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Background: We hypothesized that specific amino acids or acylcarnitines would have benefits for the differential diagnosis of diabe-
tes. Thus, a targeted metabolomics for amino acids and acylcarnitines in patients with diabetes and its complications was carried out.
Methods: A cohort of 54 normal individuals and 156 patients with type 2 diabetes mellitus and/or diabetic complications en-
rolled from the First Affiliated Hospital of Jinzhou Medical University was studied. The subjects were divided into five main 
groups: normal individuals, impaired fasting glucose, overt diabetes, diabetic microvascular complications, and diabetic periph-
eral vascular disease. The technique of tandem mass spectrometry was applied to obtain the plasma metabolite profiles. Metabo-
lomics multivariate statistics were applied for the metabolic data analysis and the differential metabolites determination.
Results: A total of 10 cross-comparisons within diabetes and its complications were designed to explore the differential metabo-
lites. The results demonstrated that eight comparisons existed and yielded significant metabolic differences. A total number of 24 
differential metabolites were determined from six selected comparisons, including up-regulated amino acids, down-regulated 
medium-chain and long-chain acylcarnitines. Altered differential metabolites provided six panels of biomarkers, which were 
helpful in distinguishing diabetic patients. 
Conclusion: Our results demonstrated that the biomarker panels consisted of specific amino acids and acylcarnitines which 
could reflect the metabolic variations among the different stages of diabetes and might be useful for the differential diagnosis of 
prediabetes, overt diabetes and diabetic complications.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a metabolic disorder with 
high morbidity and severe damages. According to the preva-
lence study in 2017 from the International Diabetes Federation 
[1], the population of patients with diabetes in world was about 
450 million by 2017, and this population would increase to 693 
million in 2045. Moreover, T2DM can lead to various compli-

cations, such as diabetic retinopathy, nephropathy, and diabet-
ic vascular diseases [2]. 

However, there is no prefect medical means to cure diabetes 
and its complications till date. Currently, medical treatment is 
devoted to reduce and control the blood glucose of patients in 
the prevention of T2DM [3,4]. Positive intervention and treat-
ment are both beneficial to slow down the progresses of diabe-
tes. As for the methods stated above, an early and accurate di-
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agnosis is the most important step, which should be done be-
fore implementing any of the aforementioned medical cares.

Metabolomics is a powerful tool for investigating the meta-
bolic changes and regulations of small molecules in the human 
body [5]. It has been widely used in the study of diseases, espe-
cially the discovery of disease biomarkers [5-7]. According to 
previous studies [8-12], the metabolic profiles of amino acids 
and acylcarnitines are close related to the occurrence and de-
velopment of T2DM. And there are also a great number of 
studies that have demonstrated that these metabolites had the 
potential to be the differential biomarkers for the diagnosis of 
diabetes. 

Tandem mass spectrometry is commonly used for new born 
screening due to the multianalyte detection approach, such as 
the profile measurement of disordered metabolites rather than 
a single analyte measurement [13]. Moreover, the application 
of ultra-performance liquid chromatography (UPLC) in me-
tabolomics also represents an amount of advantages for the 
determination of endogenous low-molecular-weight metabo-
lites [14]. Consequently, the UPLC coupled to tandem mass 
spectrometric technique (UPLC-MS/MS) has been recently 
applied to metabolic researches recently, especially for clinical 
metabolomics [15,16].

Thus, a targeted metabolomics based on MS/MS for study-
ing the T2DM and its complications was carried out for explor-
ing the metabolic changes of amino acids and acylcarnitine as 
well as discovering the biomarkers for differential diagnosis.

METHODS 

Patients and experiments design 
Our study was approved by the Ethics Committee for Clinical 
Research of the First Affiliated Hospital of Jinzhou Medical Uni-
versity and the informed consent was waived due to the nature 
of the retrospective study, which was in accordance with the 
Helsinki Declaration of 1964 and its later amendments [17,18]. 
The approval number for IRB on our study is JZURLL20200001.

A cohort of 210 subjects (including 54 normal individuals 
[NIs], 32 impaired fasting glucoses [IFGs], 21 simple diabetes 
[SDs], and 103 diabetic complications [DCs]) was randomly 
recruited from the First Affiliated Hospital of Jinzhou Medical 
University from March 2016 to March 2017. They were be-
tween ages of 19 to 77 and not related to each other. There were 
no significant differences in the composition of gender and age 
among all control groups and disease groups according to the 

t-test (P>0.05).
The patients did not take steroids or nonsteroidal anti-in-

flammatory drugs, lipid-regulating drugs and other drugs at 
least in 2 weeks prior to the treatment. The included standards 
of the patients were as follows: all patients were diagnosed as 
T2DM according to the diabetes diagnosis and treatment stan-
dard (2018) of American Diabetes Association [19]. 

The excluded criteria of the diabetic group were as follows: 
(1) patients with hyperuricemia; (2) patients with malignant 
tumors; (3) patients received chemotherapy within 1 year; (4) 
patients received transfusions within 5 days; (5) patients with 
malnutrition; (6) patients with inherited metabolic diseases; 
and (7) patients with intravenous infusion of amino acids 
within 3 days. 

Training set and validation set
In this study, all subjects were divides into 10 cross-compari-
sons (Supplementary Fig. 1) according to the stages of diabetes 
and the types of DCs. For every cross-comparison, samples 
were divided into a training set and a validation set according 
to the ratio of 3 to 2 [20]. Then, the training set was used to es-
tablish the predicting model in the multivariate data analysis 
while the validation set was used to assess the model.

