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Recently, the COVID-19 pandemic is considered the most severe infectious disease because of its rapid
spreading. Radiologists still lack sufficient knowledge and experience for accurate and fast detecting
COVID-19. What exacerbates things is the significant overlap between Pneumonia symptoms and
COVID-19, which confuses the radiologists. It’s widely agreed that the early detection of the infected
patient increases his likelihood of recovery. Chest X-ray images are considered the cheapest radiology
images, and their devices are available widely. This study introduces an effective Deep Convolutional
Neural Network (DCNN) called ‘‘DeepChest” for fast and accurate detection for both COVID-19 and
Pneumonia in chest X-ray images. ‘‘DeepChest” runs with a small number of convolutional layers, a small
number of max-pooling layers, and a small number of training iterations compared with the recent
approaches and the state-of-the-art of DCNN. We conducted the experimental evaluations of the pro-
posed approach on a data set with 7512 chest X-ray images. The proposed approach achieves an accuracy
of 96.56% overall, 99.40% in detecting COVID-19, and 99.32% in detecting Pneumonia. In actual practice,
the presented approach can be used as a computer-aided diagnosis tool to get accurate results in detect-
ing Pneumonia and COVID-19 in chest X-ray images.
� 2022 THE AUTHORS. Published by Elsevier B.V. on behalf of Faculty of Computers and Information,
Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
1. Introduction

Respiratory system diseases such as Pneumonia and Coron-
avirus (COVID-19) are common, infectious, and deadly. The results
of radiography are the main factor in the accurate diagnosis of such
diseases. Consolidation is a radiological expression that explains
the increased lung density within the air spaces. There are different
types of lung opacity in a chest radiograph, which radiologists may
find due to a pathologic operation that fills in the alveoli with
blood, fluid, pus, protein, or cells [1]. Consolidation can help us in
detecting many diseases, and specifically, Pneumonia and COVID-
19. Pneumonia is a kind of respiratory system infection.
Furthermore, it registers the highest death rate among contagious
diseases and the third reason for death in general. The delay in an
accurate diagnosis increases the possibility of death. So, a fast
detection is very important [1–5]. COVID-19 is an infectious dis-
ease that affects the respiratory system. Respiratory problems are
considered the main COVID-19 symptom. Consequently, a chest
X-ray can show an early detection of COVID-19 [6]. The use of arti-
ficial intelligence technology in automatic detection of consolida-
tion in chest radiography became one of the interesting topics in
medical research [7]. Researchers applied deep learning
technology to a wide range of domains in science, engineering,
and medicine [8]. Since 2012, Researches widely use a part of deep
learning technology, called deep convolutional neural network
(DCNN), and achieved great success in image classification [9].
Recently, the DCNNs also achieved promising results in the
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medical field [10–13]. Fig. 1 shows the phases of the proposed
‘‘DeepChest” diagnosis system. Now, we will mention some outli-
nes about the proposed model:

� The proposed approach uses a three-step pre-processing
method that enhances the quality of X-ray images via removing
the noisy and confusing variables, eliminates histogram differ-
ences between X-ray images, and improves their contrast.

� A judgment applied to our pre-processing approach via measur-
ing the image quality by Blind Reference less Image Spatial
Quality Evaluator (BRISQUE) [14].

� A balanced dataset was generated based on Pneumonia chest X-
ray dataset [15], COVID-19 chest X-ray dataset [16], and
COVID-XRay-5 K dataset [17] in order to train the proposed
problem-based deep convolutional neural network model
‘‘DeepChest”.

� The proposed diagnosis system ‘‘DeepChest” is applied to clas-
sify chest X-ray images as normal, pneumonia, or COVID-19,
and are compared with VGG16 [18], Mohammad et al. [19],
DenseNet-121 [20], and MobileNet [21].

� Batch Normalization layers [22] are used in ‘‘DeepChest” to help
us train the network faster, get a higher learning rate, and
enable initializing weights easier.

� An analytical comparison experiment of Pneumonia and COVID-
19 detection between the proposed model ‘‘DeepChest” and the
well-known approaches like VGG16 [18], DenseNet-121 [20],
MobileNet [21], and the recent approaches like Mohammad
Fig. 1. The proposed ‘‘DeepChest” diagnosis system.
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et al. [19] was applied.
We organized the rest of the paper as follows: Section 2 dis-
cusses the related work, Section 3 describes the proposed
three-step pre-processing approach. In Section 4, we surveyed
the associated models and presented the proposed model
‘‘DeepChest”. Section 5 discusses the results. Section 6 illus-
trates a performance comparison between well-known DCNNs
and the proposed model. Finally, Section 7 presents the con-
cluding remarks.

