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Abstract

Peach (Prunus persica L.) generally exhibits self-pollination, however, they can also be polli-

nated by other varieties of pollen. Here we found two varieties that are different from other

peaches: ‘Daifei’ and ‘Liuyefeitao’. ‘Daifei’ produces less pollen, which needs artificial polli-

nation, honeybee pollination, and the fruit setting depends on other varieties of peach pollen.

‘Liuyefeitao’ exhibits strictly self-pollination, hence pollen from other species is rejected. To

explore the mechanism of this phenomenon, we performed a high-throughput sequencing

of the stigma (including style) of ‘Daifei’ and ‘Liuyefeitao’ to explain the rejection mechanism

of other varieties of pollen of ‘Liuyefeitao’ peach. In our study, we found one S gene, and lots

of non-S-locus factors such as: F-box proteins, Ub/26S, MAPKs, RLK, and transcription fac-

tor were differential expressed between ‘Daifei’ and ‘Liuyefeitao’. We supposed that the

strictly self-compatible of ‘Liuyefeitao’ may result from the synthesis of these factors.

Introduction

There are two types of self-incompatibility (SI) in plants: sporophytic self-incompatibility (SSI)

and gametophytic self-incompatibility (GSI) according to how the incompatibility phenotype

of the pollen grain is determined. The SSI type plants include the Asteraceae, Cruciferae and

Convolvulaceae families, etc. [1]. The GSI type plants included the Papaveraceae, Scrophular-

iaceae, Gramineae, Solanaceae, and Rosaceae families, etc. [1]. In the GSI reaction, two differ-

ent mechanisms were mainly studied, one is the Ca2+-mediated signaling cascade in the pollen

tube cytoplasm in Papaveraceae; the other is based on S-nuclease in Scrophulariaceae, Grami-

neae, Solanaceae, and Rosaceae. Studies predicted that the S-RNase in the stigma and SFB in

the pollen plays an important role in the GSI in S-nuclease-based SI system [2]. When polli-

nated by the same S genotype pollen, S-RNase specifically disrupted tip-localized reactive oxy-

gen species (ROS) of incompatible pollen tube. Then the disruption of tip-localized ROS

decreased the Ca2+ current, depolymerized the actin cytoskeleton, and degraded the nuclear

DNA. It indicated that programmed cell death (PCD) may occur in SI response [3–6].
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The study of S-RNase has a long history. Lewis firstly isolated protein related to specific S
allele in Oenothera organesis in 1952. Then Bredemeijer and Blass isolated a pistil glycoprotein

linked to the S-allele in Nicotiana alata in 1981 [7]. S-RNase is a secreted glycoprotein in the

pistil and the concentration of S-RNase is highest in the upper 1/3 of the style where the SI

pollen tube growth is strongly inhibited [8,9]. The accumulation of S-RNase is consistent with

the development of flowers, which means that the expression of S-protein and S-mRNA were

both very low in the bud stages, but significantly increased at the early bloom stages. The SI

buds can accept self-pollen in the immature period but repel self-pollen as S-RNase content

increases in the early bloom stages. This phenomenon suggested that the conversion from SI

to (self-compatibility) SC requires the accumulation of a certain amount of S-protein and S-

mRNA [10, 11]. The S genes in the pollen belong to a class of SFB (S-locus-encoded F-

box genes) gene. The F-box protein exists as a component of the ubiquitin ligase SCF complex.

There is a very important regulatory approach in plant cells, which is to degrade the protein by

the SCF complex-mediated ubiquitin/26S protein body. In this process, the F-box protein acts

as a receptor, recruiting the target protein and ligate to the core complex for ubiquitination

[12]. The type and distribution of polypeptide signals in the extracellular matrix of pistil, can

affect the microfilament skeleton, the cellular exocytosis, the flow of cytoplasm, the concentra-

tion gradient of calcium ion and the growth direction of the pollen tube, such as LAT52, LeS-

TIG1, and TTS [13–15]. Along with the same function of mitogen-activated protein kinases

(MAPK) such as LePRKs, P26.1, and P56 in the Pollen tube [16–18].

