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1  | INTRODUC TION

Occupancy models are an important statistical technique that was 
developed to make use of detection/nondetection data to infer the 
probability that a species under investigation occupies a site. When 

an occupancy study is undertaken, ns sites are visited a number of 
times to estimate the occupancy probability (�) and conditional 
detection probability (p) of a species associated with each site in 
a region. The method can be viewed as an extension of logistic re‐
gression and allows one to estimate the occupancy probability at 
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Abstract
Occupancy models (Ecology, 2002; 83: 2248) were developed to infer the probability 
that a species under investigation occupies a site. Bayesian analysis of these models 
can be undertaken using statistical packages such as WinBUGS, OpenBUGS, JAGS, and 
more recently Stan, however, since these packages were not developed specifically 
to fit occupancy models, one often experiences long run times when undertaking an 
analysis. Bayesian spatial single‐season occupancy models can also be fit using the R 
package stocc. The approach assumes that the detection and occupancy regression 
effects are modeled using probit link functions. The use of the logistic link function, 
however, is algebraically more tractable and allows one to easily interpret the coef‐
ficient effects of an estimated model by using odds ratios, which is not easily done for 
a probit link function for models that do not include spatial random effects. We de‐
velop a Gibbs sampler to obtain posterior samples from the posterior distribution of 
the parameters of various occupancy models (nonspatial and spatial) when logit link 
functions are used to model the regression effects of the detection and occupancy 
processes. We apply our methods to data extracted from the 2nd Southern African 
Bird Atlas Project to produce a species distribution map of the Cape weaver (Ploceus 
capensis) and helmeted guineafowl (Numida meleagris) for South Africa. We found 
that the Gibbs sampling algorithm developed produces posterior samples that are 
identical to those obtained when using JAGS and Stan and that in certain cases the 
posterior chains mix much faster than those obtained when using JAGS, stocc, and 
Stan. Our algorithms are implemented in the R package, Rcppocc. The software is 
freely available and stored on GitHub (https://github.com/AllanClark/Rcppocc).
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sites where none of the species being investigated have been de‐
tected. The model is formulated hierarchically, using Bernoulli ran‐
dom variables to specify the occupancy and detection processes, 
respectively, which can be modeled using site‐specific and survey‐
specific explanatory variables, respectively (MacKenzie et al., 2002). 
Johnson, Conn, Hooten, Ray, and Pond (2013) note that occupancy 
models produce “unbiased inference when occupancy observations 
at nearby units are conditionally independent given any available 
covariates” but stress that “spatial autocorrelation may lead to bi‐
ases and overestimated precision” of regression effects. This obser‐
vation has lead to the development of various models to account for 
spatial autocorrelation in ecological survey data (Aing, Halls, Oken, 
Dobrow, & Fieberg, 2011; Gardner, Lawler, Ver Hoef, Magoun, & 
Kellie, 2010; Hoeting, Leecaster, & Bowden, 2000; Hooten, Larsen, 
& Wikle, 2003) and have extensively been used to guide environ‐
mental monitoring and assessment programs globally.

A number of methods have been used to fit occupancy models 
to data. These include maximum likelihood (MacKenzie et al., 2002); 
penalized maximum likelihood (Hutchinson, Valente, Emerson, Betts, 
& Dietterich, 2015; Moreno & Lele, 2010), Bayesian methods that 
employ WinBUGS, OpenBUGS, JAGS, or Stan as well as approximate 
methods such as those developed by Clark, Altwegg, and Ormerod 
(2016). Recently Dorazio and Rodriguez (2012) and Johnson et al. 
(2013) developed Gibbs algorithms to obtain posterior samples for 
the parameters of a nonspatial and spatial single‐season occupancy 
(SSO) model, respectively. Both approaches assume that detection 
and occupancy processes are modeled using probit link functions, 
which enables the use of data augmentation (Tanner & Wong, 1987) 
to obtain closed form expressions of the conditional posterior distri‐
butions of the parameters of the occupancy model.

Given that the probit and logistic functions are very similar and 
only differ in respect of the tails of the functions, analysis under‐
taken using either of the functions should produce similar occu‐
pancy and conditional detection probabilities (Dorazio & Rodriguez, 
2012). However, the use of the logistic link function is algebraically 
more tractable and allows one to easily interpret the coefficient ef‐
fects of an estimated model by using odds ratios, which is not easily 
done for a probit link function. This observation is particularly true 
for the nonspatial SSO model since no spatial random effects are 
included in this model; however, when spatial random effects are 
included in the model, the interpretation of the regression effects 
can be difficult (Boehm, Reich, & Bandyopadhyay, 2013).