2. Related work

Yaniv et al. [23] discussed the power of deep learning tech-
niques, especially convolutional neural networks, for consolidation
in the detection of chest radiographs. Still, they used a small num-
ber of chest radiographs in their practical experiments. Kai-lung
et al. [24] used the context of nodule classification in their
proposed convolutional neural network model to classify com-
puted tomography images. But, they tend to detect lung cancer,
and their achieved accuracy is not enough to be used as a
computer-aided system. Mohammad et al. [25] proposed an
ensemble convolutional neural network model to localize the
anomalies in chest X-ray images. John et al. [26] introduced a
DCNN model for classifying chest X-ray images as Normal or Pneu-
monia images. They declared that the confusing variables like
strings in the left and right corner could destroy the general perfor-
mance of the DCNN models, so it is not possible to get favorable
outputs in classification problems according to the irrelated fea-
tures. Shuaijing et al. [27] proposed a hierarchical deep CNN model
to rank chest X-ray images in normal images and anomaly images.
Sergio et al. [28] proposed a novel approach for classifying COVID-
19 in chest X-ray images based on the texture features and neural
network. Their method used gray level co-occurrence matrix, other
texture operators, and the uniform pattern values of the local bin-
ary patterns to extract chest X-ray image features. Still, This is a
lousy descriptor compared to convolutional features. Moreover,
they used a small number of COVID-19 chest X-ray images in their
experiments. A.Jaiswal et al. [29] proposed DenseNet201 based on
deep transfer learning as a pre-trained deep learning model with
the ImageNet dataset to detect COVID-19 in chest CT. However,
they accomplished the testing process with a small number of
images, almost 374 for Normal and Covid-19. The training process
has a large footprint with many computations presented in repeat-
ing the training phase up to 300 times to enhance accuracy. J.Civit-
Masot et al. [30] proposed an approach with pre-processing steps
applied with the VGG16 deep learning model. However, the evalu-
ation process was done with only 80 chest X-ray images for Nor-
mal, Pneumonia, and COVID-19, and the small number of images
used in their training process degraded the accuracy. H.Wang
et al. [31] proposed triple attention learning for the classification
of 14 thoracic diseases using DenseNet-121 as a backbone deep
convolutional neural network, but the large number of classes
involved in their approach negatively affected the accuracy of
results. S.Minaee [32] proposed an approach for predicting
COVID-19 from chest X-ray images using multi-use deep convolu-
tional neural networks along with transfer learning technique. The
COVID-19 class has a small number of images as compared to the
Normal class. So their training process was unbalanced. Further-
more, their evaluation process was insufficient because they used
only 100 COVID-19 X-ray images. Hamed et al. [33] proposed a
DCNN model called ‘‘chestnet” for classifying chest X-ray images
as Normal or Pneumonia. They discussed different histogram dis-
tributions between images included in the understudy dataset
(Pediatric Chest X-ray). They reported the critical issue of selecting
suitable pre-training datasets. But their DCNNmodel consists of 14
convolutional layers, which consume large memory space, and



Table 1
The BRSIQUE score for the original image, NLM Filter, Gaussian Filter and Median
Filter.

Noise Filter BRSIQUE Score

Original Image 30:422937041381687
NLM Filter 30:25358515476941
Gaussian Filter 68:95581668738586
Median Filter 44:94117491132553
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their pre-processing approach achieves a humble effect on the
chest X-ray images.Mohammad et al. [19] proposed a deep convo-
lutional model for detecting Pneumonia and COVID-19 in chest X-
ray images. They used a small number of COVID-19 chest X-ray
images, which creates an imbalanced dataset. There are other
problems in the chest X-ray images, such as the noise in these
images, the poor quality for X-ray images in general, and the mod-
el’s training with different domain datasets issues.
3. The proposed pre-processing approach

In radiology image classification problems, deep learning tries
to identify patterns that will help in the classification process.
There are many issues in the chest X-ray images dataset facing
these models, downgrading the learning phase. Consequently, a
wrong or misclassification may happen. In the following, we list
the most common issues:

� There are confusing variables that can hugely affect the general
performance of DCNN models, such as strings on the left and
right corners of chest X-ray images (first issue).