Peach (Prunus persica L.) generally exhibits self-pollination, however, they also can be polli-

nated by other varieties of pollen. Here we found two varieties that are different from other

peaches: ‘Daifei’ and ‘Liuyefeitao’. ‘Daifei’ produces less pollen, which needs artificial pollina-

tion, honeybee pollination, and the fruit setting depends on other varieties of peach pollen.

‘Liuyefeitao’ exhibits strictly self-pollination, hence pollen from other species is rejected (After

the artificial emasculation, pollination with other varieties of pollen does not yield fruit, only

their own pollen pollination can produce fruit). We performed a high-throughput sequencing

of the stigma (including style) of ‘Daifei’ and ‘Liuyefeitao’ to explain the rejection mechanism

of other varieties of pollen of ‘Liuyefeitao’ peach.

Materials and methods

Plant material

The stigma and style from ‘Daifei’ and ‘Liuyefeitao’ flowers were collected at the early bloom

stages in the peach garden of Tianping lake experimental bases of Shandong fruit research

institute in spring 2017. The flowers were immediately frozen in liquid N and stored at -80˚C.

Three biological replicates were used. To test the self- and cross-(in)compatibility of styles of

‘Liuyefeitao’, the fruit setting rate of ‘Liuyefeitao’ and ‘Daifei’ was calculated when pollinated

by the pollen of ‘Zhonghuashoutao’, ‘Hanlumi’, ‘Chaohong’, and ‘Liuyefeitao’ in the peach gar-

den of Tianping lake experimental bases of Shandong fruit research institute in 2016.

RNA library preparation and sequencing

Total RNA was obtained from the flowers samples using RNAprep Pure Plant Kit (Polysac-

charides&Polyphenolics-rich) (Tiangen Biotech, Beijing, China) following the manufacturer’s

procedure. The RNA concentration and purity were checked by OD A260/A280 (>1.8) and

A260/A230 (>1.6), and the yield and quality were accessed using Agilent 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA, USA) and RNA 6000 Nano LabChip Kit (Agilent, CA,

USA), RIN>7.0. The preparation of whole transcriptome libraries and deep sequencing were

performed by Beijing Ori-Gene Science and Technology CoRP., LTD (Beijing, PR China).
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Transcriptome libraries were constructed using NEBNext1 Ultra™ RNA Library Prep Kit for

Illumina (New England Biolabs) according to the manufacturer’s instructions. Libraries were

controlled for quality and quantified using the BioAnalyzer 2100 system and qPCR (Kapa Bio-

systems, Woburn, MA, USA). The resulting libraries were sequenced initially on a HiSeq2000/

2500 instrument that generated paired-end reads of 100/150 nucleotides.

Data processing

Raw sequencing reads were checked for potential sequencing issues and contaminants using

FastQC. Adapter sequences, primers, Ns, and reads with quality scores below 30 were

trimmed. Reads with a length< 60 bp after trimming were discarded. Sequence reads were

aligned to the prunus persica genome (ftp://ftp.ensemblgenomes.org/pub/plants/release-35/

fasta/prunus_persica/dna/Prunus_persica.Prupe1_0.dna.toplevel.fa.gz) using the TopHat 2.0

program [19], and the resulting alignment files were reconstructed with Cufflinks. The tran-

scriptome of each sample was assembled separately using Cufflinks 2.0 program. All transcrip-

tomes were pooled and merged to generate a final transcriptome using Cuffmerge. After the

final transcriptome was produced, Cuffdiff was used to estimate the abundance of all tran-

scripts based on the final transcriptome. For mRNA analyses, the RefSeq and Ensembl tran-

script databases were chosen as the annotation references. We used the Potential Calculator

(CPC) [20] to predict transcripts with coding potential. The read counts of each transcript

were normalized to the length of the individual transcript and to the total mapped read counts

in each sample and expressed as fragments per kilobase of exon per million mapped reads

(FPKM). Sequence reads mapped to different isoforms of individual genes were pooled

together for subsequent comparative analyses.