The paper commences with a brief discussion of the link between 
logistic regression and occupancy models. Thereafter, we discuss 
the formulation of various popular Bayesian spatial occupancy mod‐
els and develop a Gibbs sampling algorithm for a particular spatial 
occupancy model when the regression effects of the occupancy and 
detection processes are modeled using logit link functions. Before 
concluding, we analyze two detection/nondetection data sets of 
South African bird species to illustrate the methods developed in the 
paper. An R package (Rcppocc) has been developed to fit SSO models 
using Gibbs sampling which can be obtained at: https://github.com/
AllanClark/Rcppocc.

2  | MATERIAL AND METHODS

2.1 | Logistic regression and occupancy models

Assume that ns sites are surveyed a number of times and detec‐
tion/nondetection data are collected at all sites. Denote the ob‐
served data as a ragged matrix y = [yij] where yij = 1 if the species 
under investigation has been observed at site i  during survey j 
and yij = 0 otherwise. Let the vector z represents the true spe‐
cies occupancy at the sites considered such that zi = 1 if the spe‐
cies occupies site i  and zi = 0 if it does not occupy site i . The SSO 
model can be represented using the following hierarchical model, 
zi|�i∼Bernoulli(�i), yij|zi,pij∼Bernoulli(zipij) for all sites i = 1, … , ns; 
for all surveys j = 1, … ,Vi (Royle & Dorazio, 2008). The variable 
�i denotes the probability occupancy probability at site i , while 
pij = Pr(yij = 1|zi = 1) denotes the conditional probability of de‐
tecting the species during the jth survey of site i  given that the 
species is present at site i . In what follows we assume that the 
conditional detection and occupancy regression effects (� and �) 
are modeled using logit link functions such that logit(�i) = xT

i
� and 

logit(pij) = wT
ij
�, where xT

i
 and wT

ij
 are row vectors in design matrices, 

X (occupancy) and W (detection), respectively (as defined in Clark 
et al., 2016).

The joint posterior distribution of the parameters of the model is

where �(�) and �(�) are the prior distributions of � and �, respec‐
tively. A directed acyclic graph of the above problem is displayed in 
Figure 1 below.

A Gibbs sampling algorithm for the parameters of this model re‐
quires sampling from [�|z], [�|z,y], and [zi = 1|�,� ,y] for all sites where 

[z,�,�|y] ∝ �(�)�(�)

(
ns∏
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F I G U R E  1   A directed acyclic graph illustrating the 
dependencies between the parameters and observed data for an 
SSO model. Shaded nodes represents observed data while all latent 
parameters are represented using unshaded nodes. Deterministic 
relationships are represented using double arrows while all 
stochastic relationships are represented using a single arrow
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the species has not been observed. The first two conditional distri‐
butions have the following form,

Notice that Equations 1 and 2 are of the same form as the pos‐
terior distributions of the regression effects of a logistic regression 
model and therefore we adapt a Gibbs sampling scheme for logis‐
tic regression models to address the problem of obtaining posterior 
samples for the parameters of an occupancy model.

In a logistic regression context, Polson, Scott, and Windle (2013) 
show that posterior samples of the regression effects can be ob‐
tained by sampling from the conditional distributions of Pólya‐
Gamma random variables and multivariate Gaussian distributions in 
turn. Their method is similar to that of Albert and Chib (1993) who 
developed a Gibbs algorithm to undertake probit regression, the only 
difference being that the sampling from truncated Gaussian distribu‐
tions is replaced by sampling from Pólya‐Gamma distributions. The 
sampling methods developed by Polson et al. (2013) are exact since 
their Pólya‐Gamma sampling method is uniformly ergodic and con‐
verges to the correct posterior distribution (Choi, & Hobert, 2013).

For the SSO model, the conditional posterior distributions of 
�|�� ,y are derived by introducing Pólya‐Gamma latent variables, 
��, and noting that the contribution of the i^{th} observation to a 
Bernoulli likelihood can be re‐expressed as

where �i = zi−0.5 and p(�i,� |1,0) is the probability density function 
of a Pólya‐Gamma distribution with parameters 1 and 0 (Polson 
et al., 2013). The conditional posterior distribution of � is derived by 
using the same manipulation of the Bernoulli likelihood.

