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Abstract

Mathematical modelling performs a vital part in estimating and controlling the recent outbreak of coronavirus
disease 2019 (COVID-19). In this epidemic, most countries impose severe intervention measures to contain the
spread of COVID-19. The policymakers are forced to make difficult decisions to leverage between health and
economic development. How and when to make clinical and public health decisions in an epidemic situation is
a challenging question. The most appropriate solution is based on scientific evidence, which is mainly depen-
dent on data and models. So one of the most critical problems during this crisis is whether we can develop
reliable epidemiological models to forecast the evolution of the virus and estimate the effectiveness of various
intervention measures and their impacts on the economy. There are numerous types of mathematical model
for epidemiological diseases. In this paper, we present some critical reviews on mathematical models for the
outbreak of COVID-19. Some elementary models are presented as an initial formulation for an epidemic. We
give some basic concepts, notations, and foundation for epidemiological modelling. More related works are
also introduced and evaluated by considering epidemiological features such as disease tendency, latent effects,
susceptibility, basic reproduction numbers, asymptomatic infections, herd immunity, and impact of the inter-
ventions.
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Introduction

The coronavirus disease 2019 (COVID-19), declared as a
pandemic by the World Health Organization at the end
of January 2020, is considered to be the most devas-
tating infectious disease outbreak ever since the 1918
influenza pandemic. The first case of COVID-19 was
reported on 31 December 2019 in Wuhan China, which
was initially identified as the epicentre of the virus.1

Given it is apparently able to generate rapid and sub-
stantial human-to-human transmissions, COVID-19 has
largely been spreading in vast geographic regions includ-
ing more than 200 countries and severely hit countries
such as Iran, Italy, Spain, France, Germany, UK, and US,
etc. As of 19 April 2020, about 2 394 278 confirmed cases
including more than 164 937 deaths had been reported
worldwide according to the COVID-19 map by the Johns
Hopkins University,2 which reveals that the epicentre is
gradually moving to Europe and America. Even though
serious measures were being undertaken by the vast
majority of countries to contain the outbreak of COVID-
19, it is still spreading globally in an overwhelming man-
ner.3

In general, an epidemic follows a similar tendency,
which can be modelled mathematically. Initially, the
number of infected cases progressively increased, which
usually exhibits exponential behaviour. On reaching the
peak, it then turns over and gradually decreases. Ulti-
mately, the outbreak fades out to zero, which implies
the end of the epidemic. From the data in Ref. 4. we
can observe from Fig. 1a that the infected cases in China
started to grow in January 2020 and there was a sudden
increase within a single day in February 2020 due to the
change of diagnostic methods. Then the curve of China
began to be saturated after early March. We can see from
Fig. 2 that China and Republic of Korea seem to have been
in the decreasing phase in April thanks to some serious
preventive measures including lockdown of cities, clo-
sure of schools, shops and public transport, tracing and
isolating infected individuals, and so on. These preven-
tion measures lead to a sudden decline in transmission
rate and turn out to be an effective strategy in containing
the virus. For other countries, such as Italy, Spain, France,
Germany, UK, and the US, we can observe from Fig. 1b
that the number of cases is still in the rapid increase
phase and some curves are still yet to reach the peak.

As an utterly novel disease, COVID-19 has a consid-
erable effect on public health and the global economy.
Mathematical modelling plays a vital part in predicting
and controlling the ongoing COVID-19 pandemic. One of
the most significant problems during the pandemic is
whether we can develop mathematical models to pre-
dict the evolution of the epidemic, and estimate the
effectiveness of various intervention measures and their
impact on the economy. The models widely affect pol-
icy and diagnostic decision-making. There are typically
three categories of mathematical model for epidemi-
ology, namely empirical models, including machine-
learning, statistical, and dynamical methods.5 At this
early stage, it is feasible to pay more attention to the

dynamical model due to the insufficient data on this
pandemic. Epidemiological models incorporate deter-
ministic or stochastic methodologies based on different
sub-group populations. The most notably deterministic
models include susceptible-infectious-recovered (SIR),
susceptible-infectious-susceptible (SIS), and susceptible-
exposed-infectious-susceptible (SEIS) models.6,7 In this
paper, we highlight some essential mathematical mod-
els for epidemiological analysis and review recent papers
concentrating on the trend and the severity of COVID-19,
the impact of asymptomatic infection, and the effect of
intervention measures.