Detection of metabolites by tandem mass spectrometry
Samples and preparation
In this study, the blood samples were taken from all subjects. 
MS/MS was used to detect and measure amino acids and car-
nitines. The total detections contained 58 metabolites includ-
ing 23 amino acids, 35 acylcarnitines (Supplementary Table 1). 

A paper disc of 3 mm was punched from the dried blood 
spots (DBS) filter paper, which was equal to 3.2 μL of whole 
blood. Then, the paper discs were inserted into a well in Milli-
pore MultiScreen HV 96-well plate (Carrigtohill, Ireland) and 
subjected to the extraction of metabolites. Briefly, each 100 μL 
of working solution was added into a well including a DBS 
disc. The plate was shaken gently for 20 minutes at room tem-
perature and centrifuged at 1,500 ×g for 2 minutes. The filtrate 
was gathered into a new flat-bottom 96-well plate. For every 
plate, quality control (QC) sample solutions contained two 
high-level and two low-level solutions were randomly assigned 
into four blank wells and analyzed as real samples to monitor 
the stability of the MS/MS analysis. The QC solutions and fil-
trate were dried under pure nitrogen gas at 50°C. We derived 
each dried sample in 60 μL 1-butanol and acetyl chloride mix-
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ture (90:10, v/v) at 65°C for 20 minutes, and the derivatized so-
lutions were dried under pure nitrogen gas at 50°C again. Fi-
nally, we added 100 μL mobile phase solution into each well 
before analysis.

Chemicals
HPLC-grade acetonitrile (ACN) and HPLC-grade water were 
acquired from Thermo Fisher (Waltham, MA, USA). Acetyl 
chloride and 1-butanol were purchased from Sigma-Aldrich 
(St. Louis, MO, USA). Internal standard kits including eight la-
belled carnitine internal standards (catalogue number: NSK-
A) and 12 stable isotope-labelled amino acid (catalogue num-
ber: NSK-B) for absolute quantification were obtained from 
Cambridge Isotope Laboratories (Andover, MA, USA). The 
characteristics of these internal labels were listed in Supple-
mentary Table 2. QC amino acids and carnitines mixed stan-
dards were purchased from Chromsystems (Grafelfing, Ger-
many). 

NSK-A and NSK-B were dissolved with 1 mL of methanol to 
get a stock solution (stored at 4°C). The working solution for 
metabolite extraction was prepared by diluting the stock solu-
tion 100 times. The QC samples were processed as real samples 
and randomly inserted in the analysis queue.

Tandem mass spectrometry
MS/MS analysis was implemented on an AB SCIEX 4000 
QTrap system (AB Sciex, Framingham, MA, USA) equipped 
with an electrospray ionization source in positive mode. The 
injected volume was 20 μL. A mixture of 80% ACN aqueous 
solution was used as the mobile phase. The elution program 
was initiated with 0.2 mL/min, then decreased to 0.1 mL/min 
within 0.08 minute and kept constant until to 1.5 minutes. 
Next, the flow rate increased to 0.2 mL/min within 0.1 minute 
and held for 0.5 minute. The mass spectrometry ion spray volt-
age was set at 4.5 kV. Pressures of Ion Source Gas 1 and Gas 2 
were all 35 psi. Curtain gas pressure was 20 psi. The auxiliary 
gas temperature was held at 350°C. The raw data were collected 
by Analyst v1.6.0 software (AB Sciex). The quantification of 
individual metabolites was accomplished by ChemoView 2.0.2 
software (AB Sciex) against different isotope standards.

Metabolomics study
Data pre-processing 
All data analysis involved in this study were coded by R 
(v3.6.3) scripts and implemented in R Studio (v 1.1.423). A se-

ries of pre-processing were implemented to the primary datas-
et to ensure the datasets as reasonable, including imputation of 
missing data, data centralization and data standardization. In 
addition, identification based on boxplot and principal com-
ponent analysis was carried out to remove the outliers.

Univariate analysis
In order to identify differential metabolites among cross-com-
parisons, P values calculated by Kruskal–Wallis test and ad-
justed by false discovery ratio of 58 metabolites detected by 
MS/MS were obtained from R scripts. Logarithm of fold 
change at a base of 2 was calculated to reveal the extents and 
directions of metabolism changes between the controls and 
patients. 

Multivariate data analysis
A supervised analysis, orthogonal partial least squares dis-
criminant analysis (OPLS-DA), was used to establish a classifi-
er of training set from 10 comparisons. Then, the parameters 
of 10-fold cross-validation were used to assess these OPLS-DA 
models. Potential biomarkers could be determined by combin-
ing P values and the variable importance in projection (VIP) of 
this classification model. Based on VIP of these models, a heat-
map and partial least squares regression analysis were used to 
reflect the metabolic regulations and the separated ability of 
these classifiers, respectively. Then, the receiver operating 
characteristic (ROC) curve and the prediction of validation set 
were carried out to evaluate the differential diagnosis ability for 
these identified biomarker panels.

Pathways analyses
The metabolic pathway analysis for every biomarker panel was 
implemented by Metaboanalysis 4.0 platform [21]. Significant 
influenced pathways for every biomarker panel were plotted. 
Based on the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway database, a metabolic diagram of all differ-
ential metabolites was mapped to present the alternatives 
within metabolism of amino acids and acylcarnitines in the 
development of T2DM.

RESULTS 

A total of 210 participants (including 54 NIs, 32 patients with 
IFG, 21 patients with SD, and 103 patients with various DCs) 
were enrolled. The subjects were divided into 10 cross-com-



Li X, et al.