� Chest X-ray images suffer from noises that downgrade the
DCNNs performance in accurately detecting the desirable pat-
terns (second issue).

� Chest X-ray images also have all its details in a small range in
the histogram graph, and the contrast of chest X-ray images is
not good enough to accurately detect the right edges of the
desired patterns (third issue).

To handle all of the above issues and make an accurate assess-
ment, the following three-step for pre-processing were carried out
efficiently on the chest X-ray dataset.
3.1. Eliminating the confusing variables

The confusing variables such as a string on the left and right
corners were eliminated via cropping each image with a pre-
defined window with a size of 100 pixels from all directions, see
Fig. 2.
3.2. Denoising X-ray images using Non-Local Mean (NLM) Algorithm

Chest X-ray images suffer from noise that downgrades DCNNs
from accurately detecting the desirable patterns, so to cope with
this issue we use the NLM algorithm [34], which enhances the X-
ray images as compared with Gaussian [35] and Median [36]
denoising algorithms according to BRISQUE evaluator see Table 1.
Given a chest X-ray image x ¼ fxðiÞji 2 Ig, the result value
Fig. 2. Figure A shows An example of chest X-ray images before the cropping
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NL½x�ðiÞ for a pixel i, is calculated as weighted average for all the
image pixels:

NL½x�ðiÞ ¼
X
i2j

wði; jÞxðjÞ ð1Þ

Where the weights fwði; jÞgj relies on the similarity of pixel i
and j, and ensure the condition 0 6 wði; jÞ 6 1 and

P
jwði; jÞ ¼ 1.

The NLM algorithm takes the road of producing a clear image with
less loss in detail because the NLM filter takes a mean of all image
pixels regarding how similar these pixels to the output pixel.

3.3. Histogram equalization

In image processing, the common way to get comprehensive
information and characteristics of any image is the histogram.
The histogram of an image can be considered a vector that includes
the frequencies of pixels at every gray level. We assume we have X
rows and Y columns for an X-ray image p levels of intensity with
values ranging from 0 to P � 1. The histogram hðiÞ [37] can be
defined as:

hðiÞ ¼
XX�1

x¼0

XY�1

y¼0

dðf ðx; yÞ � iÞ; i ¼ 0;1; . . . ; P � 1;where dðwÞ ¼ 1 w ¼ 0;
0 otherwise

�
ð2Þ

In histogram equalization [38], the output histogram is flat, see
Fig. 3, it hugely improves the contrast in images, and it performs a
separation to the most frequent intensity values, which allows rec-
ognizing small details via giving areas of lower contrast to get high
contrast. Histogram Equalization solves the interference of the
most frequent patterns in the X-ray image and improves the
contrast.

3.4. Judging the presented pre-processing approach using Blind
Reference less Image Spatial Quality Evaluator (BRISQUE)

Chest X-ray images may have many distortions such as blur and
noise. So we developed an approach to enhance the chest X-ray
dataset images to improve the result of the DCCN model.

We considered the BRISQUE [14] to assess the quality of the
output of our pre-processing approach. The higher the BRISQUE
process, and Figure B shows the same image after the cropping process.



Fig. 3. Figure A shows a sample of Chest X-ray images after the cropping process. Figure B shows the histogram of Figure A. Figure C shows the same image after applying the
NLM algorithm. Figure D shows the histogram of Figure C. Figure E shows the Figure D image after applying Histogram Equalization. Figure F shows the histogram of Figure E.
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scores, the worst the image, as it is full of noise. BRISQUE was
applied in a random chest X-ray image before and after the pre-
processing steps applied, and a comparison is applied between
our pre-processing approach with Hamed et al. [33] and we
achieve better results. Table 2 shows the image quality scores.
4. The Investigated models and the proposed ‘‘DeepChest model

In this work, we conducted an analytical comparison between
different Multi-use models and our proposed problem-based
model. The two following sections demonstrate this comparison
and the training strategies.
Table 2
The BRSIQUE score for the original image, Hamed et al. [33] approach and the
proposed approach.