Mathematical models

Mathematical models are efficient tools to understand
the ongoing trends for COVID-19. The models are
essential to make a therapeutic choice when surge
capacity has been exceeded or without ready access to
laboratory testing.8 The models are crucial for the pol-
icymaker to acquire medical supplies, allocate human
resources and hospital beds, and ensure the sustain-
ability of the health system throughout the peak and
duration of the epidemic.8 Researchers around the world
have performed numerous mathematical modelling and
numerical analysis on COVID-19 since its outbreak. In
the following section, we review these proposed methods
and present the updated results with focus on the follow-
ing topics: fatality ratio, disease tendency, basic repro-
duction numbers, asymptomatic infective, herd immu-
nity, and the effects of intervention measures.

Case fatality ratio

Severity is one of the most concerning factors in the out-
break of a pandemic. The fatality ratio is a crucial mea-
surement to describe the severity of the transmittable
disease. It is a challenging task to predict the fatality rate
as it changes over time and can be measured in many dif-
ferent ways during an epidemic. The case fatality ratio
(CFR) is a standard measurement that estimates the pro-
portion of deaths from the disease to the total number
cases diagnosed with the disease. A common variant of
CFR is the delayed CFR defined as follows.9

CFRd (t, τres) = D(t)
N (t − τres)

where D(t) represents the number of deaths at time t; N(t
− τ res) specifies the number of diagnosed cases in the
period (t − τ res); and τ res denotes a corresponding time
lag indicating the duration from the day when the first
symptoms occurred to the day of outcome (recovery or
death).

Wu and McGoogan estimate CFRd(t, 0) of COVID-19 in
China to be 2.3% on 11 February 2020, which assumes
that τ res equals zero and thereby underestimates the true
CFR.10 With the help of more public information, Wu et al.
calculate that the overall symptomatic CFR (the probabil-
ity of death after developing symptoms) of COVID-19 in
Wuhan is 1.4% (0.9%–2.1%),8 which is noticeably less than
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(a) Confirmed cases and deaths in China (b) Confirmed cases and deaths excluding in China

Figure 1. Global confirmed cases and deaths for COVID-19.

Figure 2. Global COVID-19 deaths since March 2020.

both the naive CFR (2169/48 557 = 4.5%) and the approx-
imation of fatality rate (2169/(2169 + 17 572) = 11%) as of
29 February 2020.

Böttcher et al. compare the individual- and
population-based CFR. The former one is the prob-
ability that an individual who has been infected for
time τ 1 died by time t; the latter is the ratio of the
number of death cases over the number of cases with
the outcome (death/recovery).11 They point out that only
when the recovery rate and death rate are constant, the
population-based CFR becomes irrelevant from disease
transmission at the population level and coincides with
the individual-based CFR.11 The population-based CFR is
generally not as useful as individual-based CFR because:
(i) the infection time distributions that are important on
an individual level might not match those in population
level; and (ii) the population-level mortality ratios tend
to be time-dependent and only in the stable state as
soon as the outbreak ends.

Dorigatti et al. estimate both individual- and
population-based CFR of COVID-19.12 They first evaluate
the intervals between onset of symptoms and outcome.

Here, we denote fOD(.) as the probability density function
(PDF) associated with the time from symptoms occur to
death, which follows a gamma distribution. Then the
PDF that a death is observed at time td with presumed
onset τ days ago is defined as follows.

gO D (τ |td) = fO D(τ )o (td − τ )∫ ∞
0 fO D (τ ′) o (td − τ ′) dτ ′

where o(t) is the observed number of onsets that occurred
at time t assuming exponential growth. Similarly, the
posterior onset-to-recovery distribution gOD(.) can be fit-
ted. Using data from China and assuming uniform prior
distribution, the onset-to-recovery is 22.2 days (18–83,
95% CI) and the onset-to-death is 22.3 days (18–82, 95%
CI). Based on the posterior of fOD(.) the overall probabil-
ity of all observed deaths, recoveries, and cases residing
in hospital can be formulated from the individual case
data. The posterior distribution of CFR can be obtained
by applying Bayes’ rule. The CFR can also be estimated
from the aggregated population cases data (daily reports
of cases). Denote D(t) and C(t) as the incidence of deaths
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Figure 3. SIR model.

