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1  |  INTRODUC TION

Tooth root anatomy varies in canal and root number, and canal num-
ber does not always covary with root number. Various aspects of 
this have been studied in modern humans (Ackerman et al., 1973; 
Ahmed et al., 2017; Hsu & Kim, 1997; Kovacs, 1971; Vertucci & 
Gegauff, 1979; Zorba et al., 2014), extant hominoids (Emonet 
et al., 2012; Kupczik et al., 2005; Moore et al., 2013, 2015), and fos-
sil hominins (Kupczik et al., 2009; Kupczik & Hublin, 2010; Le Cabec 
et al., 2013; Moore et al., 2016; Plavcan & Daegling, 2006; Wood 
& Engleman, 1988). However, the numerical relationship between 
canals and roots is poorly understood. This study uses CT scans 
to investigate the relationship and variability between canal and 
root number of fully developed, adult post- canine teeth in a global 

sample of modern humans (n = 945 individuals) from several archae-
ological/osteological collections. Specifically, we asked (1) what is 
the relationship between root number and canal number; (2) does 
this relationship vary by tooth type and (3) does the relationship be-
tween canal and root number vary in global groups?

1.1  |  Root and canal formation

Tooth canal and root formation are comprised of a series of recipro-
cal cellular interactions in the dental papilla of the developing tooth 
(Jernvall & Thesleff, 2000). Central to the process, is Hertwig's epi-
thelial root sheath (HERS), which is derived from the cervical loop of 
the enamel organ and is thought to be responsible for root number, 
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shape and length (Luder, 2015; Miller, 2013). Following crown for-
mation, mesenchyme cells form the blood vessels, nerves and con-
nective tissue of the pulp cavity and root canals (Wright, 2007). 
Simultaneously, the HERS extends apically, interacting with the mes-
enchyme cells of the developing canal structures, and differentiating 
into odontoblasts responsible for dentin and cementum production 
(Li et al., 2017).

During root morphogenesis, the HERS produces inter- radicular 
processes (IRPs), finger- like protrusions to adjacent the cervical fo-
ramen of the tooth crown. The extension and fusion of opposing 
IRPs across the cervical foramen create multiple secondary foramina 
which, in turn, form multiple tooth roots (Kovacs, 1971; Orban & 
Bhaskar, 1980); and it may be that number and orientation of IRPs 
are responsible for the variation in canal and root forms (Figure 1). 
While molecular regulation and tooth morphogenesis have been 
extensively studied in tooth crowns, the mechanisms responsible 
for variation in canal and root structures are poorly understood. 
Because of its extensive role in root formation, HERS has been an 
area of focus; and several studies have shown that disturbances in 
the formation of the HERS result in abnormalities in root number 
and shape (see Luder, 2015 for a review).

Though morphogenesis of internal and external root struc-
tures are concurrent processes, the completed structures do not 
always covary. There is great variation and complexity in root ca-
nals. While it is easy to conceptualize canals as round holes which 
taper towards the roots' apex, in reality, many teeth have multiple 
canals of differing shape and orientation within a single root. These 
canals can join and separate in unpredictable places and the more 
ovoid the cross- section the greater the propensity for complexity 
(Ahmed et al., 2017; de Pablo et al., 2010; Vertucci & Gegauff, 1979). 
Possible causes of divergence in canal and root number have been 
attributed to uneven deposition of dentin on the walls of the canal 

(Manning, 1990), trauma to the HERS by radiation or chemical inter-
ference (Fischischweiger & Clausnitzer, 1988), and/or failure of the 
HERS to fuse on different sides of the root (Miller, 2013; Nelson & 
Ash, 2010).

In this paper we (1) test the hypothesis that there is no difference 
between canal and root number in the pooled post- canine teeth in 
our sample; (2) test the relationship between canal and root number 
in the individual post- canine teeth of the jaws and (3) test the rela-
tionship between canal and root number in pooled and individual 
teeth, by geographical regions.

2  |  MATERIAL S AND METHODS

2.1  |  Dental formula

Categorically, premolars in this study are shortened to P, and molars 
to M. Tooth numbers are labelled with super-  and subscripts to dif-
ferentiate the teeth of the maxilla and mandible, respectively. For 
example, M1 indicates the 1st maxillary molar while M1 indicates the 
1st mandibular molar. Through the course of evolution, apes and 
Old World monkeys have lost the first and second premolars of their 
evolutionary ancestors (Novacek, 1986; White et al., 2012), thus the 
remaining two premolars are numbered 3 and 4.

Using a tooth root phenotyping method developed by Gellis and 
Foley (2021), we classify roots and canals in a way that captures and 
combines internal and external numbers across all teeth. For ex-
ample, a single root (R) with a single canal (C) would be classified 
as R1- C1, while R1- C2 is classified as a single root with two canals. 
Using this method, identification of a tooth root's phenotype and 
its permutations are easy to classify and compare both descriptively 
and statistically.

F I G U R E  1  Top: The location on the apical foramen of the tooth crown where the inter- radicular processes (IRPs) form determines 
the number and orientation of each tooth root/tooth roots. For example, in a tooth with mesial and distal roots, two inter- radicular 
processes arise from the buccal and lingual borders of the apical foramen, forming mesial and distal secondary apical foramina upon fusion. 
Grey = apical foramina of the developing tooth crown. Bottom: Fully developed roots of different types of teeth with the same number, 
but different orientation of IRPs. From left to right: single- rooted teeth, single- rooted teeth in which IRP did not fuse with opposing side 
of apical foramen, two rooted teeth in which two opposing IRPs fused, three rooted teeth in which three opposing IRPs fused, four rooted 
teeth in which four opposing IRPs fused.



898  |    GELLIS and FOLEY

2.2  |  Human samples

The 945 individuals used in this study were recovered from archaeo-
logical sites across the globe. These individuals are stored in osteo-
logical collections at the Smithsonian National Museum of Natural 
History, Washington D.C., USA (SI), American Museum of Natural 
History, New York, USA (AMNH) and the Duckworth Laboratory 
(DW) at the University of Cambridge, England (summarized in 
Figure 2). Only adult individuals, based on the eruption, occlusion 
and closed root apices of M3s/M3s (or M2/M2s in the case of con-
genitally absent M3s/M3s), were used in this study.

2.3  |  American Museum of Natural History

The 186 individuals from the AMNH collection are comprised of 
humans from Point Hope, Alaska, North America (Figure 2, right). 
These individuals are attributed to the Ipiutak (500 BCE to 500 CE) 
and Tigara (1300– 1700 CE) cultures (Larsen & Rainey, 1948; 
Rainey, 1941; Rainey, 1947, 1971). Information on sex (Figure 3) and 
antiquity come from the AMNH archives and publications associ-
ated with the collection (ibid).