198 Diabetes Metab J 2021;45:195-208  https://e-dmj.org

parisons (Supplementary Fig. 1) according to the different 
stages and complications of diabetes. Six cross-comparisons 
composed of NIs and diabetes patients had been selected and 
used for further analysis to obtain more valuable metabolites 
within populations in different diabetic phases.

Baseline characteristics
Baseline characteristics of all experimental participants were 
shown in Supplementary Table 3. There was a progressive in-
crease in blood glucose across the groups from NI to IFG, IFG 
to SD, and SD to DC. Patients with IFG, SD, and DC had much 
higher body mass index than NI; and patients with SD also 
showed a significant elevated blood pressure (either systolic or 
diastolic) compared to NI and IFG. In addition, patients with 
diabetic peripheral vascular disease (DPVD; a type of diabetic 
macro vascular complications) underwent a longer duration of 
disease than those with diabetic microvascular complication 
(DMVC). All groups showed no significant difference in age 

and gender ratio.

Multivariate statistical analysis
The OPLS-DA method was applied to investigate the existence 
of metabolites disturbance in the 10 cross-comparisons. 
Among 10 OPLS-DA models, eight of them were built success-
fully. Clear differences were obtained from all these compari-
sons, but our analysis mainly focused on the following six 
models (Fig. 1): IFG versus NI, cumulative R2Y at 0.907 and Q2 
at 0.822; SD versus IFG, cumulative R2Y at 0.858 and Q2 at 
0.428; DMVC versus SD, cumulative R2Y at 0.962 and Q2 at 
0.738; DPVD versus SD, cumulative R2Y at 0.971 and Q2 at 
0.683; DMVC & DPVD versus SD, cumulative R2Y at 0.971 
and Q2 at 0.899; DMVC & DPVD versus DMVC, cumulative 
R2Y at 0.946 and Q2 at 0.897. OPLS-DA score plots of other 
two comparisons, including SD versus NI and DPVD versus 
DMVC, were represented in Supplementary Fig. 2.

Fig. 1. The orthogonal partial least squares discriminant analysis (OPLS-DA) score plots were generated from six comparisons. In 
these score plots, individuals from control groups and comparable disease groups were represented by different colors (“blue” for 
control groups, “red” for case groups). The parameters of OPLS-DA models (including R2X, R2Y, Q2Y, and RMSEE) were also 
plotted to represent the quality of these established models. t1 and to1 were the first principal component and the first orthogonal 
component of OPLS-DA models, respectively. IFG, impaired fasting glucose; NI, normal individual; SD, simple diabetes; DMVC, 
diabetic microvascular complication; DPVD, diabetic peripheral vascular disease. 
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Differential metabolites and disturbed pathways 
Differential metabolites, including 11 amino acids and 13 acyl-
carnitines, with VIP >1.5 and adjusted P values <0.05 from six 
paired comparisons were selected and listed in Table 1 (some 
metabolites not only appeared in one comparison). The heat-
map in Fig. 2 represented the trends of all detected metabolites 
and differential metabolites in six groups, respectively.

Based on differential metabolites, the perturbed pathways 
were determined and shown in Fig. 3. For IFG versus NI, met-
abolic changes involved valine-leucine-isoleucine, fatty acid, 
and arginine-proline purine; for SD versus IFG, changes in-
volved alanine-aspartate-glutamate, tryptophan, and nitrogen 
metabolism; for DMVC versus SD, changes involved alanine-
aspartate-glutamate, nitrogen, D-glutamine and D-glutamate 

Table 1. The parameters of differential metabolites selected from six cross-comparisons

Metabolites VIP P value P adjusted Log2 (fold change) AUC

IFG vs. NI
   C6DC 2.676 2.10E-11 1.22E-09 3.282 0.950
   C14 2.308 4.79E-10 6.94E-09 1.874 0.917
   C12 2.246 1.43E-10 2.76E-09 4.086 0.930
   C14-OH 2.166 8.61E-11 2.50E-09 2.283 0.930
   C14:1 1.931 2.70E-08 3.14E-07 2.077 0.872
   Leu 1.786 1.25E-05 7.23E-05 –0.955 0.793
   C16 1.750 1.69E-06 1.40E-05 1.129 0.821
   C14:2 1.702 5.15E-07 4.98E-06 1.507 0.837
   Cit 1.690 2.49E-06 1.81E-05 –1.236 0.816
SD vs. IFG
   Cit 2.629 9.62E-08 5.58E-06 1.811 0.960
   C16:1-OH 2.085 2.33E-05 6.76E-04 –1.074 0.863
   Try 1.994 1.00E-04 1.45E-03 0.800 0.836
   C8 1.820 4.30E-05 8.32E-04 2.055 0.852
   Asn 1.789 5.45E-04 6.32E-03 0.695 0.799
   Leu 1.575 2.32E-03 1.92E-02 0.998 0.763
DMVC vs. SD
   C16 2.155 9.56E-08 5.54E-06 –2.976 0.944
   Asn 1.866 7.61E-07 2.21E-05 –1.120 0.911
   C14:2 1.766 8.84E-04 4.66E-03 –0.899 0.777
   C8 1.634 3.97E-04 2.56E-03 –1.387 0.794
   C14 1.607 2.57E-04 1.86E-03 –1.499 0.803
   C6DC 1.586 1.70E-04 1.65E-03 –0.856 0.813
   Gln 1.558 1.03E-05 1.99E-04 –1.034 0.867
DPVD vs. SD 
   C6DC 2.403 7.56E-06 4.38E-04 –4.332 1.000
   Orn 2.330 5.15E-03 3.32E-02 1.550 0.813
   Met 2.020 1.16E-03 1.81E-02 –1.386 0.864
   C14:2 1.945 3.25E-04 9.42E-03 –2.070 0.902
   C14DC 1.857 4.13E-03 2.99E-02 –1.118 0.818
   Try 1.736 1.25E-03 1.81E-02 –1.172 0.861
   C18-OH 1.575 2.94E-03 2.45E-02 –1.640 0.828

