moreover, the study employed a comprehensive array of methodologies, 
encompassing MCPCOUNTER, QUANTISEQ, EPIC, XCELL, TIMER, CIBERSORT, and CIBERSORT-ABS, to meticulously examine the 
variations in immune cell populations between the high-risk and low-risk groups. Fig. 8D illustrates elevated levels of most immune 
cells in the low-risk group, which may be associated with a better prognosis. In addition, the distribution of high- and low-risk HCC is 
shown in Fig. 8E. 

In the high-risk group, most immune-related genes were low-expressed (Fig. 9A–D). The study investigated the IPS in two 

Fig. 7. Comprehensive analysis of NETs protein expression and HAVCR1 regulation. (A) Immunohistochemical staining of CYP26B1, CCR7, 
CABYR, SLC1A5, HAVCR1, and STC2 in normal group and tumor group. (B) Impact of si-HAVCR1 transfection on cell proliferation in Huh7 cells 
assessed by cck-8 assay. (C) The levels of NETs specific markers (MPO-DNA complex and NE) in the supernatant of Huh7 cells treated with si- 
HAVCR1 by ELISA. 
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subgroups. The findings revealed that the low-risk LIHC subgroup displayed a higher IPS in the CTLA4–PD1+, CTLA4+ PD1–, and 
CTLA4+ PD1+ groups. This higher IPS indicated a more favorable immunotherapy response, as depicted in Fig. 9E–G. Within the 
immunotherapy cohort analysis, it was observed that individuals within the low-risk group demonstrated an enhanced responsiveness 
to immunotherapy interventions (Fig. S2). These results confirmed that low-risk patients respond better to immunotherapy than high- 
risk patients. 

3.5. Functional evaluation of the NETs signature 

To uncover the molecular underpinnings distinguishing low-risk and high-risk HCC cohorts, we employed the ’limma’ R package to 
identify DEGs. Subsequently, these DEGs were subjected to GO enrichment analysis and KEGG pathway analysis to decipher their 
functional roles and biological pathways. The results of the GO analysis demonstrated significant enrichment of DEGs in response to 
xenobiotic stimulus, immunoglobulin complex, and immunoglobulin receptor binding, as depicted in Fig. 10A and B. Similarly, the 
KEGG analysis revealed a predominant enrichment of DEGs in central carbon metabolism in cancer, the cell cycle, and the HIF-1 

Fig. 8. Analysis of immune conditions of high and low-risk groups. (A) Contrasts in immune microenvironment scores between the two groups. 
(B) Analysis of variations in immune cell infiltration between the two groups using ssGSEA. (C) Analysis of disparities in immune functions between 
the two groups using ssGSEA. (D) Comparative analysis of immune cell infiltration between the two groups using multiple algorithms. (E) Dis
tribution of patients with high- and low-risk across different immune subtypes. 
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signaling pathway, as shown in Fig. 10C and D. Moreover, the GSVA revealed substantial alterations in multiple pathways between 
high-risk HCC patients and low-risk HCC patients, as illustrated in Fig. 10E. 

3.6. Drug sensitivity and risk score correlation analysis 

In order to gain deeper insights into the variations in drug sensitivity between HCC patients categorized as high-risk and low-risk, 
we conducted a comprehensive analysis. Specifically, we explored the relationship between the risk score and the IC50 values of 
several widely used chemotherapies and targeted therapy drugs. Remarkably, we observed a substantial discrepancy in the IC50 values 
of 9 drugs (A-443654, AKT inhibitor VIII, PD-173074, BMS-509744, CCT007093, CGP-60474, GSK690693, JNK-9L, and KIN001-102) 
between the high-risk and low-risk groups (Fig. 11). Strikingly, the IC50 values exhibited a marked reduction in the high-risk group 
relative to their low-risk counterparts, indicating a heightened sensitivity to the treatment. 

4. Discussion 

HCC reigns as the predominant form of primary hepatic malignancy. HCC is currently treated primarily with surgery, followed by 
radiotherapy, chemotherapy, and targeted drugs [28]. However, factors such as recurrence and metastasis make the prognosis of HCC 
patients poor [29]. NETs can promote the metastasis of liver cancer by stimulating tumor inflammation [30]. The role of NET-related 

Fig. 9. Assessment of Immunotherapy response of high and low-risk groups. (A–D) Expression levels of immune-related genes in different 
groups. (E–G) IPS results for low-risk and high-risk LIHC (Liver Hepatocellular Carcinoma) in the following groups: CTLA4 - PD1+ group, CTLA4+
PD1 - group, and CTLA4+ PD1+ group. 
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Fig. 10. Function analysis. (A–B) GO analysis comparing the differential gene expression between the high-risk and low-risk groups. (C–D) KEGG 
analysis comparing the differential gene expression between the high-risk and low-risk groups. (E) GSVA depicting the enrichment analysis in the 
high-risk and low-risk groups. 
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genes in the prognosis and immune status of HCC is still unclear. Therefore, identifying a prognostic model of NETs-related genes and 
judging the prognosis of HCC patients through multiple datasets will help guide clinical decision-making. 