In the Supporting information (Appendix S1), we discuss the ex‐
isting Gibbs algorithms used for undertaking logistic regression and 
demonstrate the use of the Pólya‐Gamma (PG) method by developing 
two Gibbs sampling algorithms for the parameters of SSO models. In 
Table 1, we summarize the Gibbs algorithms for an SSO model when 
using the PG method but provide the details regarding the algorithm 
in the Supporting Information (Appendix S2 and Appendix S3). We 
use the notation “a∼PG(b,c)” to indicate that the random variable 
a is a Pólya‐Gamma random variable with parameters b and c. Take 
note that the algorithm is identical to that developed by Dorazio and 
Rodriguez (2012) except that the sampling from truncated Gaussian 
distributions is replaced by sampling from Pólya‐Gamma distributions.

2.2 | Bayesian spatial SSO models

Spatial generalized linear mixed models (SGLMM) are an exten‐
sion of the general linear model (Nelder & Wedderburn, 1972) that 

allows the link function of the expected value of the random variable 
under investigation to be modeled as a function of a spatial random 
variable/s. The formulation was first developed by Besag, York, and 
Mollié (1991) and has been extensively used in areas such as agri‐
culture (Besag & Higdon, 1999), biostatistics (Gelfand & Vounatsou, 
2003; Waller & Gotway, 2004), ecology (Lichstein, Simons, Shriner, 
& Franzreb, 2002) and species distribution modelling (Drouilly, Clark, 
& O'Riain, 2018; Gelfand et al., 2005; Hooten et al., 2003; Latimer, 
Wu, Gelfand, & Silander, 2006).

The paper by Gelfand et al. (2005) lead to the development 
of the R package hSDM (Vieilledent et al., 2014) in which the 
hSDM.siteocc.iCAR function can be used to fit a particular spa‐
tial occupancy model to detection/nondetection data. A region 
under investigation is subdivided into ns grid cells each which 
are surveyed a number of occasions. The model is formulated 
using Bernoulli latent random variables z = (z1,… ,zns )

T. Formally, 
zi|�i∼Bernoulli(�i) with logit(�i) = xT

i
� + �i, for all i = 1,… ,n, where 

� = (�1,… ,�ns )
T is a multivariate Gaussian random vector with mean 

0 and correlation matrix defined using the neighborhood structure 
of the grid cells. The observation process is specified as in the non‐
spatial model. The documentation of the function indicates that pos‐
terior samples of the parameters of the model are obtained using 
the C programming language and utilizes an adaptive Metropolis al‐
gorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; 
Robert & Casella, 2013).

Johnson et al. (2013) develop two spatial occupancy models. They 
assume that probit link functions are used to model both the occu‐
pancy and detection processes and thereby rely on data augmentation 
to develop a Gibbs sampling algorithm to sample from the posterior 
distribution of the parameter of the models. For the probit case, the 
occupancy probability of a particular grid cell (for the standard occu‐
pancy model) is calculated as Φ(xT

i
�) = Pr(zi = 1). In a Bayesian con‐

text, such a probit model is formulated by defining a latent Gaussian 

(1)
[��z]∝ �(�)

ns∏
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TA B L E  1   The Gibbs algorithm for undertaking a SSO model 
using the “PG” method (See the Supporting Information (Appendix 
S3) for the details pertaining to the parameter matrices of the 
conditional posterior distributions.)
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random variable, z̃i with mean 0 and variance equal to 1 such that 
Pr(zi = 1) = Pr(z̃s > 0). In the first of their models, they allow z̃s to be 
spatially correlated such that z̃i = xT

i
� + 𝜂i + 𝜖i. � = (�1,… ,�ns )

T is de‐
fined as � above while �i∼ (0,1), for all i = 1,… ,ns.