and onsets, the anticipated number of deaths at time t is
given by

D(t) = c
∫ ∞

0
C (t − τ ) fO D(τ )dτ

where c is the CFR that can be estimated with Bayes rule.
They estimate the CFR of Hubei to be 18% (11%–81%,
95% CI) on 5 February 2020 and the CFR outside main-
land China to be 5.1% (1.1%–38%, 95% CI) using death
and recovery outcomes. Assume that infected individu-
als test positive from l days prior to onset of symptoms
to n − l days later. An infection prevalence at time t, y(t)
is generally approximated as

y(t,=
∫ n−l

−l
C (t − τ )dτ/N

where N indicates the population of the region. Based on
data of repatriation flights, they estimate the CFR among
all infections to be 0.9% (0.5%–4%, 95% CI) supposing
that clinical symptoms are observable after 14 days, and
the CFR is 0.8% (0.4%–3.1%, 95% CI) providing disease is
noticeable after 7 days.

Susceptible-Infected-Removed (SIR) model

The purpose of disease control is to build a predic-
tive model in an effort to better understand the key
factors that influence COVID-19 transmission. The SIR
model is one of the fundamental epidemiological mod-
els that illustrates the dynamics of an infective epidemic
given that large population has already been susceptible,
infected, and recovered. Assuming that the virus is gen-
erally contracted only once, an infected individual either
passes away or recovers. As the disease spreads, the sus-
ceptibles are likely to get infected, and the infected indi-
viduals tend to be removed (either die or recover). It
presumes that the total number of the population is a
constant number of N and the total infected population
eventually goes into the removed category. The model

divides a homogeneous and isolated population into the
following three categories:

� Susceptible (S). These have not contracted the virus
but might be infected as a result of transmission from
an infected individual. As demonstrated in Fig. 3, the
S initially reveals a rapid decrease, and it eventually
fades out and turns into zero.

� Infected (I). These have already contracted the dis-
ease. It is indicated in Fig. 3 that the I at first exhibits a
sluggish increase. As time passes, it shifts into a sharp
growth prior to the maximum value.

� Removed (R). The virus likely leads to one of two direc-
tions: either the person recovers or dies, which are
treated equally in this model. As shown in Fig. 3, the
R consequently illustrates a saturation as soon as the
peak value appears to have been surpassed.

We denote by S(t), I(t), and R(t) the populations of these
classes at time t and assume S(t) + I(t) + R(t) = N for all t.

The model is described by the following equations
where β is the contact rate and μ is the removal rate.

dS
dt

= −βSI

dI
dt

= βSI − μI

dR
dt

= μI

The SIR model considered here is the simplest pro-
totype. The spread of an infectious virus involves not
only disease-related factors such as the infectious agent,
mode of transmission, latent period, infectious period,
susceptibility, and resistance, but also social, cultural,
demographic, economic, and geographic factors.7 As the
epidemic consistently spreads across the world, the SIR
model presents extremely limited dynamics to capture
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the complexity of the outbreak of COVID-19. For that rea-
son, various refined models are proposed to accommo-
date more data sources and enrich with additional real-
time data in order to lead the decision-making for public
health.

The SIR model usually fixes specific parameters such
as the contact rate and the removal rate. Wu, et al.
extend the model by updating the transmission rate and
recovery rate based on historical data.8 The authors esti-
mate the clinical severity of COVID-19 using the symp-
tomatic CFR (sCFR), which specifies an infectious indi-
vidual who is detected with the specific clinical symp-
toms. They simulate the epidemic based on a modified
SIR model considering the travel information by combin-
ing the eight data sources, including confirmed cases,
death cases, age of confirmation and death cases, the
time between onset and death, traveller, and so on. They
estimate the parameters for different age groups, includ-
ing sCFR by Markov Chain Monte Carlo (MCMC) methods
with Gibbs sampling and non-informative flat priors.8

The estimation of sCFR is about 1.4% (0.9%–2.1%), which
is not sensitive to infection-symptomatic probability Psym

(the probability of the infections that develop symp-
toms). As one of very early publication on COVID-19, the
paper may marginally underestimate the epidemic as
they only incorporate the first 425 cases in Wuhan with
the assumption that travellers are well enough to travel,
which not includes those who are already in a severe con-
dition and possibly in hospital.