In analysis, a criterion of |log2(fold-change)|�1 and P value�0.05 between the two condi-

tions was used to identify differentially expressed genes (DEG). DEG were set as the foreground

and all of the transcripts as the background, Hyper-geometric distribution was employed to

detect the significant GO terms and KEGG pathways at a significance level of 0.05.

RT-PCR analysis

Ten genes from the DE genes of ‘Daifei’ and ‘Liuyefeitao’ were selected randomly. Total RNA

was separately extracted from stigma and style of ‘Daifei’ and ‘Liuyefeitao’ at early bloom stages

using Plant Total RNA Isolation Kit Plus (FOREGENE, Chengdu, China). Gene-specific prim-

ers were designed according to the reference sequences using Primer Premier 5.0 (S1 Table).

The first strand of cDNA, synthesized with reverse transcription following the TransScript

One-Step gDNA Removal and cDNA Synthesis SuperMix Kit’s instructions (TransGen, Bei-

jing, China), was used as template for qRT-PCR to detect the expression level of candidate

genes. Real-time quantification was performed on the Lightcycle-480 (Roche) and the Light-

Cycler 480 SYBR Green I Master (Roche). The Expression levels of candidate genes were

calculated by using the 2-ΔΔCt method. All PCR experiments were performed on three inde-

pendent biological samples, each including three technical replicates. The peach actin gene 18S

rRNA was used as a normalizer.

Results

The data of fruit setting rate in self- and cross-fertilization of ‘Daifei’ and

‘Liuyefeitao’

To test the self- and cross-(in)compatibility of styles of ‘Liuyefeitao’, the pollen that derive

from ‘Zhonghuashoutao’, ‘Hanlumi’, ‘Chaohong’, and ‘Liuyefeitao’ were used as pollinator. As
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a result, the fruit set of self-pollination in ‘Liuyefeitao’ is 7.72%, while none fruit is found from

cross-pollination (Table 1). In contrast, all the four pollinators are cross-compatible with the

styles of ‘Daifei’. Thus, ‘Liuyefeitao’ is a strictly self-pollination cultivar.

Transcriptome sequencing and assembly

Illumina sequencing data from ‘Daifei’ and ‘Liuyefeitao’ peach was deposited in the NCBI SRA

database under accession number SRP149753, bioProject accession: PRJNA474565. In total

483.777 M raw reads were generated by Illumina sequencing of ‘Daifei’ and ‘Liuyefeitao’.

There were 449.091 M clean reads after removing low-quality sequences (Table 2). We used

Tophat2 [21] to map clean data to reference genes. The mapping rate refers to the percentage

of mapped reads in clean reads, which most directly reflected the utilization rate of sequencing

data. In addition to the quality of sequencing, the mapping rate is related to the completeness

of reference genome assembly and annotation. It is also related to the genomic relationship

and sample treatment. We can assess whether the sequencing results and selected reference

genomes meet the needs of information analysis through the mapping rate. The mapping rate

Table 1. Fruit setting rate in self- and cross-fertilization of ‘Daifei’ and ‘Liuyefeitao’.

Male parent Female parent Flower number Fruit number Fruit set (%)

Zhonghuashoutao Liuyefeitao 1826 0 0

Hanlumi Liuyefeitao 1408 0 0

Chaohong Liuyefeitao 1684 0 0

Liuyefeitao Liuyefeitao 2047 158 7.72

Zhonghuashoutao Daifei 1069 268 25.07

Hanlumi Daifei 936 209 22.32

Chaohong Daifei 893 224 25.08

Liuyefeitao Daifei 1362 173 12.7

https://doi.org/10.1371/journal.pone.0200914.t001

Table 2. Summary of the sequence analyses.