Pre-processing Approaches BRSIQUE Score

Original Image 30:422937041381687
Hamed et al. Approach [33] 25:523768478459573
The Proposed Approach 18:209273375260608
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4.1. Multi-use models and the proposed model ‘‘DeepChest”

This section presents an analytical comparison between differ-
ent multi-use models and our proposed model ‘‘DeepChest”. We
investigated the proposed model, and the multi-use DCNN models
were VGG16 [18], DenseNet-121 [20], Mohammad et al. [19], and
MobileNet [21].

The DCNNs contain two main parts in their architecture: convo-
lutional parts and classifier parts. The convolutional parts extract
the image’s features, and the classifier parts classify these features
into one of several predefined classes due to the used dataset. The
transfer learning technique [39] was applied to get pre-trained
DCNN models. Therefore, the investigated models [18–20] were
pre-trained on the standard ImageNet dataset [48]. The classifier
part of these models was removed and a dense layer with 3 classes
and activation ‘‘softmax” [41] function was added.

Table 3 shows the input parameters of these DCNNs models in
the presented work. On the other hand, the ‘‘DeepChest” model is
proposed as a DCNN problem-based model, see Fig. 4, Table 4
shows the input parameter for the proposed model and Table 5
demonstrates the presented model structure. The proposed



Table 3
The input parameters of the investigated multi-use DCCN models.

Parameters VGG16 DenseNet-121 Mohammad et al. model MobileNet

Image Size 244� 244� 3 244� 244� 3 244� 244� 3 244� 244� 3
Learning Rate 0:0001 0:0001 0:0001 0:0001
Decay 1e� 5 1e� 5 1e� 5 1e� 5
Batch Size 16 16 16 16
Step Per Epoch 385 385 385 385
Validation Steps 1 1 1 1
Optimizer Adam Adam Nadam Adam
Call Backs Model Checkpoint and CSV

Logger
Model Checkpoint and CSV
Logger

Model Checkpoint and CSV
Logger

Model Checkpoint and CSV
Logger

Loss Categorical Cross Entropy Categorical Cross Entropy Categorical Cross Entropy Categorical Cross Entropy
Class Weight Auto Auto Auto Auto
Pre-training Weights ImageNet Weights ImageNet Weights ImageNet Weights ImageNet Weights
Activation Function Of The Last

Classifier Layer
SoftMax SoftMax SoftMax SoftMax
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‘‘DeepChest” model has many important differences from the com-
pared models as follows:

� To speed up the X-ray images’ diagnosis, we must decrease the
size of the output of the convolution layer, Max-pooling layer
was used. But it can result in losing some features from chest X-
ray images. Well-known DCNN models such as VGG16 [18],
Mohammad et al. [19],MobileNet [21], and DenseNet-121 [20]
use 6, 9, 1, and 20 max-pooling layers [18–20] respectively. On
the other hand, the proposed ‘‘DeepChest” model uses only 4
max-pooling layers. Fortunately, the proposed three-step pre-
processing approach worked to make ‘‘Deep Chest” more speed
andmoreaccurateusingasuitablenumberofmax-pooling layers.
Fig. 4. The structure of ‘‘DeepChest”, this structure consists of five blocks, the first four i
convolutional layers, five BatchNormalization layers, and four max-pooling layers.
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� The well-known DCNN models, especially VGG16 [18], Moham-
mad et al. [19], MobileNet [21], and DenseNet121 [20] were
designed to classify ImageNet dataset images, so they perform
the convolutional operation with 3� 3 filter size to find small
patterns that help in the classification process. However, the
consolidation patterns are relatively big, so we need to use a
bigger filter size in our convolutional operations. This is what
we do in the ‘‘DeepChest” model, where the filter size is 7� 7.
This filter size increases the number of parameters in the pro-
posed model. DeepChest has approximately 104 million param-
eters, while VGG16 [18], Mohammad et al. [19], DenseNet-121
[20], and MobileNet [21] have 14 million, 44 million, 7, and 3
million parameters, respectively.
s convolutional part and the last one is the classifier part, this structure also has ten



Table 4
The input parameters on the proposed model ‘‘DeepChest”.

Parameters ‘‘DeepChest”

Image Size 244� 244� 3
Learning Rate 0:0001
Decay 1e� 5
Batch Size 16
Step Per Epoch 385
Validation Steps 1
Optimizer Adam
CALL Backs Model Checkpoint & CSV

Logger
Loss Categorical Cross Entropy
Class Weights Auto
Number Of Neurons In The First Classifier

Layer
1024

First Drop Out 0:7
Number Of Neurons In The Second Classifier

Layer
512

Second Drop Out 0:5
Number Of Neurons In The Third Classifier

Layer
3

Activation Function Of The Last Classifier
Layer

SoftMax

Table 5
The structure details of the proposed ‘‘DeepChest” model.