Often the spatial random effects and fixed effects of a model 
are collinear when spatially varying covariates are included as fixed 
effects (Hanks, Schliep, Hooten, & Hoeting, 2015; Hodges & Reich, 
2010; Hughes & Haran, 2013; Reich, Hodges, & Zadnik, 2006). The 
suggested solution to this problem was to include spatial random 
effects in the model specification that are orthogonal to the fixed 
effects and is known as restricted spatial regression (RSR). The sec‐
ond spatial model developed by Johnson et al. (2013) uses this 
method and redefines z̃i as z̃i = xT

i
� + k

T

i
� + 𝜖i, where kT

i
 is a row 

vector of the design matrix K. The spatial random effects are mod‐
eled as

Q is a n×n ICAR precision matrix (Besag & Kooperberg, 1995) 
obtained using surveyed and unsurveyed locations, � is a spatial pre‐
cision parameter and i1 and i2 are known constants. Kelsall and 
Wakefield (1999) have suggested setting these parameters to 0.5 
and 0.005, respectively, such that the prior mean of � is 1,000. The 
matrix K consists of the first r (r ≪ n) eigenvectors of � = nRAR∕1

T
A1 

where R = In−X
(
X
T
X
)−1

X
T and A is an association matrix with (ij)th 

entry Aij = 1 if sites i  and j are neighbours and zero otherwise.
In our formulation of the spatial occupancy model, we model the 

occupancy probabilities at all grid cells as

where K and � are defined above. We make use of Pólya‐Gamma 
random variables to obtain the conditional distributions of the pa‐
rameters of the above spatial occupancy model. The conditional 
distributions are very similar to those obtained for the SSO model 
although here we require the conditional posterior distribution 
of additional parameters (� and �). A directed acyclic graph of the 
spatial SSO model is displayed in Figure 2 below while in Table 2, 
we summarize the Gibbs algorithms for a spatial SSO model which 
employs Equation 3 when using the PG method. The details re‐
garding the algorithm can be found in the Supporting information 
(Appendix S4).

2.3 | Applications

To demonstrate our methods, we used detection/nondetection 
data extracted from the 2nd Southern African Bird Atlas Project 
(SABAP2) database to produce a species distribution map of the 
Cape weaver (Ploceus capensis) and helmeted guineafowl (Numida 
meleagris) for South Africa. SABAP2 divides Southern Africa into a 
continuous grid of 5′ × 5′ and relies on citizen scientists to collect 
checklists of bird species for each grid cell. Birders are requested 

to spend at least 2 hr on each checklist in which they undertake in‐
tense birding and record all species they observe and the order in 
which they are observed. For this analysis, we aggregated the data to 
quarter‐degree grid cells. We used data that span South Africa and 
contained a minimum of three and a maximum of fifty surveys during 
2016 (January–December) in the analysis. Covariate information at 
unsurveyed locations was included in the analyses to obtain occu‐
pancy estimates that span South Africa. All covariates were centered 
and standardized.

�|�∼
(
0r,

1

�

(
K
T
QK

)−1
)
=

(
0r,

1

�
M
)
,

�∼(i1, i2) and �∼ (0n, In).

(3)logit(�i)=xT
i
�+kT

i
�,

F I G U R E  2   A directed acyclic graph illustrating the 
dependencies between the parameters and observed data for a 
spatial SSO model. Shaded nodes represents observed data while 
all latent parameters are represented using unshaded nodes. 
Deterministic relationships are represented using double arrows 
while all stochastic relationships are represented using a single 
arrow
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TA B L E  2   The Gibbs algorithm for undertaking a spatial SSO 
model (See the Supporting Information (Appendix S4) for the 
details pertaining to the parameter matrices of some of the 
conditional posterior distributions.)
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In our analysis, we fitted a nonspatial and spatial SSO model 
with one detection covariate and two occupancy covariates. The 
detection covariate used was the number of species observed by 
the birder (denoted as nspp), while the occupancy covariates were 
functions of seven climate variables. It is assumed that the more spe‐
cies the birder observes while birding, the more likely they are to 
observe the particular species being analyzed such that a positive 
detection regression effect is expected. The aim of the analysis is 
not to obtain the best occupancy model for the particular data sets 
but rather to highlight the use of the developed Gibbs sampling al‐
gorithm for fitting RSR occupancy models to the data using different 
software programs and different sampling methods. We specifically 
consider the Gibbs sampling algorithm by Johnson et al. (2013) (pro‐
bit link functions), our Gibbs algorithm (logit link functions), JAGS, 
and Stan (which uses a no‐U‐turn Hamiltonian Monte Carlo sampler 
(Hoffman & Gelman, 2014) to sample from the parameters of a pos‐
terior distribution).