2.4  |  Duckworth laboratory

The majority of individuals (n = 621) used in this study come from 
the DW Laboratory collections (Figure 2, left). The DW is composed 
of several private collections as well as research collections from 
the University of Cambridge Departments of Zoology, Anatomy 
and Museum of Archaeology and Anatomy (Mirazón- Lahr, 2011). 
The oldest individuals used in this study come from the archaeo-
logical sites of Badari, Egypt (4000– 3200 BCE), Jebel Moya, Sudan 
(100 BCE to 500 CE) and Ngada, Egypt (4400– 4000 BCE), in North- 
East Africa. The majority of the remaining individuals are ~200 years 
old. In many cases information on the exact locality, age and age of 
death is unavailable. Information on sex (Figure 3) comes from DW 
archives. A complete list of the DW individuals used in this study, 
their collection information, antiquity, sex and locality based on 
available records are listed in Supplementary Materials Table A.

2.5  |  Smithsonian National Museum of 
Natural History

The 138 individuals from the SI collection are from Oceania, 
Southeast Asia and Greenland. Individuals from Oceania belong 
(n = 67) to four different populations: Australia (Aboriginal), New 
Zealand (Maori), the Philippines and Papua New Guinea (Figure 2, 
right). Individuals from Southeast Asia (n = 19) are from Indonesia. 
Inuit individuals come from the North- West coast of Greenland 
(n = 52). While all SI individuals were recovered from archaeo-
logical sites, information on exact locality, age and age of death, is 

unavailable. However, information on sex is taken from archives at 
the SI (Figure 3) as reported in Copes (2012).

The populations in this study have been, at their broadest level, 
grouped into five major human geographical groups: Sub- Saharan 
Africa, West- Eurasia, Sahul- Pacific, Sunda- Pacific and Sino- 
Americas (Table 1, Figure 4). Though Table 1 reports information 
for sex, this is for descriptive purposes. All analyses and reported 
results are for pooled sex samples. A complete list and description 
of individuals included in this study are listed in the Supplementary 
Materials Table A.

These groups are derived from two major works. The first is 
Cavalli- Sforza's The History and Geography of Human Genes (1994), 
a synthesis of global genetics with nearly half a century's worth of 
geographical, ecological, linguistic, archaeological and paleoanthro-
pological research. Among the author's many conclusions are that all 
available evidence points to (1) an African origin for H. sapiens; and (2) 
the fact that a series of dispersal and admixture events can classify 
and map where major human geographical groups (as listed above) 
and their subsequent populations originated and dispersed through 
the ancient world. The volume (1994:317) also recognises that dental 
data “on northern Asia, southeast Asia and the Americas are gener-
ally in excellent agreement with those from single genes.” The dental 
data they refer to are crown and root trait frequencies collected and 
analysed by Christy Turner and others (Busse & Carpenter, 1976; 
Nichol et al., 1984; Turner, 1987; Turner II, 1989). These data, along 
with later core collected works on dental crown traits and biogeogra-
phy utilizing the ASUDAS (Hanihara, 2013; Irish, 1998; Scott, 1988; 
Scott et al., 2018; Stringer et al., 1997; Turner II et al., 1991), form the 
second basis for major human geographical groups presented here. 
These researchers (ibid) have shown that teeth are effective for iden-
tifying the same prehistoric population identities and movements 
discussed by Cavalli- Sforza (1994), as well as capturing the dental 
phenotypic diversity within populations, and the differences that 
arise between them after extended periods of isolation. The most 
current collections of dental anthropological research (Rathmann 
et al., 2017; Rathmann & Reyes- Centeno, 2020; Scott et al., 2018) 
are increasingly in accordance with the most recent genomic studies 
(Fu et al., 2016; Pickrell & Reich, 2014; Posth et al., 2018; Rathmann 
et al., 2017; Reich, 2018; Skoglund et al., 2016), further reinforcing 
the utility of teeth as phenotypic records of human biogeography 
and evolutionary history.

2.6  |  Use of computed tomography for visualizing 
internal and external features of tooth roots

In clinical settings (e.g. dental, hospital, etc.), and particularly for 
endodontics, varying forms of computed tomography (CT) —  cone 
beam computed tomography (CBCT), spiral computed tomography 
(SCT) and micro CT (μCT) —  are widely utilized to visualize internal 
and external structures of the crown and root(s) with varying de-
grees of resolution (Martins & Versiani, 2019). An important parame-
ter supporting the reliability of visualization for the study of root and 
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canal anatomy is voxel size. The smaller the voxel size relative to the 
volume of 3D CT, the greater the resolution. Compared to micro- CT 
(μCT) which operates on the micron scale (a thousandth of a millime-
tre) for increased resolution, CBCT and SCT use larger voxel sizes at 
the millimetre scale which results in a relatively decreased resolution. 
However, while μCT has proven invaluable for visualizing the micro- 
structures of teeth, multiple studies have shown that CBCT and SCT 
are generally in agreement with μCT for detecting major structures 
such as root number, canal number configuration of main root canal 
systems in specific teeth or individual roots (Blattner et al., 2010; 
De Souza et al., 2017; Domark et al., 2013; He et al., 2010; Michetti 

et al., 2010; Pecora et al., 2013; Sousa et al., 2017; additionally, see 
Martins & Versiani, 2019; Martins et al., 2019 for meta- analyses 
of CBCT and μCT on root canal anatomy by tooth). For example, 
Candeiro et al. (2021) successfully used CBCT to visualize canal 
configurations of 14,413 tooth roots at 0.14 mm (140 μM) voxel size; 
while Maret et al. (2014) compared CBCT images of different voxel 
sizes (0.076, 0.2 and 0.3 mm) with μCT (41 μm) and observed discrep-
ancies of hard tissue morphology (i.e. cervical margins, cusp tips and 
incisal edges) were only significant at 0.3 mm (p = 0.01, Wilcoxon 
test). The use of SCT, especially for the study of hard tissues, has 
been confirmed to successfully and precisely visualize internal canal 

F I G U R E  2  Sample sizes by collection. Left: Bar plot of counts for entire sample (n = 945). Right: Counts of samples divided up by 
collection, and geographic locations given by collection records. A complete list of the individuals used in this study, their collection 
information, antiquity, sex and locality based on available records is listed in Supplementary Materials Table A.