Sample Raw Reads(M) Raw Bases(G) Raw Q20(G) Raw Q30(G) Clean Reads(M) Clean Bases(G) Clean Q20(G) Clean Q30(G) Average Length(bp)

A1 41.017 6.153 5.939

(96.5%)

5.663

(92.0%)

38.148

(93.0%)

5.608

(91.1%)

5.511

(98.3%)

5.333

(95.1%)

147

A2 44.567 6.685 6.436

(96.3%)

6.119

(91.5%)

41.330

(92.7%)

6.061

(90.7%)

5.950

(98.2%)

5.749

(94.9%)

146.6

A3 36.31 5.447 5.261

(96.6%)

5.021

(92.2%)

33.937

(93.5%)

4.980

(91.4%)

4.896

(98.3%)

4.739

(95.2%)

146.8

C1 34.629 5.194 5.000

(96.3%)

4.760

(91.6%)

32.043

(92.5%)

4.696

(90.4%)

4.612

(98.2%)

4.461

(95.0%)

146.5

C2 46.005 6.901 6.653

(96.4%)

6.338

(91.9%)

42.650

(92.7%)

6.264

(90.8%)

6.155

(98.2%)

5.954

(95.0%)

146.9

C3 37.698 5.655 5.436

(96.1%)

5.168

(91.4%)

34.772

(92.2%)

5.097

(90.1%)

5.004

(98.2%)

4.837

(94.9%)

146.6

The statistics are the result of read1+read2.

A, ‘Daifei’; C, ‘Liuyefeitao’.

Raw Data, raw Data statistics, sequence reads and bases of each sample.

Clean Data, valid data, the number and proportion of reads and bases of each sample after quality pretreatment.

Q20 and Q30, the percentage of bases with Phred values >20 and >30, respectively.

https://doi.org/10.1371/journal.pone.0200914.t002
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of ‘Daifei’ and ‘Liuyefeitao’ to reference genome was list in Table 3. The result showed that the

minimum ‘total mapping rate’ of ‘Daifei’ and ‘Liuyefeitao’ was 86.24% and 89.23% respectively

suggesting the validity of our data.

Gene expression analysis

We used FPKM (Fragments Per Kilobase of transcript per Million fragments mapped) to mea-

sure the abundance of transcription or gene [22]. The distribution of gene in each sample was

shown in Table 4 and Fig 1. For biological replicate samples, it is important to assess the rele-

vance of biological replication for the analysis of transcriptome sequencing results. Biological

repeated correlation can not only test the repeatability of biological experiments, but also eval-

uate the reliability of differentially expressed genes and screen abnormal samples. Pearson’s

correlation coefficient is an evaluation index of biological repeated correlation. The closer the

r is to 1, the stronger the correlation between the two repeated samples. The correlation

between samples was shown in Fig 2.

Differential expression analysis

Gene or transcript expression has temporal and spatial specificity. External stimuli and inter-

nal environment are both factors that affect the expression of genes or transcripts. Genes with

significant differences in expression levels under different conditions are known as differen-

tially expressed genes. We made differential expression of ‘Daifei’_VS_‘Liuyefeitao’. In the

paper, up-regulated genes were referred as the gene expression level was greater in samples

‘Liuyefeitao’ than in ‘Daifei’. Down-regulated genes means the gene expression level was less

in ‘Liuyefeitao’ than in ‘Daifei’. In total, 4206 differentially expressed genes (DEG) were

obtained from the 19379 genes. Among all the DEGs, there were 2658 DEGs up-regulated and

1548 DEGs down-regulated. The volcano plot visually shows the relationship between the level

of significance and the fold change. The volcano map of differentially expressed gene was

shown in Fig 3.

Table 3. Statistics of mapping ratio to reference genome.

Sample Total Reads(M) Total Mapped(M) Multiple Mapped(M) Uniquely Mapped(M)

A1 38.148 33.388(87.52%) 0.968(2.54%) 32.420(84.98%)

A2 41.33 35.724(86.44%) 1.166(2.82%) 34.558(83.61%)

A3 33.937 29.267(86.24%) 0.803(2.37%) 28.464(83.87%)

C1 32.043 28.644(89.39%) 1.079(3.37%) 27.565(86.03%)

C2 42.65 38.746(90.85%) 0.980(2.30%) 37.767(88.55%)

C3 34.772 31.029(89.23%) 1.226(3.53%) 29.803(85.71%)

A, ‘Daifei’; C, ‘Liuyefeitao’.

Total Reads, total reads for comparison; Total Mapped, the number and proportion of reads mapped to reference genome; Multiple Mapped, mapped reads of multiple

alignment positions. Uniquely Mapped, mapped reads of only one position.

https://doi.org/10.1371/journal.pone.0200914.t003

Table 4. Distribution interval statistics of gene expression in each group.