In this study, we obtained the HCC-related datasets from TCGA and ICGC databases. Specifically, we downloaded the TCGA-LIHC 
dataset and subsequently divided it randomly into a training group and a test group. Based on the TCGA-train dataset, we conducted 
univariate cox regression and lasso analysis to construct a six-gene NETs signature. We evaluated the prognosis of the NETs signature in 
the TCGA-test, TCGA-all, and ICGC-LIRI-JP datasets. Patients with high-risk disease had significantly shorter overall survival (OS) and 
poorer survival outcomes compared to those with low-risk HCC. ROC curves for 1-year, 3-year, and 5-year data indicate good spec
ificity and sensitivity for the model. Moreover, an independent prognostic assessment revealed that the model’s risk score emerged as 
an autonomous prognostic determinant, transcending the influence of other clinical parameters. To enhance the utility of the NETs 
signature, we devised an innovative nomogram that harmoniously integrated clinical characteristics and the risk score of HCC patients. 
The calibration curve proved a good linear fit of the novel nomogram for predicting prognosis for HCC patients. It is worth noting that 
qRT-PCR and immunohistochemistry assays reveal a significant difference in the expression of these NETs between patients with liver 
cancer. Additionally, in vitro experiments targeting the gene with the highest risk coefficient, HAVCR1, confirmed through CCK8 
assays and MPO and NE detection, further support the significant role of these NETs in regulating HCC cell proliferation and NET 
levels. The study identified that the NETs signature could serve as a dependable prognostic indicator for HCC patients, aiding in the 
development of personalized treatment strategies and offering potential avenues for future basic research on HCC. 

The six genes that constitute the prognosis model are CYP26B1, CCR7, CABYR, SLC1A5, HAVCR1, and STC2. These genes are 
strongly associated with some types of cancer. For example, CYP26B1 plays a new role in the betel quid-dependent pathogenesis of oral 

Fig. 11. Drug sensitivity analysis in high and low-risk groups.  
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squamous cell carcinoma [31]. Tian et al. elucidated that the expression of CCR7 is elevated in cervical squamous cell carcinoma, 
harboring prognostic significance for patient survival [32]. CCR7 played an important role in promoting angiogenesis in esophageal 
squamous cell carcinoma by activating the NF-κB pathway, so CCR7 might be a potential target for anti-angiogenesis therapy in 
esophageal squamous cell carcinoma [33]. Qian et al. showed that inhibition of CABYR expression increased the chemical sensitivity of 
lung cancer cells by inhibiting AKT activity [34]. Through the mTOR signaling pathway, ASCT2/SLC1A5 controlled glutamine uptake 
and tumor progression in triple-negative breast cancers [35]. In addition, Liu et al. found that HAVCR1 was significantly up-regulated 
in mRNA and protein levels in gastric cancer tissues, and was related to the prognosis of gastric cancer patients [36]. By inducing 
epithelial-mesenchymal transformation, STC2 was a potential biomarker of pancreatic cancer development [37]. However, the role of 
these genes in HCC is still insufficient. 

The tumor microenvironment (TME) comprises a heterogeneous milieu of immune cells, stromal elements, extracellular matrix 
components, and tumor-associated vasculature, collectively orchestrating tumorigenesis and cancer progression [38,39]. The levels of 
immune cells infiltrating the TME typically change as tumors progress [40]. Individuals with low-risk scores demonstrate elevated 
ImmuneScores, StromalScores, and ESTIMATEScores. Conversely, the high-risk cohort exhibits a notable reduction in immune cell 
presence compared to the low-risk counterpart. Low-risk patients experience improvements in immunologic functions, while high-risk 
patients exhibit underexpression of immune-related genes. The proportions of different immune cells are vital for anti-tumor im
munity, and the decline in immune cells and function may result in a poor prognosis for high-risk patients. In contrast, the presence of 
more immune cells in the TME of the low-risk subgroup could be due to their immune system having a stronger response to the tumor. 
This may be related to the patient’s gene expression and the tumor microenvironment. Low-risk patients typically exhibit higher 
ImuneScores, StromalScores, and ESTIMATEScores, indicating that they have more immune cells and other immune-regulatory 
components in their TME. Additionally, low-risk patients have higher IPS, indicating that their immune system is more active. 
Further research is needed to investigate these mechanisms and understand the reasons behind the increased immune cell infiltration 
in the low-risk subgroup. Our study found that low-risk LIHC patients respond better to immunotherapy than high-risk patients. The 
IPS, calculated using machine learning, considers effector cells, immunosuppressor cells, MHC molecules, and immunomodulators. 
This unbiased method has shown the ability to predict a patient’s response to immunotherapy [22,23,41]. Our findings posit that 
low-risk LIHC patients may derive greater therapeutic benefit from immunotherapeutic interventions compared to their high-risk 
counterparts. These observations have the potential to refine the deployment of immunotherapy and chemotherapy regimens for 
HCC, while also elucidating the multifaceted role of NETs in the pathogenesis of this disease. 

However, there are still some limitations. The majority of analyses rely on data culled from public datasets, with all samples being 
retrospectively acquired, resulting in inherent case selection bias. Further real-world experiments could verify our analysis. 

In conclusion, this study has unveiled a six-gene signature that exhibits robust prognostic utility in predicting the clinical outcomes 
of HCC patients, including their responsiveness to immunotherapeutic interventions. These insights can illuminate the path towards 
devising more efficacious treatment strategies and deepen our comprehension of the role of NETs in the pathogenesis of HCC. 
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