(Continued to the next page)
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metabolism; for DPVD versus SD, changes involved cysteine-
methionine, arginine-proline and tryptophan metabolism; for 
DMVC & DPVD versus SD, changes involved alanine-aspar-
tate-glutamate, cysteine-methionine, phenylalanine and sulfur 
metabolism; for DMVC & DPVD versus DMVC, changes in-
volved cysteine-methionine, phenylalanine, and sulfur metab-
olism. Differential metabolites and disturbances of metabolism 
for other two comparisons could be found in Supplementary 
Table 4 and Supplementary Fig. 2.

Potential biomarkers for differential diagnosis
As shown in Table 1, six panels of differential biomarkers were 
generated from each cross-comparison, including nine metab-
olites for distinguishing IFG from NI, six for SD versus IFG, 
seven for DMVC versus SD, seven for DPVD versus SD, six for 
DMVC & DPVD versus SD, and six for DMVC & DPVD ver-
sus DMVC. The differential biomarkers for other comparisons 
were provided in Supplementary Table 4.

ROC and prediction of validation set were carried out to 
evaluate the potential of differential metabolites for predicting 
the diagnosis. ROC curve and prediction results were shown in 
Fig. 4. The areas under curves for six comparisons were 0.978, 
0.922, 0.939, 0.978, 1.000, and 1.000 in order of IFG versus NI, 
SD versus IFG, DMVC versus SD, DPVD versus SD, DMVC & 
DPVD versus SD, and DMVC & DPVD versus DMVC. 

The predictions of both the training and validation sets were 
implemented based on OPLS regression method. The predic-
tion plots of each comparison all demonstrated clear separa-
tion of disease groups from non-disease groups or complica-
tion groups from non-complications groups. The ROC and 
prediction plots for other two groups were represented in Sup-
plementary Fig. 2.

DISCUSSION

Although the diagnosis of diabetes or prediabetes can current-
ly be accomplished by a simple measurement of blood glucose, 
but there are also several reasons for supporting metabolite 
checks in our body at the same time. Firstly, the diagnosis of 
diabetes or prediabetes by the only one measurement-plasma 
glucose-may generate a false positive result and lead to a wrong 
diagnosis by the doctor. In this case, metabolites indexes may 
be a helpful assistant indicator. Secondly, these metabolites can 
also provide much more information about a diabetes or pre-
diabetes patients. For example, the differential diagnosis me-
tabolites might be able to tell us the progress of diseases. These 
will be valuable for providing the patients with a more specific 
and better treatment. Therefore, it is necessary to measure and 
assess the metabolites of diabetes and prediabetes patients.

This research investigated the metabolic disturbances of 

Metabolites VIP P value P adjusted Log2 (fold change) AUC
DPVD & DMVC vs. SD
   Gln 1.881 1.25E-09 3.62E-08 –3.783 1.000
   C6DC 1.852 1.24E-09 3.62E-08 –2.965 1.000
   Hcy 1.677 5.24E-08 7.60E-07 –5.112 0.948
   Phe 1.618 8.28E-09 1.60E-07 –2.934 0.974
   Tyr 1.590 8.11E-08 8.53E-07 –1.951 0.942
   C14:2 1.506 6.16E-07 3.97E-06 –2.039 0.910
DPVD & DMVC vs. DMVC 
   Hcy 2.008 6.05E-12 2.10E-10 0.384 0.972
   Cys   1.898 1.09E-11 2.10E-10 0.236 0.966
   C16 1.720 1.05E-11 2.10E-10 –0.281 0.966
   C22 1.595 9.99E-11 1.16E-09 0.147 0.941
   C18 1.556 1.79E-10 1.55E-09 0.677 0.937
   Phe 1.521 1.87E-10 1.55E-09 0.432 0.937

VIP, variable importance in projection; AUC, area under curve; IFG, impaired fasting glucose; NI, normal individual; SD, simple diabetes; 
DMVC, diabetic microvascular complication; DPVD, diabetic peripheral vascular disease.

Table 1. Continued
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Fig. 2. Differential metabolites were determined by six comparisons. (A) The heatmap represented the levels of all 58 metabolites 
in six groups and (B) the heatmap represented the level of 24 differential metabolites in six groups. NI, normal individual; IFG, 
impaired fasting glucose; SD, simple diabetes; DMVC, diabetic microvascular complication; DPVD, diabetic peripheral vascular 
disease.

A

B

amino acids and acylcarnitines among NIs, patients with IFG, 
patients with SD and patients with various diabetic vascular 
complications. Metabolic phenotypes revealed that there were 
significant differences within the metabolism of normal per-
sons, IFG, diabetes and DCs. The results of our study proved 
that amino acids and acylcarnitines were of great association 
with diabetes development and further attempted to clear 
these relevant metabolites. In addition, the results also provid-
ed a series of metabolite panels that might be benefit for the 
early prediction of T2DM and the differential diagnosis of 

DCs. Specifically, these panels might offer valuable assistances 
for the prediagnosis, prevention, and prognosis of diabetes, 
such as graded prevention and treatment of diabetes.