Sample 0–0.5 0.5–1.0 1.0–5.0 5.0–10.0 10.0–50.0 >50.0

Daifei 1612(8.55%) 1091(5.79%) 3960(21.01%) 2480(13.16%) 6457(34.25%) 3252(17.25%)

Liuyefeitao 1445(7.54%) 1005(5.24%) 3838(20.03%) 2712(14.15%) 7213(37.63%) 2953(15.41%)

https://doi.org/10.1371/journal.pone.0200914.t004
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Fig 1. Gene expression distribution. A, ‘Daifei’; C, ‘Liuyefeitao’. The Y-axis is log10(fpkm), the X-axis are three biological repetitions of

‘Daifei’ and ‘Liuyefeitao’ respectively.

https://doi.org/10.1371/journal.pone.0200914.g001
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Gene function annotation

Gene Ontology (GO) is an internationally standardized classification system of gene functions,

which provides a dynamically updated standard vocabulary to fully describe the properties of

genes and gene products in organisms. The GO has three ontologies (ontology) that describe

the molecular function of the gene, the cellular component, and biological process. Directed

acyclic graph (DAG) is a graphical display of DE genes GO enrichment analysis results. The

branch represents the relationship of inclusion, which defines the scope from increasingly

Fig 2. Correlation analysis between samples. A, ‘Daifei’; C, ‘Liuyefeitao’. The bottom left of the graph is the correlation coefficient, the higher the correlation

coefficient is, the darker and larger the circle at the upper right of the graph is.

https://doi.org/10.1371/journal.pone.0200914.g002
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small from top to bottom. The top 10 results of GO enrichment analysis are selected as the

master node of DAG, and are shown together related by GO term by including the relation-

ship, and systematically GO term shown together, where the color depth represents the enrich-

ment degree. DAGs were drawn in the biological process (BP), cellular component (CC) and

molecular function (MF), respectively. The DAG of BP, CC and MF of DEGs were shown in

Fig 4. The results showed that 11305 DEGs were enriched in 45 GO terms. Genes enriched in

‘immune system process’, ‘localization’, ‘reproduction’, ‘reproductive process’, ‘response to

Fig 3. The volcano map of differentially expressed gene. The red circles represent DEGs in ‘Liuyefeitao’ compared to ‘Daifei’.

https://doi.org/10.1371/journal.pone.0200914.g003
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stimulus’, ‘signaling’, ‘antioxidant activity’ and ‘signal transducer activity’ may involve in pol-

len recognition.

In vivo, different genes coordinate with each other to exercise their biological functions,

based on the pathway analysis helping to further understand the biological functions of genes.

We also made KEGG enrichment analysis of the metabolic pathways of the DEGs. In total, 37

DEGs were enriched in 6 KEGG pathways. The top three KEGG pathways were ‘Other glycan

degradation’, ‘Oxidative phosphorylation’, ‘Monobactam biosynthesis’ (Fig 5).

To obtain more gene annotation information, we also performed BLAST of DEGs against

the NCBI non-redundant (Nr) database. The result showed that 257 DEGs related to pollen

recognition can be divided into five clusters such as: S-RNase, F-box protein, ubiquitin,

Fig 4. GO analysis of DEGs. Directed Acyclic Graph (DAG) is the graphical display of GO enrichment results with candidate targeted genes (A-C). The number of genes

in GO term was showed in histography (D).

https://doi.org/10.1371/journal.pone.0200914.g004
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Fig 5. KEGG analysis of DEGs. The area of the circle represents the number of genes, the larger the area of the circle, the greater the number of genes.

The color of the circle indicates the degree of enrichment, the higher the degree of enrichment, the more red.

https://doi.org/10.1371/journal.pone.0200914.g005
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mitogen-activated protein kinases (MAPKs) signaling pathway, and receptor-like kinase

(RLK). Moreover190 transcription factor were also identified (S2 Table).