Chen et al. propose a time-dependent SIR model to
estimate the quantity of confirmed cases of COVID-19.13

They convert the SIR model into a discrete-time model
using ridge regression to track two time-series data;
namely, the transmission rate and the recover rate at
time t. The proposed model conforms to various disease
control measures, most notably the lockdown of cities.
The model presents that the daily prediction errors for
the confirmed cases in China are lower than 3% apart
from the day when there was a sudden change in the
confirmed cases, which seems more effective than the
direct estimation of the number of new cases.

Biswas et al. fit the cumulative data of COVID-19 to
an empirical SIR model combined with a Euclidean net-
work.14 Evaluating the volume of confirmed cases ver-
sus the geographical distance to the epicentre for both
China and Italy, they discover an incredibly robust spa-
tial dependency in the outbreak of COVID-19 showing an
approximate power-law variation with an exponent of
1.85. It is also demonstrated that the SIR model, com-
bined with the Euclidean network, can develop better
reliability based on the data in China.

Basic reproduction number

The basic reproduction number R0 is an essential indi-
cator in epidemiology to represent whether an infec-
tious disease develops a pandemic. Under the SIR model,
R0 represents the average number of secondary cases

transmitted by a single infected individual that is placed
into a fully susceptible population.15 In mathematical
express R0 is defined as the maximum eigenvalue of the
next-generation matrix G, where the ij element is the
expected number of type i cases as a result of infectious
individuals of type j. More specifically, if R0 is higher than
one, the epidemic spreads rapidly. In contrast, if R0 is less
than one, the epidemic propagates slowly and vanishes
before everyone gets infected.

Wu et al. formulate a refined SIR model by incorpo-
rating domestic transportation data to predict the size
of the epidemic in Wuhan.16 The dataset used here is
based on monthly flight bookings and human mobility
across more than 300 cities in China. The estimation of
R0 is approximately 2.68 (2.47–2.86, 95% CI) based on the
data in Wuhan. One limitation is that their assumption is
based on the fact that the COVID-19 cannot change travel
behaviour, and all infectious individuals are ultimately
detectable with symptoms.

Riou and Althaus estimate R0 using negative-binomial
offspring distribution with mean R0 and dispersion
parameter k from a simulation, where the k quanti-
fies the variability in the number of secondary cases.17

The generation time interval D is presumed to follow a
gamma distribution. The simulation runs with various
combinations of parameters, which estimates that R0 is
2.2 (1.4–3.8, 90% CI) assuming the number of infected
cases increased from 1000 to 9700 by 18 January 2020.
One constraint of this approach is that it is based on a
relatively small number of data points. However can be
extended to a wide selection of parameters by running
more simulations.

Liu et al. estimate R0 by applying a prior Gamma dis-
tribution to fit the generation time, assuming that the
cases are in an exponential rate of growth.18 They use
Poisson regression to determine the exponential growth
rate, and estimate time-varying instantaneous reproduc-
tion number R0(t), which signifies the R0 at time t if con-
ditions stay constant after time t.18 The Rt is expected
similarly as R0 but uses the past ten-day moving win-
dow. Chinese national estimation of R0(t) is 4.5 (4.4–4.6,
95% CI). Rt increases from 6.9 (5.5–8.4, 95% CI) to peak 8.8
(8.3–9.4, 95% CI) by 16 January 2020, then continuously
decreases to 1.59 (1.57–1.61, 95% CI) by 6 February 2020.
The drawback of this research is that the incidence date
is predicted by a generalized additive model, which may
result in misclassification bias.

Read, et al. calibrate the model taking into account of
air traveller with an assumption that daily growth of con-
firmed cases follows a Poisson distribution.19 The con-
firmed cases reported from 1 January 2020 to 22 January
2020 is chosen to fit the model. Maximum likelihood esti-
mation (MLE) is employed for parameter evaluation. The
value of R0 is estimate to be 3.11 (2.39–4.13, 95% CI). The
major limitation of the model is that it only includes a
spatial component of the model according to airline trav-
elling, but does not include other transportations such as
rail and road. As a result, it probably underestimates local
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Figure 4. SEIR model.

connectivity and the connectivity of Wuhan to other
locations.

Hong and Li extend the standard SIR model by
introducing time-independent variables to capture the
dynamics of transmission and removal rates.20 The lit-
erature employs a Poisson model with a polynomial
approximation to estimate an instantaneous basic repro-
duction number R0(t), which presents a real-time approx-
imation of R0 in the epidemic. They also validate the
model by analysing the data from various severely
affected countries, which demonstrates that the dynam-
ics of the outbreak can be estimated. Although the time-
dependent R0(t) is effective to assess the effectiveness of
prevention measures in real time, the main restriction is
that the model does not consider the impact of asymp-
tomatic infections, which possibly underestimates the
R0(t).