F I G U R E  3  Human population sample sizes by location and sex. Left: Bar plot of sex for entire sample (n = 945). Right: Sex divided up by 
collection and geographic locations given by collection records. Individuals of undetermined sex (‘NA’) are not included in the plot on the 
right to improve readability. They are: AMNH (NA = 3), DW (NA = 12) and SI (NA = 2). A complete list of the individuals used in this study, 
their collection information, antiquity, sex and locality based on available records is Supplementary Materials Table A.
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anatomy. For example, Robinson et al. (2002) correctly diagnosed 
canal numbers and configurations in 188 P3s at a slice thickness 
of 1.5 mm. Chandra et al. (2009) used SCT to diagnose a rare inci-
dence of three canals in the distal root of an M1 at a slice thickness 
of 1.5 mm, despite the thin dentinal tissues dividing canal structures. 
These studies (additionally, see Martins & Versiani, 2019; Martins 
et al., 2019 for meta- analyses of CBCT and μCT on root canal anat-
omy by tooth) have shown that CBCT and SCT can clearly and accu-
rately detect the main internal and external structures of tooth roots 
at varying resolutions and slice thicknesses.

2.7  |  Imaging of osteological collections

Following the method developed by Gellis and Foley (2021), we 
used CT scans to analyse 4366 post- canine teeth (Table 2) from 
the right sides of the maxillary and mandibular dental arcades of in-
dividuals (n = 945) from a global sample of humans (Table 1). Full 
skulls of specimens from the SI and AMNH were scanned by Dr 
Lynn Copes (2012) using a Siemens Somatom Spiral scanner (70 μA, 
110 kV, slice thickness 1.0 mm, reconstruction at 0.5 mm, voxel size 
mm3: 0.5 × 0.5 × 0.3676, 0.09 mm). Full skulls from the DC were 

scanned by Professor Marta Miraźon- Lahr and Dr Frances Rivera 
(Rivera & Mirazón Lahr, 2017) using a Siemens Somatom Definition 
Flash Spiral scanner at Addenbrookes Hospital, Cambridge 
England (80 μA, 120 kV, slice thickness 0.6 mm, voxel size mm3: 
0.3906 × 0.3906 × 0.3, 0.05 mm). For all collections, crania and man-
dibles were oriented on the rotation stage, with the coronal plane 
orthogonal to the x- ray source and detector. Permission to use the 
scans has been granted by Dr Copes, Professor Miraźon- Lahr and 
Dr Rivera.

2.8  |  Analysis of CT images

Transverse CT cross sections of roots and canals were assessed 
in the coronal, axial and sagittal planes across the CT stack, using 
measurement tools in the Horos Project Dicom Viewer (Figure 5) 
version 3.5.5 (https://www.horosproject.org 2016). Only permanent 
teeth with completely developed roots and closed root apices were 

TA B L E  1  The five major human geographical groups used in this 
study

Group Male Female Unknown Total

Sahul- Pacific 84 74 9 167

Sunda- Pacific 42 28 3 73

Sub- Saharan Africa 119 65 — 184

West Eurasia 111 70 2 183

Sino- Americas 163 168 7 338

Total 519 405 21 945

F I G U R E  4  Map of individuals used in this study adapted to show the five major human geographical groups.

TA B L E  2  Tooth counts of the right side of the maxillary and 
mandibular dental arcades

Tooth n Tooth n

TotalMaxilla Mandible

P3 515 P3 343 858

P4 467 P4 313 780

M1 697 M1 410 1107

M2 596 M2 385 981

M3 362 M3 278 640

Total 2637 — 1729 4366

Note: Superscript = maxilla, subscript = mandible. P = premolar, 
M = molar.
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used for this study. While information for all teeth from both sides 
of the maxillary and mandibular arcades was recorded, only the right 
sides were analysed to avoid issues with asymmetry and artificially 
inflated sample size.

2.9  |  Determination of root and canal number

In multi- rooted teeth, the portion of the root from the CEJ to the 
point of bifurcation is called the trunk, while the structures extend-
ing from the point of bifurcation are called radicals. Each radical 
contains one or more canals in differing configurations (Versiani 
et al., 2019). The radicals of multi- rooted teeth may be incompletely 
divided so that root number is difficult to determine. In the case of 
incompletely divided radicals, such as those whose division result 
in a bifid apex, root number was determined by applying the Turner 
Index (Turner, 1981; Turner II et al., 1991), which compares the point 
of bifurcation relative to root length (Figure 6). When bifurcation 
is greater than one- third (33%) of the total root length, the root 
is classified as multi- rooted. When the ratio is less than one- third 
(33%) the root is considered single rooted, or with a bifid apical third. 
Individual root number for analysis is recorded as a simple numerical 
count (e.g. 1,2,3, etc.).

Gellis and Foley (2021) modified the Turner Index for use with 
canals. Here, a single root canal is defined as a canal which extends 
from the pulp chamber within the crown and exits at a single fo-
ramen. Accessory canals (any branch of the main root canal/s that 
communicate with the periodontal ligament) and lateral/secondary 
canals (accessory canals located at the cervical and middle third of 
the main root canal/s) are not included in this study. Canals with 
greater than one- third (33%) furcation of the total canal structure 
length are classified as multi- canaled, even in the case where two 
canals briefly join in the root (Figure 6). This method is congruous 
with canal configurations and types described in the literature 
(Abbott, 1984; Ahmed et al., 2017; Vertucci & Gegauff, 1979); but 

are here simplified into a system of thirds. It is by these methods 
that data were acquired for the analyses described and carried out 
in this study.

2.10  |  Statistical analyses

Data were analysed with the R Project for Statistical Computing 
(R Core Team, 2017). Because the osteological materials used in 
this study were recovered from excavation sites, many of the in-
dividuals comprising our sample are missing one or more teeth. 
As the mechanism causing these missing data are unrelated to the 
values of any variables used in analysis (missing completely at ran-
dom), our observed values are essentially a random sample of the 
full data set and not biased (Sterne et al., 2009). Thus, multiple 
imputations— the replacement of missing data with substituted val-
ues, here iteratively calculated using principal component regression 
and ridge regression (Josse et al., 2012)— is appropriate for our data 
set (Garson, 2015; Zhang et al., 2017). Using the missMDA pack-
age (Josse & Husson, 2016), we performed multiple imputations on 
missing root and canal number data in preparation for analysis as 
Generalized Estimating Equations (discussed below) cannot be ap-
plied to missing or “NA” values. Counts for imputed values used in 
analyses are provided in Supplementary Materials Tables B.