The Proposed ‘‘DeepChest” Model Structure

Block # Layer (type) Output Shape

Block1 First Layer: Conv1-1 (Conv2D) (None, 224, 224, 64)
Second Layer: bn1 (Batch Normalization) (None, 224, 224, 64)
Third Layer: Conv1-2 (Conv2D) (None, 224, 224, 64)
Fourth Layer: pool1 (MaxPooling2D) (None, 112, 112, 64)

Block2 First Layer: Conv2-1 (Conv2D) (None, 112, 112, 128)
Second Layer: bn2 (Batch Normalization) (None, 112, 112, 128)
Third Layer: Conv2-2 (Conv2D) (None, 112, 112, 128)
Fourth Layer: pool2 (MaxPooling2D) (None, 56, 56, 128)

Block3 first Layer: Conv3-1 (Conv2D) (None, 56, 56, 256)
Second Layer: bn3 (Batch Normalization) (None, 56, 56, 256)
Third Layer: Conv3-2 (Conv2D) (None, 56, 56, 256)
Fourth Layer: bn3 (Batch Normalization) (None, 56, 56, 256)
Fifth Layer: Conv3-3 (Conv2D) (None, 56, 56, 256)
Sixth Layer: pool3 (MaxPooling2D) (None, 28, 28, 256)

Block4 First Layer: Conv4-1 (Conv2D) (None, 28, 28, 512)
Second Layer: bn4 (Batch Normalization) (None, 28, 28, 512)
Third Layer: Conv4-2 (Conv2D) (None, 28, 28, 512)
Fourth Layer: bn5 (Batch Normalization) (None, 28, 28, 512)
Fifth Layer: Conv4-3 (Conv2D) (None, 28, 28, 512)
Sixth Layer: pool4 (MaxPooling2D) (None, 14, 14, 512)

Block5 First Layer: flatten (Flatten) (None, 100352)
Second Layer: fc1 (Dense) (None, 1024)
Operation: dropout1 (Dropout) (None, 1024)
Third Layer: fc2 (Dense) (None, 512)
Operation:dropout2 (Dropout) (None, 512)
Fourth Layer: fc3 (Dense) (None, 3)
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4.2. Training strategy

In the proposed training strategy, we apply the training process
of ‘‘DeepChest” from scratch. However, the chest X-ray images
were small in number. To overcome this problem, the Image Data
Generator method [40] has been used to generate chest X-ray
images. The generated data will be in the same domain to force
DCNN models to learn only the desirable features instead of bring-
ing other chest X-ray datasets for training which may confuse the
DCNN models during the training process. The proposed training
strategy has three steps. We applied these steps to all the investi-
gated models (VGG16 [18], Mohammad et al. [19], MobileNet [21],
and DenseNet-121 [20].), including the ‘‘DeepChest”.

Each step has ten epochs with 385 stepper epoch and batch
size 16, and then after each step, we save the weights of the
252
epoch that have the highest accuracy. The saved weights were
loaded for the next training step see Figs. 1 and 5, But the DCNNs
(VGG16 [18], Mohammad et al. [19], MobileNet [21], and
DenseNet-121 [20].) were pre-trained via ImageNet dataset [48].
The proposed training strategy uses 3 times less memory space
than training the investigated models directly with 30 epochs,
which manages to free the random access memory (RAM) after
every 10 epochs.