Comparisons within normal, impaired fasting glucose, and 
simple diabetes
IFG is considered to be an intermediate states of glucose me-
tabolism appeared between normal and overt diabetes, which 
is usually caused by relatively deficiency of insulin secretion 
(such as low insulin sensitivity and injury of islet β-cell func-
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Fig. 3. The enrichment pathways of each biomarker were provided by Metaboanalysis 4.0 platform. IFG, impaired fasting glucose; 
NI, normal individual; SD, simple diabetes; DMVC, diabetic microvascular complication; DPVD, diabetic peripheral vascular 
disease.
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Fig. 4. The receiver operating characteristic (ROC) curves and prediction plots using the model were established by the six bio-
marker panels. These plots were plotted to represent the sensitivity, specify and predictive capacity of the partial least square (PLS) 
regression models established by each biomarker panel. In the ROC curves, the area under curve (AUC) and confidence interval 
(CI) were also given in the plots. In the prediction plots, individuals from control group and case group were also represented by 
different colors (blue and red). IFG, impaired fasting glucose; NI, normal individual; SD, simple diabetes; DMVC, diabetic micro-
vascular complication; DPVD, diabetic peripheral vascular disease.
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tion) [22,23]. During this period, patients with IFG usually 
have a great chance to reduce blood glucose to normal by rea-
sonable dietary control and regular exercise interventions [24]. 
So, the early detection and diagnosis were crucial for popula-
tion with potential diabetes. In our studies, comparing with 
NIs, patients with IFG showed down-regulated leucine (Leu), 
citrulline (Cit), C16; and up-regulated C6DC, C12, C14, C14:1, 
C14:2, C14-OH. While comparing with IFG patients, simple 
diabetic patients represented increased Cit, tyrosine (Try), as-
paragine (Asn), Leu, C8, and only decreased C16:1-OH.

According to the previous studies [9,10,25], Leu is proved to 
be able to stimulate insulin secretion by activating the mam-
malian target of rapamycin signaling pathways and trends to 
accumulate in populations with prospective insulin resistance 
or T2DM. In our research, significant increased Leu in patients 
with overt T2DM proved the previous conclusion [26]. How-
ever, the level of Leu was decreased in patients with IFG, which 
were never reported in any similar studies. We supposed that it 
might be a new early characteristic of transition from NIs to 
prediabetes, although this also might be caused by the individ-
ual differences of patients, which need to be further validated 
in a bigger cohort study. 

As shown in Fig. 5, Cit is an essential metabolite in urea cycle 
and associated with tricarboxylic acid (TCA) cycle through L-
glutamine [12]. In the comparison of IFG versus NI, Cit 
showed a significant decrease in IFG patients, which was con-
sistent to the alternatives of Leu. While in overt diabetic pa-
tients, Cit represented a significant elevation comparing with 
IFG patients, which might result from the elevation of L-gluta-
mine in diabetes [27].

Asn and Try were the other two differential amino acids in 
the comparison of SD versus IFG distinct from that of IFG ver-
sus NI. They were involved in the alanine-aspartate-glutamate 
metabolism and tryptophan metabolism, respectively. Recent-
ly, in a 5.5 years follow-up study, higher level of Asn was proved 
to predict a progression to prediabetes [28]. Although, in our 
research, Asn level did not represent a significant increase be-
tween NIs and IFG patients, it showed a significant high level 
in patients with diabetes comparing to patients with IFG. 
Moreover, Yu et al. [29] and Matsuoka et al. [30] both revealed 
that tryptophan and its metabolites were both associated with 
higher risk of incident T2DM in a Prevención con Dieta Medi-
terránea (PREDIMED) trial.

Free fatty acids are another important source of acetyl coen-
zyme A (acetyl-CoA) for TCA cycle other than that of glucose, 

but an important prerequisite is that they must be esterified to 
free carnitines to form acylcarnitines that can then be trans-
ported into the mitochondria to be further oxidized [31]. 
However, the incomplete oxidation of long-chain fatty acids 
(LCFAs) in patients would result in the accumulation of acyl-
carnitines [31]. The studies revealed that the medium- and 
long-chain acylcarnitines tended to increase in patients with 
IFG as well as diabetic patients, which were probably associat-
ed with the incomplete combustion of LCFAs [32,33]. In addi-
tion, the inefficient LCFA beta-oxidation might also increase 
the accumulation of acetyl-CoA and generate short chain acyl-
carnitines that could activate proinflammatory pathways to 
exacerbate insulin resistance [33,34].

Comparisons within different diabetic complications
Patients with a longer history of diabetes usually represented 
various complications as well as more differential metabolisms 
[35]. In the cross-comparisons within SD and different DCs, 
there were either similarities or subtle distinctions in differen-
tial metabolites. For the comparison of DMVC versus SD, in-
dividuals with DMVC showed down-regulated both amino 
acids and acylcarnitines, including Asn, Gln, C6DC, C8, C14, 
C14:2, and C16. For the comparison of DPVD versus SD, pa-
tients with DPVD, showed up-regulated Orn and down-regu-
lated C6DC, Met, C14:2, C14DC, Try, C18-OH. And for the 
comparison of DMVC & DPVD versus SD, C6DC and C14DC 
showed down-regulated; while the other differential metabo-
lites, including Gln, Hcy, Phe, Tyr, were significantly decreased. 