Asymptomatic transmission

In the outbreak of COVID-19, the infected individuals
may have a broad spectrum of symptoms. However, it
is also possible that vast numbers of people have no
symptoms, so-called asymptomatic cases, due to the
unawareness of infections or the limited capacity of test-
ing. If an infected individual has no symptoms, it is com-
plicated to detect the outbreak considering that they can
be spreading the virus without even knowing they are
doing so. Therefore, asymptomatic transmission is the
most challenging part in controlling the ongoing COVID-
19 epidemic.

The SEIR model is another extension to the basic SIR
model in order to consider asymptomatic transmission.
SEIR provides a practical approach to model a disease in
a considerable incubation period when the exposed per-
son is not yet infectious.

As shown in Fig. 4 the SEIR model provides a new class
named Exposed (E), which includes the population in the

incubation period. The equations can be formulated as
follows.

dS
dt

= −βSI + (λ − μ)S

dE
dt

= βSI − (μ + k)E

dI
dt

= kE − (γ + μ)I

dR
dt

= γ I − μR

where β indicates the effective contact rate; λ implies
the birth rate of susceptibility; μ represents the mortality
rate; and k signifies the progression rate from the (latent)
exposed to the infected; and γ is the the removal rate.

Ferretti et al. specify four categories in the trans-
mission of the virus: symptomatic, asymptomatic, pre-
symptomatic, and environmental transmission.21 R0 is
the summation of the four parts of the basic reproduc-
tion number. Using Bayesian methods and Maximum
Likelihood Estimation (MLE), the approximation of R0 is
around 2.0 (1.7–2.5, 95% CI), with a fraction of the four
categories: pre-symptomatic 0.47 (0.11–0.58 CI), symp-
tomatic 0.38 (0.09–0.49 CI), environmental 0.1 (0.02–0.56
CI), and asymptomatic 0.06 (0–0.57 CI). The results sug-
gest a high proportion of pre-symptomatic transmis-
sions. It is also noticeable that the estimation of R0 in this
literature is slightly smaller in comparison to the other
results, e.g. Refs. 16–19. This is due to the assumption
that COVID-19 gives shorter generation times. There-
fore a smaller portion of infections can be obstructed by
the suppression (R0 < 1). This does not mean suppres-
sion is quicker to achieve. In contrast, the transmissions
develop in a faster manner, and a larger portion gets
infected prior to the symptoms.

Li, et al. modify the SEIR model to identify the unde-
tected cases taking account of the mobility between 375
Chinese cities.22 A mathematical model is implemented
to examine the transmission dynamics during the early
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phase of the outbreak through simulating observations
between 10 January 2020 and 23 January 2020. The model
parameters are inferred by the use of an iterated filter-
ensemble adjustment Kalman filter (IF-EAKF) frame-
work.23 The estimation of R0 is 2.38 (2.04–2.77, 95% CI) at
the beginning of the epidemic. Additionally, it is also pre-
dicted that only 14% (10–18%, 95% CI) of total infections
in China are reported. The range of R0 for COVID-19 is
between 1.4 and 4.6, which is higher than the R0 of Mid-
dle East Respiratory Syndrome (MERS) (R0: 0.3–0.8) and
close to Severe Acute Respiratory Syndrome (SARS) (R0:
2–5).6

Jenny et al. extend the SIR model with the undetected
cases, which can be transformed into detected cases by
testing.24 Model parameters are estimated using the con-
firmed cases of COVID-19 outside China from 22 Jan-
uary 2020 to 12 March 2020. The results clearly show that
mass-testing and follow-up isolation of confirmed cases
are the effective mitigation strategy.24 The model can be
further improved by taking more reliable data, and con-
sidering diverse age groups and the latency period.

Yuan et al. build a standard framework to forecast
a turning period during the outbreak of an epidemic.25

They extend the classical SEIR modal to an individual
SEIR and use observed daily cases in Wuhan as the input
to the model. The development of dynamics of the epi-
demic in the subsequent days can be estimated, which
shows that the model can be used to forecast the turn-
ing period, i.e. one week following 14 February 2020, for
the outbreak in Wuhan. This prediction is recognized as
prompt and precise. However, this model is still based on
a deterministic one and can be improved to use stochas-
tic models, such as the Markov chain.