Because the Poisson distribution is typically used for count 
data, a Poisson general linear model (PGLM) was used to test the 
association between canal and root number at the p = 0.05 sig-
nificance level (Zeileis et al., 2008). A key assumption underlying 
PGLM is the independence of observations (Hoffmann, 2004). 
Thus, the inclusion of multiple teeth from the same individuals 
may violate assumptions of independence for the PGLM used in 
this study. To account for this, we fit our PGLM with Generalized 
Estimating Equations (GEE). GEE estimates group- averaged pa-
rameters and their standard errors based on a number of assump-
tions: (1) The response variables are correlated or clustered; (2) 

F I G U R E  5  Horos Dicom Viewer 2D orthogonal view used to assess root and canal morphologies. Left: Coronal view at mid- point of roots 
(see Figure 6 for measurements). Centre: Anterior view. Right: Saggital view.
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There is a linear relationship between the covariates and a trans-
formation of the response and (3) within- subject covariance has 
a correlation structure (Diggle et al., 2002; Zeger & Liang, 1986). 
In order to determine our correlation structure and how root and 
canal number correlated within and between teeth we conducted 
a Pearson correlation analysis of canal and root number. We se-
lected an Auto Regressive Order 1 (AR1) correlation structure for 
our GEE covariance matrix. While GEE estimates of model param-
eters are valid regardless of the specified correlation structure, 
the AR1 correlation structure is appropriate because it (a) has no 
distributional assumptions (Zuur et al., 2009); (b) can accurately 
model covariance for cross- sectional individual and clustered stud-
ies (Müller et al., 2009; Muoka et al., 2021); (c) accurately model 
within- subject correlation decreasing across time and/or space 
(Agresti, 2002); and (d) assumes observations within and individual 
are non- independent (Zeger & Liang, 1986). Thus, AR1 is appropri-
ate at the individual and group levels, and for the temporospatial 
distances within and between individuals and groups within our 

sample. GEE was caried out using ‘geepack: Generalized Estimating 
Equation Package’ version 1.3.2 (Halekoh et al., 2006). Tukey's 
multiple comparison test of estimated marginal means (means ex-
tracted from the PGLM analysis) were used for pair- wise analysis 
of major human geographical groups (Full statistical output is pre-
sented in Supplementary Materials Table N). PGLM extended with 
GEE was also used to test for association between root and canal 
number by tooth and geographical groups. Tukey's multiple com-
parison test was used for pair- wise analysis of groups.

3  |  RESULTS

3.1  |  Number of teeth, roots and canals

Tables 3 and 4 report counts for number of roots and canals 
from post- canine teeth belonging to the right side of the maxilla 
and mandible. The number of roots in teeth from the sample are 

F I G U R E  6  Measurement and identification of root and/or canal number. Top left: Locations of measurements taken in Horos Dicom 
Viewer of (a) Absolute length of root -  CEJ to parallel position at apex of roots(s); (b) bifurcation length; (c & d) root length(s) along the axis 
of the root(s); (m) mid- point between CEJ and root apex along the long axis of the root. Top right: Application of measures to CT slice of 
a mandibular molar. Bottom: Determination of canal numbers from Gellis and Foley (2021). Illustration of a distal root of a double- rooted 
mandibular molar with examples of canal counts in solid grey. Dotted grey lines indicate canal/s position in root. CEJ, Cemento- enamel 
junction; POB, Point of bifurcation; Solid grey, canals; CT, cervical third; MT, middle third; AT, apical third.



    |  903GELLIS and FOLEY

between one and four (Table 3). In this sample, teeth with four 
roots are limited to maxillary molars and appear with a relatively 
low frequency compared to 2 and 3 rooted teeth. Premolars, es-
pecially P3 and P4, are predominantly single- rooted, while the 

majority of mandibular molars in this sample are double- rooted. 
Entomolaris (En), or three- rooted molars, appear in 18.05% M1s, 
1.23% of M2s and 5.94% of M3s, and three- rooted paramolaris (Pa) 
appears in 3.63% of M3s.

TA B L E  3  Number of roots in teeth of the maxilla and mandible by tooth

Tooth Root number n Total roots % of teetha Tooth Root number n Total roots % of teetha

Maxilla Mandible

P3 1
2
3

295
216
4

739 57.28
41.94
0.78

P3 1
2

341
2

345 99.42
0.58

P4 1
2
3

405
61
1

530 86.72
13.06
0.22

P4 1 313 313 100.00

M1 1
2
3
4

2
28
666
1

2060 0.29
4.02
95.55
0.14

M1 2
3b

336
74

894 81.95
18.05

M2 1
2
3
4

56
117
421
2

1561 9.39
19.63
70.64
0.34

M2 1
2
3
3b

49
330
1
5

727 12.73
85.71

0.26
1.30

M3 1
2
3
4

89
82
186
5

831 24.59
22.65
51.38
1.38

M3 1
2
3a

3c

20
231
16
11

563 7.19
83.09
5.76
3.96

Note: Values in this table are not based on imputed data.
aCounts of teeth are from Table 2. Congenitally absent teeth are not included in the statistics of this table.
bEntomolaris.
cParamolaris.

TA B L E  4  Number of canals per tooth in the maxilla and mandible by tooth

Tooth Canal number n Total Canals % of teetha Tooth Canal number n Total Canals % of teetha

Maxilla Mandible

P3 1
2
3

82
422
11

959 15.92
81.94
2.14

P3 1
2
3

254
88
1

433 74.05
25.66
0.29

P4 1
2
3
4

233
228
5
1

708 49.89
48.82
1.07
0.22

P4 1
2

300
13

326 95.85
4.15

M1 2
3
4
5
6

4
355
334
3
1

2430 0.57
50.93
47.92
0.43
0.14

M1 2
3
4
5

27
168
212
3

1421 6.58
40.98
51.71
0.73

M2 1
2
3
4

8
21
408
159

1910 1.34
3.52
68.46
26.68

M2 1
2
3
4

2
105
231
47

1093 0.52
27.27
60.0
12.21

M3 1
2
3
4

32
24
239
67

1065 8.84
6.63
66.02
18.51

M3 1
2
3
4

10
86
163
19

747 3.60
30.94
58.62
6.84

aCounts of teeth are from Table 2. Congenitally absent teeth are not included in the statistics of this table. Values in this table are not based on 
imputed data.
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Teeth from this sample contain between one and six canals, and 
canal number often exceeds root number (Table 4). Many teeth con-
tain two or more canals, especially in the molars. Molars have the 
greatest number of canals per tooth, with M1s showing the most 
variation in canal number.