Based on the changes of these differential metabolites, we 
could conclude that patients with DMVC or DPVD or with 
both usually represented the obviously decreased amino acids 
and acylcarnitines. However, there were also several abnormal 
amino acids and acylcarnitines, such as Orn and C14:1, repre-
sented diverse tendency among the group of DMVC, DPVD, 
and DMVC & DPVD. Although other metabolites also showed 
those diverse directions which were controversial considering 
the pathophysiology of DCs, we supposed that the abnormal 
trend of these biomarkers might be the potential feature of the 
patients with the DMVC and DPVD at the same time. For these 
reasons, it is necessary to include much more patients with the 
similar conditions to perform more validation analysis.

For the changes of amino acids in diabetic micro and macro 
vascular complications, a recent case-cohort study attempted 
to explore the relationships within the circulating amino acids 
and the risk of diabetic vascular complications. In this study, 
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the higher phenylalanine, lower glutamine and histidine were 
associated with an increased macrovascular risk; while the 
higher Try and alanine was associated with the decreased risk 
of microvascular [32]. In our study, Gln, Phe, and Tyr repre-
sented significant different among SD, DMVCs, and diabetic 
macrovascular complications. There also existed several differ-
ential amino acids that were first reported. Although these 
might be novel characteristics for the prediction of DCs, they 
also needed to be further validated. 

There were only a few studies that reported the correlations 
between the changes of acylcarnitines and the occurrence of 
diabetic vascular complications. For example, in a recent study 
focused on kidney disease progression due to T2DM in Amer-
ican Indians, the results also suggested that patients with pro-
gressive pattern had a lower abundance of long-chain acylcar-
nitines (C16–20) [36]. In our studies, we assumed that the de-
creased amino acids and acylcarnitines in patients with DCs 
might be related to the compensation of patients during a 
long-term disease, such as the enhanced TCA cycle might be 
used to supply energy for human bodies. Meanwhile, we be-
lieved that the metabolism in diabetic patients would even 
worsen along with the prolongation of the clinical course.

In addition, we supposed that there might also exist some 
kinds of differential metabolites between diabetic microvascu-
lar disease and macrovascular disease. Thus, the comparison of 
DMVC & DPVD versus DMVC was analyzed. We found that 
long chain acylcarnitines and amino acids were both signifi-
cantly decreased in patients with microvascular and macrovas-
cular disease compared to patients with microvascular alone, 
which also revealed the same metabolic pattern aforemen-
tioned in comparison with patients having DCs and SD.

The current research was the first to implement such a com-
prehensive diabetic study for investigating the differential me-
tabolism of NIs and patients in different disease status. Metab-
olism changes were observed from six cross-comparisons, and 
six biomarker panels composed of specific amino acids and ac-
ylcarnitines were obtained from all differential metabolites. 
These biomarkers were of great significance to the differential 
diagnosis and graded prevention of diabetes in clinical studies. 
Specifically, those biomarkers from the comparison of IFG 
versus NI and SD versus IFG might be an assistant for the early 
diagnosis of diabetes, which were probably used to be the risk 
factors for the primary or secondary prevention of diabetes; 
while the biomarkers from the other four comparisons were of 
great ability to distinguish different DCs from SD, which might 

be the excellent prediction biomarkers for the prognosis of dia-
betic, as well as tertiary prevention. 

In conclusion, in this study, we proved that amino acids and 
acylcarnitines could distinguish NIs, IFG, SD, and DCs by me-
tabolomics based on MS/MS. Six biomarkers panels that could 
be used for the differential diagnosis of diabetes and DCs were 
identified and represented excellent predicting abilities. Based 
on our results, these differential biomarkers might be a mean-
ingful supplement for the early diagnosis, prevention, and 
prognosis of T2DM. Moreover, the investigations of the meta-
bolic profiles of differential amino acids and acylcarnitines 
were of great potency for understanding the development of 
diabetes and its complications. 
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Supplementary Table 1. The statistics of the concentration of metabolites in different case groups