Herd immunity

Herd immunity is a fundamental concept in epidemic
theory regarding the population-level effect of individ-
ual immunity to prevent transmission of infections.26 A
population is considered to have herd immunity for a
disease if a sufficiently large proportion of the popula-
tion possess immunity against the virus, so the chance of
active contact between infected and susceptible people is
minimized.27 Herd immunity is influenced by numerous
aspects such as virus dynamics and transmission modes,
along with the individuals in the population who acquire
immunity.28

Mathematically, if the population is homogeneously
mixing, herd immunity can be achieved if a large enough
uniformly distributed population is immune.26 In order
to prevent the outbreak of an infectious virus, a sufficient
amount of people must be immune to assure the sus-
ceptible fraction is small enough, which means that the
average infective number is smaller than one. This may
occur in two ways: (i) natural immunity—lots of individ-
uals contract the virus in time and develop an immune
response; and (ii) vaccination—a significant number of
people are vaccinated against the disease. For several
infections, herd immunity may go into effect when 40%

of the people in a population become immune to the dis-
ease. Nevertheless, in many cases, 80%–95% of the pop-
ulation needs to be immune to stop its spread.27

Lourenco et al. build the SIR models to investigate
the sensitivity to the specific percentage of the popu-
lation at risk of severe disease and death.29 They cali-
brate the models using the cumulative confirmed deaths
of COVID-19 in the UK and Italy under the assumption
that such deaths are well-recorded and occur only in
a vulnerable fraction of the population. Various mod-
els are used based on prior estimations of essential epi-
demiological parameters such as the R0, CFR, transmit-
table period, and the period from infection to death, and
so on. The models are formulated with R0 = 2.25 and
R0 = 2.75 separately. It is estimated that by 19 March
2020 approximately 36% of the UK population might
have been exposed to COVID-19 if R0 = 2.25 and 40% if
R0 = 2.75.29 An identical experiment is performed with
assumptions that R0 is 2.25 and the proportion of the
population susceptible to severe disease is 0.1%. The pre-
liminary result reveals that 68% of the UK population
could have been infected by 19 March 2020. Sir Patrick
Vallance, Chief scientific adviser to the UK Government,
claims that nearly 60% population is desired in order to
achieve herb immunity for COVID-19. If the modelling
is legitimate, the result may suggest that the UK could
have already developed herd immunity. However, this
research is based on a theoretical simulation with an
early-stage dataset, which makes the model relatively
sensitive to a multitude of simplified assumptions. For
example, it assumes the population is well-mixed, which
implies the model maybe overestimate the transmis-
sion rate and consequently the infected proportion. If it
assumes the proportion of the population at risk is 1%,
the infected proportion is dramatically reduced to 36%
and 40%.

Effect of intervention measures

Preventative measures, with intention to lower transmis-
sion rates in the population and thus reduce the infec-
tion of the virus, are essential for an infectious out-
break when a vaccine is not available. The prevention
and containment strategies can be broadly considered in
two categories: (i) pharmaceutical interventions, includ-
ing antivirals and vaccines; and (ii) non-pharmaceutical
interventions (NPIs), including case isolation, household
quarantine, shop, school or workplace closure, restric-
tions on travel, and so on.30 Some governments impose
a series of tight NPIs to slow down the spread of the
virus, while the other nations promise to implement
more severe control measures if necessary in the future.
Mathematical models are effective tools to investigate
the sophisticated situation with intervention strategies
and estimate the potential benefits and costs of differ-
ent strategies. Numerous studies have been carried out
to facilitate the policymaker to select different interven-
tions.
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Tian et al. apply regression models to examine the
transmission control measures in China.1 The preven-
tion measures of COVID-19 are investigated using spe-
cific data from China, including case studies, human
activities, and intervention measures. It is found that
the measures highly likely postpone the outbreak of the
epidemic and lead to a decline in terms of the num-
ber of confirmed cases during the 50 days of the lock-
down period in China. It is also shown that the shutdown
of Wuhan city has delayed outbreak in other cities by
at least 2.91 days (2.54–3.29: 95% CI). Cities that imple-
mented control measures reportedly demonstrate fewer
cases in the first week of their outbreaks (13.0; 7.1–18.8) in
contrast to the cities that started control later (20.6; 14.5–
26.8). This study is based on the data in China from 31
December 2019 to 19 February 2020. So it is still an early
result and does not necessarily present the full impact of
all aspects of NPIs in a large area.