Real-time quantitative PCR

We randomly selected ten genes from the DEGs for real-time quantitative PCR. These DEGs

included two MAPK signaling pathway genes ‘p90 ribosomal S6 kinase’ (PRUPE_ppa009425mg)

and ‘serine/threonine-protein phosphatase 2B catalytic subunit’ (PRUPE_ppa007302mg), two

ubiquitin related genes ‘ubiquitin-conjugating enzyme (E2)’ (PRUPE_ppa012200mg) and ‘E3

ubiquitin-protein ligase RMA1H1’ (PRUPE_ppa010129mg), two F-box genes ‘F-box/kelch-

repeat protein’ (PRUPE_ppa024138mg) and ‘F-box protein PP2-B12’ (PRUPE_ppa008879mg),

one ‘S-RNase’ (PRUPE_ppa018459mg), one ‘transcription factor RADIALIS’ (PRUPE_p-

pa014060mg) and one ‘mitochondrial import receptor subunit TOM40-1’ (PRUPE_p-

pa008962mg). The gene expression was shown in Fig 6. The total expression pattern of the ten

genes obtained with qRT-PCR was consistent with the RNA-seq data. The RT-PCR result con-

firmed the validity of our high-throughput sequencing results.

Discussion

The S-RNase play an important role in GSI, which is necessary and sufficient for pollen recog-

nition [23]. Lots of S-RNase have been isolated in Rosaceae, such as:Malus pumila [24], Pyrus

Fig 6. The expression of ten selected DEGs. The X-axis represents the gene name, and the Y-axis represents the

relative expression of gene. ‘�’indicate significant differences (P< 0.01).

https://doi.org/10.1371/journal.pone.0200914.g006
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serotina [25], Prunus avium [26], Prunus dulcis [27], Prunus salicina [28], Eriobotrya japonica
[29] and Prunus armeniaca [30]. We found a highly expressed gene (PRUPE_ppa018459mg)

in ‘Liuyefeitao’ which is homologous to the S-RNase gene of Prunus dulcis (S2 Table). The

FPKM of PRUPE_ppa018459mg in ‘Liuyefeitao’ (4507.88) is 900 times that of ‘Daifei’

(5.20109), suggesting that this gene is closely related to recognition of pollen of ‘Liuyefeitao’.

F-box protein is one of the largest family in plant [31], which play an important role in pro-

tein ubiquitination and degradation [32]. Studies have proved that F-box proteins regulated

numerous biological processes, such as lateral root development [33], hormonal responses

[34], and senescence [35] and so on. F-box proteins have various protein-protein interaction

domains at their C terminus, such as LRR, kelch repeats, FBD, WD40, PAS/PAC, ring finger,

tubby (TUB), and PPR in Arabidopsis [36, 37]. In this study, we found three F-box/LRR-repeat

protein, five F-box/kelch-repeat protein, and twelve F-box proteins were up-regulated in

‘Liuyefeitao’ compared to ‘Daifei’ (S2 Table). We also found five F-box/LRR-repeat protein,

seven F-box/kelch-repeat protein, and five F-box protein down-regulated in ‘Liuyefeitao’ com-

pared to ‘Daifei’ (S2 Table). The self-incompatible process is a pollen and stigma interactions

process, which specifically identify their own pollen [38], and these F-box proteins may play

an important role in pollen recognition.

Selective degradation of proteins effectively regulates the turnover of functional proteins. It

is one of the important links of precise regulation of life process. The ubiquitination and 26S

proteosome system (Ub/26S) is one of the most important, highly selective protein degrada-

tion pathway which regulate various metabolic processes such as: plant pollen germination,

pollen tube elongation and SI response [39]. The ubiquitin-activating enzyme E1 (UBE1), ubi-

quitin conjugation enzyme E2 (UBE2), and ubiquitin ligase E3 (UBE3) are three key enzymes

involved in the Ub/26S system [40]. The U-box protein was one of the three families of E3

ligase, the other two families were RING and HECT protein [41, 42]. The S-phase kinase-asso-

ciated protein1 (SKP1) was one of the most important elements of E3 ligase: SKP1/Cullin/F-

box (SCF) complex [43]. Currently, many studies have shown that inhibition of ubiquitin-pro-

teasome activity significantly decreases pollen tube growth and alters pollen tube morphology

in Actinidia deliciosa [44], Antirrhinum [45], and Picea wilsonii [46]. We found lots of genes

related to ubiquitin differential expressed, such as U-box domain-containing protein,

SKP1-like protein, E3 ubiquitin-protein ligase, and so on (S2 Table). These ubiquitin proteins

may involve in Ub/26S proteasome pathway to degrade the non-self S-RNase of ‘Liuyefeitao’

peach.