3.2  |  Inter- trait correlations and independent 
observations

Tooth crown dimensions of adjacent teeth are strongly correlated with 
one another (Stanley M. Garn et al., 1965, 1968; Harris & Lease, 2005), 
as are eruption sequences (Ash, 2013; Fleagle, 2013; Smith, 1991), 
timing of mineralization (Miller, 2013; Nelson & Ash, 2010; Reid 
et al., 1998) and agenesis (Garn et al., 1963; Nieminen, 2009). 
Conversely, non- metric crown and root traits of adjacent teeth are 
usually expressed independently of one another (Corruccini, 1976; 
Markowski, 1995; Scott et al., 2018). To avoid violations of statisti-
cal independence and to test the relationship between adjacent teeth 
from the same individual, Pearson product– moment correlation co-
efficients (Figure 7) were computed to assess linear correlation and 
trait independence between root number (RN) and canal number (CN) 
within and between teeth, in preparation for PGLM.

The majority of variables have negligible to weak positive or 
negative correlation coefficient strength values of 0.01− ± 0.30 
(Akoglu, 2018). Within the same teeth, moderate to strong correlation 
coefficient values of 0.31− ± 0.69 (ibid) are found in P4 RN:P4 CN (0.46), 
M3 RN:M3 CN (0.47), M2 RN:M2 CN (0.35) and M3 RN:M3 CN (0.50). 
With the exception of P3 RN:P4 CN (0.46), P3 RN:P4 CN (0.65), P3 CN:P4 
CN (0.43), M3 RN:M2 CN (0.31) and M2 CN:M3 CN (0.31), there are no 
significant correlations of RN to CN across different teeth.

3.3  |  PGLM of the relationship between canal and 
root number in individual teeth

While independent variables are uncorrelated, uncorrelated vari-
ables are not always independent. To address this, we fit PGLM with 
GEE to account for low levels of correlation between some traits 
(Figure 7), and to account for using multiple teeth from the same in-
dividuals, which may violate assumptions of variable independence. 
PGLM fitted with PGEE was used to directly test the linear relation-
ship of root to canal number by tooth -  in other words, to see how 
the relationship between canal and root number varies across differ-
ent tooth types. PGLM of individual teeth reveal that for M1– M3, and 
M1– M3, as canal count increases, so does root count (Table 5). In the 
maxilla, the greatest increase in root to canal number is found in M1 
(99.99%), and similar relationships are found in M2 and M3. Maxillary 
premolars remain relatively stable, with a minimal increase (0.03%) 
in P3, and no increase in root number in P4. Mandibular molar (M1– 
M3) roots are comparatively similar to one another in their odds ra-
tios, especially M1 and M2; while surprisingly, mandibular premolars 
(P3– P4) show that as canal number increases root number does not.

Prediction curves differ for each tooth, and the maxilla and man-
dible as a whole (Figure 8). Similar tooth groups have similar pre-
diction curves— P3, P4 and P4; M3, M2 and M1; and M1, M2, M3; and 
these differ between the maxilla and mandible. There is a slight over- 
prediction in the number of roots for single canaled M1– M3s owing 
to (1) very small sample of individuals with one root to one canal for 
these teeth (see Table 3 for counts); and (2) because we have used 
a fixed non- parametric model to capture the non- linearity between 
canal and root number.

Figure 9 plots proportions of root and canal number phenotype 
permutations for individual teeth within the sample following the 
method developed by Gellis and Foley (2021). Different patterns are 
clearly evident across all teeth and between the maxilla and mandi-
ble and help to visualize and explain groupings of individual tooth 
prediction curves in Figure 8. Variation in canal to root number de-
creases in the premolars while increasing in the molars, though this 
variation does not covary between opposing individual maxillary and 
mandibular teeth. The greatest variation is found in the maxillary 
molars (M1- M3) while the least is found in P4.

Tukey pair- wise comparisons of estimated marginal means from 
PGLM of root to canal number by tooth (Figure 10) show that patterns 
in prediction curves and canal- to- root proportions plotted in Figures 9 
and 10 reflect significant differences between teeth (Full statistical 
output is presented in the Supplementary Materials Table M).

3.4  |  PGLM of the relationship between canal and 
root number in major human geographical groups

We used PGLM fitted with GEE to test the linear relationship of root 
to canal number by tooth across major human geographical groups 
(Table 6). To avoid emphasizing results against one geographical re-
gion or tooth, we fitted the model without an intercept.

Individual teeth within major geographical groups are rela-
tively similar in their odds ratios and prediction curves (Table 6 and 
Figure 11). Prediction curves for Sub- Saharan Africa are closest to 
the 1:1 canal- to- root ratio, while Sino- Americans are the furthest.

Marginal effects quantify how groups vary differently in their 
canal to root ratios when the explanatory variable (canals) changes 
by one unit (Figure 12). For all teeth, the Sino- American groups 
have the lowest degree of change in root number as canal number 
increases/decreases, while Sub- Saharan Africans show a higher per-
centage of root number change as canal number increases.

Differing canal and root number phenotype permutations are 
complex (Figure 13) but help clarify prediction curves and marginal 
effects in geographical groups (Table 6, Figures 12 and 13).

Tukey pair- wise comparisons for PGLM of canal to root num-
ber by major geographical group show that patterns in prediction 
curves, marginal effects and canal and root proportions (Figures 12– 
14) reflect significant differences between Sub- Saharan Africa and 
all other groups (Figure 14). Significant differences are also shown 
between Sahul- Pacific and Sino- America. Full statistical out is pro-
vided in Supplementary Materials (Table N).
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4  |  DISCUSSION

In the analyses presented above, we have been able to show that 
canal and root count are not correlated between adjacent teeth 
(Figure 7). However, because uncorrelated random variables are 
not always independent, we extended our PGLM with GEE to de-
velop a predictive model of the relationship between canal and 
root number, globally and by geographical group, and we show that 

this relationship is not perfectly linear. We have found that canal 
number predicts root number, and that the greater the number of 
canals the more complex, and less predictable the number of roots. 
This relationship varies by maxillary and mandibular teeth and tooth 
row (Table 5). These results raise a number of issues: what does 
the complexity of canal to root number relationships mean devel-
opmentally? Why does this complexity vary across particular tooth 
types? How do canal and root number vary between maxillary and 

F I G U R E  7  Pearson correlation of root number (RN) to canal number (CN). Significance level = 0.05. Significant positive correlation 
coefficients in blue. Significant negative correlation coefficients in red. Blank cells in P4 RN:P4 RN due to all P4s having the same level (i.e. 
one root; see Table 3). Counts for imputed values used in analyses are provided in Supplementary Materials Table B.
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mandibular teeth in total, by major human geographical groups, and 
individually?