For control measures that are already taken, Krae-
mer et al. employ the dataset, including confirmed cases
and travel history, to evaluate the impact of control
measures.31 They construct three models, namely Pois-
son Generalized Linear Model (GLM), negative binomial
GLM, and log-linear regression with four parameters, i.e.
the number of cases, an indicator of test availability of
real-time quantitative polymerase chain reaction (RT-
qPCR) , estimated mobility, an indicator of date before
or after 26 January 2020.31 They perform model selec-
tion to estimate daily confirmed cases and discover that
models incorporating the mobility data into regression
models can predict the volume of cases with more pre-
cise results. It is concluded that the travel restrictions
enforced in China significantly suppressed the outbreak
of COVID-19.

Prem and Cook use geographical contact information
of various age groups in Wuhan to investigate how shifts
in population groups influence the progress of the out-
break in Wuhan.32 They simulate the outbreak in Wuhan
using SEIR for 16 age groups and refine the model with
location-based distancing measures such as school clo-
sures. The results reveal that the uncertainty of R0 has a
substantial effect on the peak time of the outbreak and
the ultimate scope of the epidemic and social distancing
measures are most effective when the people return to
work. This research is unable to definitively identify the
effect of each NPIs due to a deficiency of data.

For potential interventions that could be effective
in the future, Ferguson et al. evaluate the potential
impact of public health measures on the transmission
rate of the virus. They consider two fundamental cat-
egories of strategies: (i) mitigation focusing on delay-
ing the epidemic spread and (ii) suppression aiming
at slow epidemic growth. They assess the risk of sus-
tained transmission by simulating two models on data
from the UK and the US.33 They use a stochastic, spa-
tially structured individual-based simulation proposed
in ref.34 The model is determined by the population in a
geographic region that can be simulated by Poisson dis-
tributed with parameters driven by the density of popu-
lation. It also assumes that transmission occurs in three

sources: household, schools and workplaces, and com-
munity. Community transmission depends explicitly on
distance, i.e. the probability that individual i infects indi-
vidual k is weighted by a kernel function f(di, k), where
di, k is the distance between individuals i and k. For any
time step �T, a susceptible individual i has probability 1
− exp(−λi�T) of being infected, where λi is the instan-
taneous infection risk for individual i.30 Markov chain
Monte Carlo (MCMC) and Maximum Likelihood Estima-
tion (MLE) are applied to infer the posterior distribution
of model parameters including latent period, infectious-
ness over time and transmission coefficients. They test
five NPIs in the three sources of transmission and con-
clude that the overall performance of a single interven-
tion is perhaps limited, in need of a combination of inter-
vention measures to be reinforced to have a substantial
impact on transmission. It is uncovered that the peak
healthcare demand can be reduced by two-thirds, and
the deaths can be reduced by half as a result of mitigation
policies incorporating home isolation, home quarantine,
and social distancing. It is also proven that suppression
also demands a mixture of social distancing, home iso-
lation, and quarantine in both the UK and the US.

Conclusions

We have reviewed a range of mathematical models for
the outbreak of COVID-19, which can be employed to
estimate the epidemiological trend including severity
(Case Fatality Ratio), basic reproduction number, and
herd immunity as well as the potential effects of inter-
ventions on COVID-19. The mathematical modelling for
an ongoing outbreak is still a challenging task at this
stage of the epidemic. We find that most existing epi-
demiological models of COVID-19 are typically based
on epidemic-dynamic models rather than the statistical
models or machine learning. There is still considerable
uncertainty to estimate the epidemiological characteris-
tics due to the novel nature of COVID-19 and the early
stage of the outbreak. Certain methods present some
inherent limitations as a result of insufficient data and
limited data sources. Additional research is urgently nec-
essary to fulfil such research gaps.

We believe that as the epidemic reaches to the end
and more data can be collected, epidemiological models
can be improved to present a real reflection of the full pic-
ture. It is noticeable that studies relating to either current
or future prevention measures only consider the effect
on minimizing the spread of the pathogen but neglect
the economic costs of interventions that are also crucial
for policymaking. Research on prevention measures con-
sidering the constraint of economic costs is deemed as
the future works of this research.
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