Mitogen-activated protein kinases (MAPKs) formed highly conserved signaling networks

in eukaryotic cells’ signal perception and signal transduction [47]. They have been shown to be

activated by a variety of stresses, including wounding, drought, cold, heat, UV, touch, osmotic

shock, and salt [48–50]. The recognition of pollen is a strictly events regulating pollination and

fertilization and involve many signaling pathway. Studies have found that MAP Kinase con-

tributes to the self-incompatibility response in Papaver somniferum [47, 51]. When compared

the DEGs between ‘Daifei’ and ‘Liuyefeitao’, we found lots of MAPKs genes differential

expressed, including ‘p90 ribosomal S6 kinase’ and ‘serine/threonine-protein phosphatase 2B

catalytic subunit protein kinases’ (S2 Table). These MAPKs gene may take part in the pollen-

stigma interaction signaling events and regulate pollination and fertilization.

Protein kinase (PKs) is a big family of receptor-like kinase (RLK), which play important

role in development, self-incompatibility, male sterile, stress resistance, disease resistance etc.

[52, 53]. The Leucinerich repeat receptor-like kinase (LRR-RLK) gene is another big family of

RLK, which has been isolated in numerous plants [54, 55]. A typical LRR-RLK contains multi-

ple extracellular leucine-rich repeat domain, a single transmembrane domain, and an intracel-

lular kinase domain. LRR-RLKs activate autophosphorylation of intracellular kinase domain
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by specific binding to ligands, converting extracellular signals to cytoplasmic signals, and thus

affecting plant growth and development [53, 56]. We found many leucine-rich repeat receptor

protein kinase, and receptor-like protein kinase differential expressed in our experiment (S2

Table). These leucine-rich repeat receptor protein kinases may play an important role in trans-

membrane transmission of pollen recognition signals.

Transcription factors (TFs) can bind to a specific gene sequence upstream and regulate

gene expression in a time-specific and tissue-specific manner [57, 58]. As one of the most

numerous transcription factors in plants, the members of AP2/ERF superfamily were reported

extensively to be involved both in the regulation of the process of growth and development in

plant [59]. The WRKY family is a superfamily of TFs, which is associated with both senescence

and defense related processes, and plant development [60, 61]. ERF transcription factors are

important regulatory components of ethylene signaling, known to be involved in plant devel-

opment and stress responses by regulating the expression of ethylene responsive genes [62].

To date, few studies about transcription factor involved in pollen recognition have been identi-

fied. In this study, we found lots of transcription factor differential expressed between ‘Daifei’

and ‘Liuyefeitao’, such as ‘AP2-like ethylene-responsive transcription factor’, ‘WRKY tran-

scription factor’, ‘MADS-box protein’, ‘transcription factor bHLH’, ‘MYB’ and so on (S2

Table).

Conclusion

In the natural state, peach generally exhibits self-pollination, but can accept pollen from other

varieties. Only the ‘Liuyefeitao’ is different from other peaches, which can only self-pollination.

To explore the mechanism of this phenomenon, we selected ‘Daifei’ which produces less pol-

len, and the fruit setting depends on other varieties’ pollen as control. Then the DEGs between

‘Liuyefeitao’ and ‘Daifei’ at the early bloom stages by transcriptome sequencing were analyzed.

The result showed that one S gene, and lots of non-S-locus factors such as: F-box proteins, Ub/

26S, MAPKs, RLK, and transcription factor were differential expressed. We supposed that the

strictly self-compatible of ‘Liuyefeitao’ may result from the synthesis of these S- locus and non-

S-locus factors.
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