5. Experimental results

5.1. Dataset and statistical data analysis

We generate the main used dataset in this work based on the
Pneumonia chest X-ray images dataset [15], Coronavirus chest X-
ray images dataset [16], and COVID-XRay-5 k dataste [17]. They
are organized into three folders (Train, Test, and Val), including
sub-folders for every image class (Normal, Pneumonia, COVID-
19). There are 7512 chest X-ray images with the extension (JPEG)
divided into three classes of COVID-19 (1323), Pneumonia (4240
images), and Normal (1949 images). We applied A filtering process
to the dataset that excluded 33 chest X-ray images from the Pneu-
monia folder, which is included in the train folder. This exclusion is
applied because the excluded images have no consistency with the
pre-processing approach. This inconsistency due to the pre-defined
window that crops the images is larger than the image itself. We
generate 1323 COVID images with the same extension (JPEG)
based on the 70 COVID-19 X-ray images available in the Coron-
avirus dataset. The generation rules were rotation range with
360 degrees, horizontal flip, vertical flip, width shift range with
0.05, height shift range with 0.05, zoom range 0.05, and fill mode
‘‘nearest” according to Keras image data generator [40] see Table 6.
The used generated dataset available in Github. The proposed
model and the other four compared models are developed using
Python and Keras library [43] on Tensorflow [44], Google Colabora-
tory [45] Notebooks are used along with Google drive where the
dataset is uploaded. All statistical and computations tasks were
calculated using statistic methods and sklearn packages [46] of
Python version 3.8.3 [47] which was released on 13 May 2020.
We consider the test data included in the generated chest X-ray
dataset to evaluate the result of the investigated DCCN models.
Fig. 6 demonstrates the train accuracy and loss functions of
VGG16, DenseNet121, Mohammad et al., MobileNet, and the pro-
posed ‘‘DeepChest” model.

The confusion matrices for the investigated DCNN models after
applying the proposed pre-processing approach were calculated
due to Table 8 for the performance evaluation process for each
model. In this presented work the Normal, Pneumonia and
COVID-19 classes are recognized as negative (demonstrated by –
notation in Table 8), positive (demonstrated by + notation in
Table 8) and double-positive classes (demonstrated by ++ notation
in Table 8), respectively.The confusion matrices for the investi-
gated DCNN models before applying the proposed pre-processing
approach also were calculated see Table 9. The specificity, sensitiv-
ity, F1-score, and accuracy factors for every investigated model
before and after the pre-processing approach are demonstrated
in Tables 10 and 11 respectively. Based on the test set data which
are not used in the training process, specificity, sensitivity, accu-
racy and F1 score metrics are computed due to the following
equations:

Specificity ¼ TN
TN þ FP

ð3Þ

Sensiv ity ¼ TP
TP þ FN

ð4Þ



Fig. 5. VGG16 [18], Mohammad et al. [19], MobileNet [21], and DenseNet-121 [20] were pre-trained with ImageNet dataset before the training process with the used chest X-
ray dataset. However, the ‘‘DeepChest” model were trained only with the used chest X-ray dataset.

Table 6
The used generated balanced dataset details.

Dataset COVID-19 Pneumonia Normal

Corona Virus dataset 70 0 28
COVID-XRay-5 k dataset 184 0 580
Pneumonia dataset 0 4273 1583
Excluded images 0 33 0
Generated images 1323 0 0
Training set 979 3842 1949
Validating set 8 8 8
Testing set 336 390 234

Fig. 6. Figure A shows the investigated DCNN models (VGG16, Mohammed et al., DenseN
training process, and Figure B shows the investigated DCNN models (VGG16, Mohamme
loss in the training process.
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Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð5Þ
F1 ¼ TP
TP þ 1

2 ðFP þ FNÞ ð6Þ

In the above equations, TN, TP, FN, and FP indicate True Nega-
tive, True Positive, False Negative, and False Positive factors,
respectively.
et-121, MobileNet, and the proposed model (DeepChest))’s training accuracy in the
d et al., DenseNet-121, MobileNet, and the proposed model (DeepChest))’s training



Table 8
The confusion matrix of the investigated models and the presented ‘‘DeepChest” after applying our proposed pre-processing approach.

MODELS Classes Prediction ++ Prediction + Prediction � Total

VGG16 [18] ++ 292 44 0 336
+ 0 384 6 390
� 0 11 223 234
Total 292 439 229 960

DenseNet-121 [20] ++ 325 11 0 336
+ 0 381 9 390
� 0 62 172 234
Total 325 454 181 960

Mohammad et al. [19] model ++ 329 6 1 336
+ 0 366 24 390
� 3 16 215 234
Total 332 388 240 960

MobileNet [21] ++ 330 5 1 336
+ 9 369 12 390
� 15 9 210 234
Total 354 383 223 960

‘‘DeepChest” ++ 334 2 0 336
+ 1 387 2 390
� 8 20 206 234
Total 343 409 208 960

Table 9
The confusion matrix of the investigated models and the presented ‘‘DeepChest” before applying our proposed pre-processing approach.