4.1  |  Differences in root and canal number

Currently, there is no consensus as to why canals and roots should differ 
in number, given that canal formation precedes root formation. Clusters 
of blood vessels entering the dental papilla early in tooth formation co-
incide with the positions where roots will eventually form (Miller, 2013). 
The HERS and expanding dental pulp form around these nerves and 
blood vessels before dentin formation. Thus, each root must contain at 
least one canal for the pulp, and the nerve and blood supply that pre-
cede the formation of the surrounding root structure. It is possible that 
number, size and configuration of blood and nerve supplies is, in part, 
responsible for variation in canal number with the roots, and not varia-
tion in the number and orientation of the interradicular processes alone.

4.2  |  Variance across teeth and between the 
maxilla and mandible

Why canal and root number should vary both within and between 
teeth of the maxilla and mandible is also unknown. Prediction curves 
and proportions of canal to root number phenotype permutations 
show that the relationship between canals and roots within tooth 
types are similar to one another, that is, maxillary molars are alike, 
while being significantly different from other tooth types, such as 
premolars and mandibular molars. Similar estimates (Table 5) and 
PGLM curves of tooth types (Figure 8) seem to lend support to the 
morphogenetic field model in which teeth within a field are more 
similar to one another than to teeth of another field (Butler, 1937, 
1963; Dahlberg, 1945); especially for molar fields in both jaws. These 
results suggest that the number of canals and roots within tooth 

types are relatively “fixed” with little intra- tooth type variation. We 
propose two possible explanations, the first functional and the sec-
ond spatial.

Megadonty is a hallmark of early hominin evolution (Reed, 1997; 
Robinson, 1956; Wood & Abbott, 1983; Wood & Constantino, 2007); 
and heavy chewing requires large teeth. The majority of chewing 
actions occur on the broad occlusal surfaces of the post- canine 
teeth where, compared to anterior teeth, masticatory movements 
are complex combinations of antero- posterior, vertical and lateral 
movements (Ledogar et al., 2016; van Eijden, 1991). Chewing pres-
sures on the maxillary teeth result from absorption of shearing and 
compressive forces generated by the active movement of the man-
dible (Ledogar et al., 2016). During mastication, maxillary molars are 
subjected to greater medio- lateral directed loads than mandibular 
molars (Dempster et al., 1963; Spears & Macho, 1998). These medio- 
lateral forces are dissipated into the jaws via the tooth roots (Baragar 
& Osborn, 1987; Zwemer, 1985); and in humans are strongest at, 
and decrease posteriorly from M1/M1s (Gordon, 1984; Macho & 
Spears, 1999). Consequently, as root surface area decreases in M2 
and M3, so does root number (Dempster et al., 1963; Table 3).

It is possible that where increased masticatory loadings are a se-
lective pressure for larger teeth, an increased blood supply required 
for developing a larger tooth will result in an increase in canal num-
ber. This will, in turn, result in more roots. The increased mesio- distal 
and bucco- lingual dimensions of premolars tooth crowns belonging 
to megadontic “robust australopiths” (Paranthropus boisei, P. robus-
tus, P. aethiopicus), support such as hypothesis. These “hyper- robust” 
hominins regularly had multi- rooted/canaled premolars (Brook 
et al., 2014; Kupczik et al., 2018; Moore et al., 2016; Robinson, 1954, 
1956; Wood & Engleman, 1988), and the ancestral hominin phe-
notype has been proposed as three- root maxillary premolars, and 
two- root mandibular premolars. In modern humans, molars with-
stand the heaviest masticatory loadings while premolars are sub-
jected to the least (Demes & Creel, 1988; Ledogar et al., 2016). That 

TA B L E  5  Regression parameters for PGLM and GEE- fitted regression of the association between canal- to- root number by tooth, ranked 
by odds ratios from greatest to leasta

Estimate Odds ratio Std. error Wald p- value

Canal number 0.117 1.124 0.007 251.300 <0.0001

Maxilla

M1 0.693 1.999 0.025 750.400 <0.0001

M3 0.650 1.916 0.025 683.700 <0.0001

M2 0.648 1.911 0.025 651.900 <0.0001

P3 0.000 1.000 0.018 0.000 0.990

P4 −0.091 0.913 0.011 69.100 <0.0001

Mandible

M3 0.356 1.428 0.022 264.800 <0.0001

M2 0.324 1.382 0.025 207.100 <0.0001

M1 0.287 1.330 0.028 106.700 <0.0001

P4 −0.119 0.887 0.008 248.000 <0.0001

P3 −0.127 0.881 0.008 236.100 <0.0001

aModel fitted without intercept. Counts for imputed values used in analyses are provided in Supplementary Materials Table B.
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masticatory stresses produce high strains in the alveolar margin of 
the anterior maxilla (Ledogar et al., 2016) may act to increase canal 
and root number in the maxillary premolars compared to mandib-
ular premolars. Developmentally, Shields (2005) proposed that 
tooth germ size influenced the number and development of IRPs. 
However, multiple studies have noted that tooth crown size (used as 
proxy for tooth germ size) does not always covary with root number 
and size in humans and hominoids (Abbott, 1984; Moore et al., 2013, 
2016; Shields, 2005).

Different masticatory forces resulting from dietary demands 
have been shown to increase tooth root surface area, and thus size, in 
primates (Kovacs, 1971; Kupczik & Dean, 2008; Ledogar et al., 2016; 
Spencer, 2003). A possible selective mechanism to increase tooth 
root surface area would be to increase the number of roots, which 
would in turn enlarge the cervical base area of the crown (Kupczik 
et al., 2005). A study of Gorilla gorilla, Pan troglodytes, as well as 26 
fossil gracile and robust hominins from South Africa concluded that 
dietary adaptations produced mesio- distal expansion at the base 

F I G U R E  8  PGLM prediction curves with error bars for canal to root number for individual teeth. Dotted red line represents 1:1 canal 
to root relationship (i.e. what would be observed if there was a simple 1:1 relationship between roots and canals). Over prediction in the 
number of roots for single canaled M1/M1s- M3/M3s is owing to very small sample of individuals with one root to one canal (see Table 3 for 
counts). Counts for imputed values used in analyses are provided in Supplementary Materials Table B.
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of tooth roots in M1s (Kupczik et al., 2018). The authors (ibid) con-
cluded that it was increasing in root splay that accommodated higher 
masticatory loadings, but that the mesio- distal expansion of the root 
bases in robust hominins might be an adaptive response to differ-
ent jaw kinematics for chewing different food types— horizontally 
directed repetitive chewing in P. boisei (Demes & Creel, 1988; Wood 
& Constantino, 2007), versus multi- directional loading of P. robus-
tus (Macho, 2015). However, the extant and fossil species from this 
study are already characterized by multi- rooted molars and premo-
lars (Kupczik et al., 2005; Shields, 2005; Sperber, 1974; Wood & 
Engleman, 1988); so it is difficult to discern if mesio- distal expansion 
of the roots is an adaptive response to biomechanical pressures, a 
bi- product of additional roots, or both. If root splay is in fact the 
primary adaptive response to increased masticatory loading, the 
selective pressures underlying what point single root surface area/
size stops increasing and root differentiation begins have yet to be 
elucidated.