Metabolites NI IFG SD DMVC DPVD DMVC & DPVD

Ala 132.20±57.29 125.83±50.77 121.97±39.53 151.44±49.87 153.98±34.03 152.22±48.39
Arg 7.01±2.82 5.29±3.12 6.07±2.96 9.57±5.45 8.69±5.39 8.46±4.47
Asn 54.02±15.82 56.08±14.73 44.57±11.23 68.79±26.42 67.33±20.62 69.54±16.66
Asp 28.89±10.04 25.40±10.73 27.65±11.96 29.59±11.04 25.62±8.50 31.37±11.98
Cit 21.26±6.54 19.95±9.80 17.32±5.00 24.15±8.94 27.73±11.61 24.77±10.31
Cys 1.27±0.80 0.95±0.83 0.90±0.51 1.11±0.46 0.90±0.84 1.31±1.49
Gln 9.29±4.27 7.31±3.31 7.74±2.91 7.99±4.41 7.46±3.51 12.32±21.94
Glu 121.52±40.25 129.49±46.54 109.22±32.74 130.02±47.28 114.06±35.65 136.50±42.25
Gly 142.75±41.69 137.43±48.77 114.79±39.37 177.18±49.36 153.20±64.06 167.44±56.41
Hcy 8.36±0.87 8.32±0.88 7.97±0.60 8.61±0.73 8.91±1.24 11.23±16.96
His 65.42±43.08 47.99±19.87 59.52±32.70 86.02±60.47 62.60±23.59 93.33±82.02
Leu 95.90±26.36 94.34±31.32 74.40±22.21 117.33±37.71 104.91±35.82 110.29±28.61
Lys 146.09±73.83 112.32±67.79 112.00±56.42 115.47±56.26 105.61±48.90 139.96±95.51
Met 13.41±3.82 14.04±4.00 10.98±3.41 16.46±6.48 22.45±18.64 17.31±5.99
Orn 15.24±7.63 13.64±7.00 14.58±11.25 20.16±9.78 16.41±4.29 19.99±9.17
Phe 31.52±10.85 29.74±7.20 28.38±9.63 35.56±9.15 35.15±11.37 47.97±60.92
Piperine 234.94±111.22 211.58±96.55 168.13±70.80 165.37±51.62 194.89±61.52 189.45±92.27
Pro 403.66±153.75 342.38±129.61 297.51±106.06 440.80±177.13 471.58±109.39 445.16±161.19
Ser 39.73±10.94 39.94±13.49 38.82±13.17 65.50±28.25 47.23±12.77 54.44±21.33
Thr 23.04±7.95 21.42±6.54 19.63±4.86 25.50±8.44 24.07±5.85 28.28±10.91
Try 41.18±10.33 38.13±10.34 40.84±11.36 41.89±12.90 37.86±12.11 44.28±13.15
Tyr 39.62±10.86 39.88±11.06 35.02±10.24 49.64±16.04 45.63±19.91 50.98±23.62
Val 108.13±26.37 99.02±25.21 95.52±23.72 137.32±33.37 128.29±37.53 122.97±31.32
C0 27.29±8.21 27.56±6.20 26.12±13.30 24.39±6.50 23.86±6.26 26.58±8.34
C2 8.81±3.01 8.20±2.64 8.22±4.41 8.99±3.41 6.39±2.40 8.30±3.02
C3 1.09±0.49 1.13±0.39 1.02±0.41 1.48±0.73 0.98±0.22 1.31±0.64
C3DC 0.04±0.02 0.04±0.01 0.04±0.02 0.04±0.02 0.04±0.02 0.04±0.02
C4 0.15±0.07 0.17±0.08 0.20±0.14 0.18±0.08 0.14±0.04 0.15±0.07
C4DC 0.49±0.35 0.40±0.21 0.48±0.19 0.40±0.24 0.48±0.24 0.45±0.28
C4-OH 0.04±0.03 0.04±0.02 0.06±0.04 0.06±0.03 0.04±0.02 0.05±0.04
C5 0.10±0.04 0.11±0.05 0.10±0.05 0.15±0.07 0.13±0.05 0.13±0.06
C5:1 0.03±0.02 0.04±0.02 0.05±0.03 0.04±0.03 0.04±0.02 0.05±0.03
C5DC 0.06±0.03 0.06±0.03 0.07±0.03 0.06±0.04 0.05±0.03 0.05±0.03
C5-OH 0.17±0.07 0.19±0.10 0.22±0.11 0.22±0.09 0.24±0.09 0.22±0.15
C6 0.08±0.03 0.08±0.03 0.08±0.03 0.07±0.03 0.07±0.01 0.07±0.03
C6DC 0.65±1.68 0.35±0.16 0.35±0.16 0.33±0.11 0.97±2.06 0.55±0.76
C8 0.08±0.05 0.09±0.11 0.07±0.03 0.08±0.06 0.05±0.03 0.07±0.05
C10 0.10±0.06 0.11±0.10 0.10±0.07 0.08±0.06 0.07±0.05 0.08±0.07
C10:1 0.07±0.04 0.08±0.05 0.07±0.03 0.08±0.05 0.06±0.03 0.07±0.05
C10:2 0.52±0.27 0.48±0.26 0.53±0.20 0.66±0.31 0.51±0.25 0.58±0.29

(Continued to the next page)
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Metabolites NI IFG SD DMVC DPVD DMVC & DPVD
C12 0.11±0.27 0.06±0.03 0.06±0.03 0.05±0.03 0.06±0.02 0.08±0.13

C14 0.07±0.06 0.07±0.02 0.06±0.03 0.06±0.04 0.06±0.03 0.07±0.09

C14:1 0.10±0.17 0.09±0.06 0.09±0.06 0.06±0.03 0.05±0.03 0.07±0.05

C14:2 0.37±0.28 0.29±0.13 0.03±0.02 0.31±0.17 0.43±0.53 0.36±0.34

C14DC 0.02±0.02 0.02±0.01 0.34±0.17 0.02±0.02 0.03±0.02 0.02±0.01

C14-OH 0.03±0.04 0.03±0.02 0.03±0.02 0.03±0.01 0.03±0.02 0.03±0.02

C16 0.71±0.33 0.71±0.25 0.75±0.34 0.88±1.16 0.68±0.26 0.72±0.31

C16-OH 0.03±0.02 0.03±0.02 0.03±0.02 0.03±0.03 0.03±0.01 0.05±0.09

C16:1-OH 0.03±0.01 0.04±0.02 0.04±0.02 0.04±0.02 0.04±0.02 0.05±0.02

C18 0.46±0.16 0.49±0.27 0.47±0.23 0.52±0.29 0.43±0.17 0.83±2.50

C18:1 0.36±0.13 0.37±0.11 0.47±0.38 0.40±0.18 0.31±0.09 0.34±0.14

C18:2 0.99±0.36 0.92±0.18 0.98±0.37 1.04±0.32 0.90±0.23 0.96±0.39

C18-OH 0.02±0.01 0.02±0.02 0.02±0.02 0.02±0.02 0.04±0.05 0.02±0.02

C18:1-OH 0.00±0.01 0.00±0.01 0.00±0.01 0.01±0.01 0.03±0.07 0.01±0.01

C20 0.03±0.02 0.03±0.02 0.04±0.03 0.03±0.02 0.03±0.02 0.03±0.03

C22 0.05±0.02 0.05±0.03 0.06±0.03 0.05±0.03 0.05±0.02 0.06±0.05

C24 0.04±0.03 0.04±0.02 0.06±0.04 0.05±0.02 0.03±0.01 0.05±0.05

C26 0.03±0.01 0.02±0.01 0.03±0.02 0.03±0.01 0.02±0.01 0.03±0.01

Values are presented as mean±standard deviation. 
NI, normal individual; IFG, impaired fasting glucose; SD, simple diabetes; DMVC, diabetic microvascular complication; DPVD, diabetic pe-
ripheral vascular disease.