MODELS Classes Prediction ++ Prediction + Prediction � Total

VGG16 [18] ++ 292 44 0 336
+ 0 384 6 390
� 0 201 33 234
Total 292 629 39 960

DenseNet-121 [20] ++ 325 11 0 360
+ 0 381 9 390
� 0 132 102 234
Total 325 524 111 960

Mohammad et al. [19] model ++ 329 6 1 336
+ 0 366 24 390
� 3 96 135 234
Total 332 468 160 960

MobileNet [21] ++ 310 21 5 336
+ 26 330 34 390
� 13 31 190 234
Total 349 382 229 960

‘‘DeepChest” ++ 334 2 0 336
+ 1 387 2 390
� 8 114 112 234
Total 343 503 114 960

Table 10
A comparison between the investigated models and the presented ‘‘DeepChest” in Accuracy, Sensitivity, Specificity, and F1-score after applying our proposed pre-processing
approach.

Metrics VGG16 [18] Mohammad et al. [19] model DenseNet-121 [20] MobileNet [21] ‘‘DeepChest”

Accuracy 0:9365 0:9479 0:9145 0:9469 0:9656
COVID-19 Accuracy 0:8690 0:9673 0:9792 0:9821 0:994
COVID-19 Sensitivity 0:945 0:8916 0:8207 0:9402 0:9398
COVID-19 Specificity 0:9324 0:9981 0:9805 0:98302 0:9965
COVID-19 F1 score 0:939 0:9374 0:8935 0:9611 0:9674
Pneumonia Accuracy 0:9846 0:9385 0:9769 0:94615 0:9923
Pneumonia Sensitivity 1 0:9892 1 0:9584 0:9798
Pneumonia Specificity 0:9885 0:9775 0:922 0:9626 0:9945
Pneumonia F1 score 0:9942 0:9767 0:991 0:9652 0:9871
Normal Accuracy 0:953 0:9188 0:7350 0:8974 0:8803
Normal Sensitivity 0:8352 0:9729 0:9399 0:9375 0:9857
Normal Specificity 0:984 0:9722 0:91927 0:9668 0:9626
Normal F1 score 0:9035 0:9726 0:9294 0:9637 0:974
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6. Performance comparison for the DCNN models

The investigated multi-use DCNN models were pre-trained via
the ImageNet dataset. This allowed these models to take advantage
254
of feature similarity in points and edges at the low-level view. The
pre-training process via ImageNet dataset [48] enables the DCCN
to model to learn basic patterns such as points, edges, and lines.
Therefore the ImageNet weights were used with VGG16 [18],



Table 11
A comparison between the investigated models and the presented ‘‘DeepChest” in Accuracy, Sensitivity, Specificity, and F1-score before applying our proposed pre-processing
approach.

Metrics VGG16 [18] Mohammad et al. [19] model DenseNet-121 [20] MobileNet [21] ‘‘DeepChest”

Accuracy 0:7385 0:8646 0:8417 0:8646 0:8677
COVID-19 Accuracy 0:8690 0:9792 0:9673 0:9226 0:9940
COVID-19 Sensitivity 0:5852 0:7327 0:6974 0:8267 0:7422
COVID-19 Specificity 0:9046 0:9862 0:7773 0:9524 0:996
COVID-19 F1 score 0:7106 0:9408 0:73521 0:8851 0:8506
Pneumonia Accuracy 0:9846 0:9385 0:9769 0:8462 0:9923
Pneumonia Sensitivity 1 0:9882 1 0:9483 0:9798
Pneumonia Specificity 0:9819 0:9508 0:989 0:8929 0:9933
Pneumonia F1 score 0:9909 0:9692 0:9943 0:91964 0:9865
Normal Accuracy 0:1410 0:5769 0:4359 0:8119 0:4786
Normal Sensitivity 0:4286 0:9575 1 0:8017 0:97313
Normal Specificity 0:7708 0:8753 0:8425 0:9357 0:8553
Normal F1 score 0:3314 0:91454 0:91436 0:8635 0:9108
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Mohammad et al. [19], MobileNet [21], and DenseNet-121 [20].
These models are trained with a large amount of data from scratch.
In this presented work, DCNN models were fine-tuned and
retrained with chest X-ray images. Lastly, the generated chest X-
ray images dataset was used to train these models. The weights
were initialized randomly in the classifier layers to learn how to
classify X-ray images’ features as Normal, pneumonia, or COVID-
19. So, the final result showed that the well-known DCNN models
were customized by training and fine-tuning the trainable layers of
the model.