Alternatively, variation may arise from space required for grow-
ing teeth in the developing jaws. Consider that maxillary and man-
dibular 1st molars are the first adult teeth to erupt (at 6– 7 years) 

followed by the anterior teeth (7– 10 years), premolars (10– 12 years), 
followed by second (12– 13 years) and third molars (17– 21 years). In 
this spatial scenario, maxillary and mandibular first molars have the 
greatest number of roots and canals, while late- forming and erupting 
premolars have the least as they are sandwiched between 1st molars 
and the already erupted anterior teeth. Constrained variation, espe-
cially in the premolars may be explained by limited space for growth 
and development, while maxillary and mandibular molars have spa-
tial restrictions on their growth and development limited by dimen-
sions of the palate and by the ascending ramus of the mandible.

Biomechanical and spatial explanations need not be mutually 
exclusive. It may be the case that canal and root variation found 
in modern humans is a product of reduction in space as a conse-
quence of reduced selection for intensive biomechanical chewing 
pressures in early human evolutionary history. Premolar root num-
ber has been documented as more variable than in all other tooth 
types (Kupczik et al., 2005; Shields, 2005; Sperber, 1974; Wood & 
Engleman, 1988). Contrary to the molarization of the robust paran-
thropines, the reduction of premolar root number is present in 
South- African gracile hominins. Robinson (1956) and Sperber (1974) 

F I G U R E  9  Proportion of canal and root number phenotype permutations for individual teeth. R = root number and C = canal number 
(Gellis & Foley, 2021). For example, R1- C2 indicates a single- rooted tooth with two canals. R1- C4 = 9, R3- C5 = 6, R3- C6 = 1 and R4- C4 = 8, 
are not visualized on this plot due to small sample size. Counts for imputed values used in analyses are provided in Supplementary Materials 
Tables C– L.

0.00

0.25

0.50

0.75

1.00

P3 P4 M1 M2 M3 P3 P4 M1 M2 M3

Tooth

P
er

ce
nt

ag
e

Root and canal combinations R1• C1 R1• C2 R1• C3 R2• C2 R2• C3 R2• C4 R3• C3 R3• C4



    |  909GELLIS and FOLEY

report predominantly (84%) double- rooted maxillary premolars in a 
sample of Australopithecus africanus, though single (8%) and triple- 
rooted (8%) variants do occur. A. africanus mandibular premolars 
are reported as having single C- shaped (also referred to as Tomes' 
root) and double- rooted mandibular molars (Moore et al., 2016; 
Robinson, 1956; Sperber, 1974). Thus, this trend for reduction in 
premolar root number appears early in human evolutionary history 
(3.4– 2.4 Ma) and coincides with dietary shifts towards meat and/

or softer cooked foods (Luca et al., 2010), and reduction of homi-
nin tooth crowns, jaws and face. At 1.8 Ma, Homo erectus has fewer 
tooth roots, especially M3s, than earlier members of our genus, and 
H. erectus premolars are frequently single rooted (Anton, 2003). 
This trend in root number reduction continues through more re-
cent members of Genus Homo including some specimens allocated 
to H. heidelbergensis and H. neanderthalensis (Benazzi et al., 2011; 
FitzGerald, 1998; Zanolli & Mazurier, 2013).

F I G U R E  1 0  Tukey pair- wise comparisons of estimated marginal means (means extracted from the PGLM analysis) of canal to root 
number by tooth. Black dot = mean value; Blue bar = confidence intervals. The degree to which red comparison arrows overlap reflects the 
significance (p = 0.05) of the comparison of the two estimates. Counts for imputed values used in analyses are provided in Supplementary 
Materials Table B. Full statistical output is presented in Supplementary Materials Table M.
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4.3  |  Differences in geographical major human 
geographical groups

Our results show significant differences in root and canal propor-
tions (Figures 13 and 14) between Sino- American and Sahul- Pacific 
groups, and that Sub- Saharan Africans are significantly differ-
ent from all other groups (Figure 14), Supplementary Materials 

(Tables C– L). Several clear patterns are evident: (1) Within major 
geographical groups, combinations of root and canal numbers 
vary, and are inconsistent. For example, while P3s of Sub- Saharan 
Africans are primarily R1- C2, the dominant phenotypic permuta-
tion for the rest of the major geographic groups is R1- C1. In con-
trast, the dominant phenotypic permutation of Sino- American P3s 
is R1- C1, while the dominant phenotypic permutation for P3 in the 

F I G U R E  11  PGLM prediction curve for root to canal number by major human geographical groups. Dotted red line represents 1:1 root 
to canal relationship. Over prediction in the number of roots for single canaled M1/M1s– M3/M3s is owing to very small sample of individuals 
with one root to one canal (see Table 3 for counts). Counts for imputed values used in analyses are provided in Supplementary Materials 
Tables C– L.

TA B L E  6  Regression parameters for the PGLM testing the association between canal and root number by tooth in major human 
geographical groups, ranked by odds ratio from greatest to leasta

Groups Estimate Odds ratio Std. error Wald p- value

Canal number 0.329 1.389 0.002 29139.9 <0.0001

Sub- Saharan Africa −0.211 0.810 0.007 816.8 <0.0001

Sino- Americas −0.235 0.790 0.006 1749.3 <0.0001

Sunda- Pacific −0.250 0.779 0.010 658.8 <0.0001

West Eurasia −0.238 0.789 0.007 1065.3 <0.0001

Sahul- Pacific −0.258 0.773 0.007 1206.2 <0.0001

aModel fitted without intercept. Counts for imputed values used in analyses are provided in Supplementary Materials Tables C– L.
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F I G U R E  1 3  Proportions of canal and root number phenotype permutations for individual teeth across major geographical groups. R 
stands for root number and C for canal number (Gellis & Foley, 2021). For example, R1- C2 indicates a single- rooted tooth with two canals. 
R1- C4 = 9, R3- C5 = 6, R3- C6 = 1 and R4- C4 = 8, are not visualized on this plot due to small sample size. Counts for imputed values used in 
analyses are provided in Supplementary Materials Tables C– L.
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F I G U R E  1 2  Marginal effects of canal to root count in individual teeth by geographical region. Counts for imputed values used in analyses 
are provided in Supplementary Materials Tables C– L.
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remainder of individuals is R2- C2. (2) With the exception of man-
dibular premolars, Sino- American phenotypic permutations are 
different from all other groups. The overall trend for this group can 
be characterized as a reduction in root and canal numbers across 
teeth, and/or a 1:1 root canal ratio. For example, in addition to the 
aforementioned R1- C1 P3s, Sino- American M1s are predominantly 
R3- C3 compared to other groups, and M3s are overwhelmingly R1- 
C1. Sino- American mandibular teeth also show a trend towards 