Supplementary Table 1. Continued
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Supplementary Table 2. Reference standards

Reference standard Concentration, nmol/mL
15N; 2-13C-glycine 12.5
2H4-alanine 2.5
2H8-valine 2.5
2H3-leucine 2.5
2H3-methionine 2.5
13C6-phenylananine 2.5
13C6-tyrosine 2.5
2H3-aspartate 2.5
2H3-glutamate 2.5
2H2-ornithine 2.5
2H2-citrulline 2.5
2H4; 5-13C-arginine 2.5
2H9-carnitine (free carnitine, CN) 0.76
2H3-acetylcarnitine (C2) 0.19
2H3-propionylcarnitine (C3) 0.04
2H3-butyrylcarnitine (C4) 0.04
2H9-isovalerylcarnitine (C5) 0.04
2H3-octanoylcarnitine (C8) 0.04
2H9-myristoylcarnitine (C14) 0.04
2H3-palmitoylcarnitine (C16) 0.08
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Supplementary Table 3. Baselines characteristic of subjects

Characteristic NI 
(n=54)

IFG 
(n=32)

SD 
(n=21)

DC 
(n=103)

DMVC 
(n=43)

DPVD 
(n=14) P value

Age, yr 54.22±13.33 41.69±11.70 50.82±9.73 55.78±9.23 53.54±10.30 57.08±8.04 >0.05

Duration of disease, yr 10.01±6.82 8.65±6.68 11.27±6.62a <0.05

Male sex, % 70.37 78.13 50.00 58.25 51.21 61.70 >0.05

Body mass index, kg/m2 22.86±3.21 24.71±4.05a 25.15±2.53a 24.35±2.69a 24.18±2.65a 24.49±2.86a <0.05

Systolic blood pressure, mm Hg 128.06±8.47 126.75±10.50 135.00±12.99a 131.97±17.70a 128.83±16.89 134.73±18.19 <0.05

Diastolic blood pressure, mm Hg 81.87±7.90 82.47±8.00 89.86±11.77a 80.37±10.06 79.61±11.65 80.57±9.02 <0.05

Laboratory data

Impaired fasting glucose, mmol/L 6.49±0.23 9.18±2.80b 11.56±4.63b 13.90±5.80 10.40±3.72 <0.01

HbA1c, % 9.37±1.96 10.04±1.96 8.88±1.88b <0.01

Values are presented as mean±standard deviation. 
NI, normal individual; IFG, impaired fasting glucose; SD, simple diabetes; DC, diabetic complication; DMVC, diabetic microvascular complica-
tion; DPVD, diabetic peripheral vascular disease; HbA1c, glycosylated hemoglobin. 
aP<0.05, bP<0.01.



Metabolomics in diabetes and its complications

Diabetes Metab J 2021;45:195-208 https://e-dmj.org

Supplementary Table 4. The parameters of differential metabolites of the other two cross-comparisons

Metabolites VIP P value P adjusted Log2 (fold change) AUC

SD vs. NI

   C6DC 2.064 4.10E-10 2.38E-08 3.701 0.986

   Piperine 2.015 4.22E-05 2.45E-04 1.079 0.819

   C12 1.984 1.25E-08 2.42E-07 3.704 0.942

   C14:1 1.892 1.14E-08 2.41E-07 2.817 0.943

   C4DC 1.835 7.35E-07 7.10E-06 1.874 0.885

   C14:2 1.758 1.70E-06 1.41E-05 1.625 0.872

   Gln 1.719 4.20E-07 4.88E-06 1.177 0.894

   C14-OH 1.632 5.93E-08 8.60E-07 2.133 0.914

   C14 1.612 1.16E-05 7.50E-05 2.047 0.840

DMVC vs. DPVD

   Cys 2.372 2.96E-04 8.58E-03 –1.265 0.866

   C16 2.209 3.32E-03 2.75E-02 2.801 0.797

   Orn 2.185 8.53E-04 1.24E-02 1.361 0.838

   Ser 2.052 2.12E-02 9.38E-02 1.212 0.734

   C24 1.937 5.72E-04 1.11E-02 1.070 0.847

   C6DC 1.896 2.24E-05 1.30E-03 –3.475 0.929

   C18:1-OH 1.786 4.80E-02 1.73E-01 –3.144 0.688

VIP, variable importance in projection; AUC, area under curve; SD, simple diabetes; NI, normal individual; DMVC, diabetic microvascular 
complication; DPVD, diabetic peripheral vascular disease. 
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Supplementary Fig. 1. Study design.
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DPVD vs. DMVCSD vs. NI

Supplementary Fig. 2. The score plot of orthogonal partial least squares discriminant analysis (OPLS-DA), prediction plots and 
differrtial metabolic pathways of the other two comparisons. NI, normal individual; SD, simple diabetes; DMVC, diabetic micro-
vascular complication; DPVD, diabetic peripheral vascular disease.
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