The DCCN models [18–21] have millions of parameters(fat and
deep), so they have many purposes. The one, these models config-
ured several convolutional layers to extract features from images
and max-pooling layers to reduce the dimension of X-ray images
through layers. In the second one, the categories of ImageNet data-
set [48] have features that managed the DCCN models from effi-
cient classification. On the other hand, the generated chest X-ray
dataset has only three classes, Normal, Pneumonia, and COVID-
19. A small fraction of the chest X-ray image distinguishes the
image with COVID-19 or Pneumonia from the Normal image.
Therefore when we use many max-pooling layers will remove
the feature separator of the three classes. Moreover, DCNN models
need large chest data to learn the chest pattern, see Tables 8–11. To
overcome these issues, we proposed the ‘‘DeepChest” model that is
fat and deep enough for chest X-ray images and has a suitable
number of max-pooling layers as we compared with the investi-
gated multi-use DCNN models. We input chest X-ray images into
the training process after the pre-processing step. Batch Normal-
ization [22] layers allow us to train the proposed model faster, get-
Fig. 7. The training accuracy metric among investigated
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ting higher learning rates as shown in Fig. 7 and the process of the
initializing weight becomes easier. For an overall demonstration of
what our contribution was, see Fig. 1.The accuracy, specificity, sen-
sitivity, and F1score were used to make a demonstrative compar-
ison between all of the investigated models in this paper, see
Table 10 and 11. The experimental results showed the following:

� Figs. 7 and 6 show that ‘‘DeepChest” achieved the highest and
stablest training accuracy.

� Table 10 shows that DeepChest model has the highest accuracy,
sensitivity, specificity, and F1score among the investigated
models, so ImageNet weights should not be used as pre-
trained weights as the first choice.

� DeepChest also achieved better training and testing time costs
than the other investigated models, see Table 7.

� Wemade up the problem of a small number of images available
in the chest X-ray dataset via using a data generator [40] pro-
vided by Keras, which allowed us to generate more data from
the same domain.

� ‘‘DeepChest” used Drop-out layers two times with a rate of 0.7
and 0.5, respectively, to prevent data overfitting [42].

� Tables 8–11 shows the huge effect of the proposed pre-
processing approach on the achieved results.

6.1. The effect of the proposed pre-processing approach

As demonstrated in Section 2, the pre-processing approach was
critical to improving the DCNN model classification process. In
order to evaluate the positive effect of the presented pre-
models through the three stages training strategy.



Table 7
The average training time for one epoch and the average testing time for the test set
in seconds.

Models Average Training Time
(s)

Average Testing Time
(s)

VGG16 [18] 252 66
Mohammad et al. [19]

model
241:5 73

DenseNet-121 [20] 223:3 62
MobileNet [21] 158:8 59
‘‘DeepChest” 148:3 53
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processing approach, the generated chest X-ray dataset was input
to the investigated DCNN models after and before applying the
pre-processing step. Tables 8–11 shows the huge improvement
of the achieved results.

7. Conclusion

This paper proposes a comprehensive method for detecting
Pneumonia and COVID-19 in chest X-ray images. This method
includes: First, generating a balanced chest X-ray dataset with
three classes Normal, Pneumonia, and COVID-19. Second, a pre-
processing approach stands for eliminating the confusing variables,
removing noise from the X-ray images, and improving the contrast
of these images. Third, a training strategy with three phases. Each
phase has ten epochs. DeepChest saves the weights of the highest
epoch accuracy. Then it loads the saved weights to the model
before the second training phase begins. The same thing happens
in the second and the third phase. Fourth, our problem-based
model ‘‘DeepChest” was proposed to learn the desirable features
of the chest X-ray images. We conducted The experimental evalu-
ations of the proposed approach on a dataset with 7512 chest X-
ray images. The proposed approach achieved an accuracy of
96.56% overall, 99.40% in detecting COVID-19, and 99.32% in
detecting Pneumonia. In actual practice, the presented approach
can be used as a computer-aided diagnosis tool to get accurate
results in detecting Pneumonia and COVID-19 in chest X-ray
images.

Code availability

We shared all the DCNN models investigated in this paper and
the used dataset through this GitHub repository. We hope that the
presented approach will be helpful in future research.
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