reduction in canals and a 1:1 canal- to- root ratio. Mandibular molars 
are primarily R2- C2 compared to the majority R2- C3 phenotypic 
permutation for other groups. (3) The number of phenotypic per-
mutations increases in M2s/M2s and M3s/M3s. This is due, in part, 
to the presence of accessory roots such as Entomolaris (Table 3). 
This form represents a relatively rare polymorphism and appears 
with frequencies around 30%– 50% in East Asian, Inuit and Aleut 
populations; 5%– 15% in Southeast Asian and Pacific populations; 

F I G U R E  14  Tukey pair- wise comparisons of estimated marginal means (means extracted from the PGLM analysis) of canal to root 
number by geographical region. Black dot = mean value; Blue bar = confidence intervals. The degree to which red comparison arrows 
overlap reflects the significance (p = 0.05) of the comparison of the two estimates. Counts for imputed values used in analyses are provided 
in Supplementary Materials Tables C– L. Full statistical output is presented in Supplementary Materials Table N.

West Eurasia

Sahul−Pacific

Sino−Americas

Sub−Saharan Africa

Sunda−Pacific

0.55 0.57 0.59
Estimated Marginal Means
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compared to 1% in European and Sub- Saharan African populations 
(Scott et al., 2018).

As with individual teeth, there is no clear explanation for changes 
in canal to root number between major geographical groups. The 
reasons may be biomechanical in nature and relate to different diets 
between populations. However, the effect of different diets on 
tooth root and canal morphologies is poorly understood, with only a 
few studies centred on non- human primates, and gracile and robust 
Australopiths (see Kupczik et al., 2018 for an overview).

The study of dental traits has an extensive history and utility 
for characterizing and assessing the biological relationships within 
and populations (see Scott et al., 2018 for a comprehensive review). 
Dental morphology has been shown to be under strong genetic con-
trol and minimally affected by environmental factors (Corruccini 
et al., 1986; Dempsey & Townsend, 2001). The evolutionary trend 
of teeth has also been described as towards reduction in size and 
simplification in morphology (Scott & Turner, 1988). While the au-
thors of these studies were describing tooth crowns, it is unclear if 
tooth roots are operating under the same genetic and environmental 
constraints, and evolutionary trends.

PGLM predictions (Table 6) and marginal effects (Figure 12) sup-
port evidence of simplification in terms of reduction. Sub- Saharan 
Africans and Sino- Americans are furthest in distance from one 
another in time and space, and the former group shows the great-
est variation in root and canal number, while the latter shows a re-
duction. For example, Sino- Americans have a higher proportion of 
single rooted, double- canaled M2s and M3s than all other groups. 
Additionally, congenitally absent M3s are common (>25%) in Sino- 
Americans (Daito et al., 1992; Rakhshan, 2015; Scott et al., 2018; 
Turner II et al., 1991). Compared to Sub- Saharan Africa, Western 
Eurasia, Sahul-  and Sunda- Pacific groups have reduced variability, 
though not as much as Sino- Americans. These three groups share 
similar linear relationships (Figure 11) and canal- to- root propor-
tions (Figure 13), though marginal means of West Eurasian and 
Sunda- Pacific groups reveal their canal- to- root relationships are 
more similar to Sub- Sharan Africans, while Sahul- Pacific is closer to 
Sino- America.

Recent works have highlighted the decrease of genetic and phe-
notypic diversity in human populations with increasing distance from 
Sub- Saharan Africa (Handley et al., 2007; Pickrell & Reich, 2014). 
This decrease in diversity has been interpreted as evidence of an 
African origin for anatomically modern humans (Hublin et al., 2017). 
Reduced intra- population diversity has been ascribed to an “Out of 
Africa” migration, and sequence of founder events due to rapid ex-
pansions and colonization of the world (Li et al., 2008; Liu et al., 2006; 
Prugnolle et al., 2005). This reduction in diversity has been recorded 
in human dental (Hanihara, 2008; Hanihara & Ishida, 2005), cranio-
facial (Betti et al., 2009; Hanihara & Ishida, 2009), and morphometric 
traits (Manica et al., 2007), further supporting genetic hypotheses 
of this single African origin and subsequent expansions. However, 
some exceptions to this exist. For example, three rooted M1s, some-
time referred to as Radix entomolaris (see Calberson et al., 2007 for 
a review), increase in Sino- American populations while appearing in 

low frequency in other populations; especially Sub- Saharan Africa 
(Scott et al., 2018). This trait has been most commonly attributed 
to genetic drift (Scott et al., 2018), though a recent study has sug-
gested archaic introgression (Bailey et al., 2019); however, see Scott 
et al. (2020) for a rebuttal.

5  |  CONCLUSION

This paper presents a novel investigation into the relationship be-
tween canal and root number in human post- canine teeth. In all 
cases, canal number is either equal to or exceeds root number, 
supporting our hypothesis that canal number precedes and is, in 
part, responsible for root number in all post- canine teeth. These 
canal- to- root relationships are significantly different between 
tooth types (i.e. molars and premolars), within and between the 
maxilla and mandible. When working with multiple teeth from the 
same individual there is an increased risk of violating statistical 
assumptions of independence. Future studies should consider 
how this might affect their choice of statistical model. Results 
indicate that Sub- Sharan African and Sino- American groups are 
significantly different in their canal to root numbers, and this 
difference represents an overall reduction in root number with 
distance from Africa, but not necessarily canal number. Canal to 
root relationships differ across all populations studied, however, 
the reasons for these differences are not ultimately clear. To test 
group affinities and differences, future studies should include 
morphological distance- based analysis to test divergence, as well 
as consider additional biological, historical, linguistic and cultural 
data. Results also show that tooth types within and between the 
jaws have different linear relationships and that these relation-
ships are significantly different. Future studies of biomechanical 
and spatial hypotheses related to tooth crown size in hominin 
evolution may benefit from inclusion of root and canal count in 
their analysis.
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