The climate variables (Figure S5 in the Supporting Information 
Appendix S6) all form part of a data set used by Huntley et al. (2006) 
to model bird distributions in Southern Africa. The variables included 
two measures of annual temperature that related to thermal sums 
above 0 and 5 degree centigrade; two measures related to the mean 
temperature of the coldest and warmest month, respectively; the 
ratio of potential to realized evapotranspiration as well as two mea‐
sures that relates to the intensity of the dry and wet season, respec‐
tively. The climate variables are highly correlated with two of the 
variables having variance inflation factors in excess of 3,000 (Tables 
S2 and S3 in the Supporting Information Appendix S5). Because of 
this fact, it was decided to extract two principal components from 
the design matrix that consisted of the centered and standardized 
climate variables. These principal components explain 90% of the 
variation in the design matrix (Table S4 in the Supporting Information 
Appendix S5) and can tentatively be interpreted as a temperature re‐
lated factor and a climate intensity factor, respectively.

We follow Hughes and Haran (2013) and retain 10% of the eigen‐
values (�i i = 1,… ,n) of �. In a similar context, Johnson et al. (2013) 
suggest selecting a RSR model with �i ≥ 0.5 which suggests includ‐
ing at most 237 eigenvectors into the spatial portion of the model. 

Experimentation with different values of r between 150 and 230 
demonstrated no significant difference to the results we report here.

The following prior distributions were used for the parameters 
of the spatial SSO model: �∼ (0,1000I2), � ∼ (0,1000I3), and 
� ∼(0.5,0.005). The prior specification for � places more weight on 
large values of � indicating that very little prior weight is placed on 
the spatial random effects of the model. Broms (2013) performed 
a simulation study and found that the RSR model results are not 
sensitive to the prior specification of � and thus we have not done 
any analysis to test the sensitivity of our results to the prior speci‐
fication of �. All MCMC sampling was undertaken using the R pack‐
ages, stocc, jagsUI (Kellner, 2014) in combination with JAGS 4.2.0 
(Plummer, 2003), rstan in combination with Stan 2.17.3 as well as 
the authors’ code.1 All calculations were performed on a Windows 
10 Pro desktop computer which had an Intel(R) Core(TM) i7‐6900 
processor with 64 GB of RAM. One chain of 70,000 iterations was 
run. The first 20,000 samples were discarded as burn‐in samples, 
while the remaining samples were retained. Experimentation and 
an examination of the Geweke convergence diagnostic statistics 
(Geweke, 1992) and trace plots obtained by running three parallel 
chains using Rcppocc displayed that the MCMC chains converged 
using these numbers of iterations. The posterior samples were not 
thinned (Link & Eaton, 2012).

3  | RESULTS

From the analysis of both data sets, we observe that the Gibbs algo‐
rithm developed for the spatial occupancy model produces identical 
posterior distributions to those obtained when using JAGS and Stan 
(Figures A1 and A2 in Appendix 1). In both data sets, the posterior 
samples of the detection regression effects exhibit good mixing 
where the lagged sample autocorrelations of the posterior samples 
approach zero within 5 lags. The posterior samples of the occupancy 
regression effects as well as the precision of the spatial random ef‐
fect (�) exhibit slower mixing when using stocc, JAGS, and Rcppocc 
(denoted as “PG” in Figures A3 and A4 in Appendix 2), while Stan 
produced a posterior chain that mixed well. We observe that stocc 

TA B L E  3   Posterior run times for the Bayesian spatial occupancy models as well as the ESR (per minute) for �, �, and �

Species Method Time (min) �0 �1 �0 �1 �2 �

Cape weaver stocc (RSR) 27.00 552.71 725.59 12.03 7.83 22.37 11.35

stocc (ICAR) 136.76 104.41 142.57 0.25 0.10 0.15 0.14

JAGS 243.55 102.62 131.42 2.69 1.71 5.09 1.97

Stan 187.06 275.75 331.44 53.48 34.42 83.74 19.35

Rcppocc 19.88 1682.15 1804.42 85.32 53.40 141.82 116.19

Helmeted Guinea 
fowl

stocc (RSR) 27.08 619.72 563.24 11.63 43.61 48.34 15.61

stocc (ICAR) 165.23 65.92 97.15 0.04 0.16 0.09 0.05

JAGS 254.49 97.86 125.35 3.08 10.84 12.06 2.66

Stan 150.55 595.77 617.84 49.21 186.23 286.92 24.44

Rcppocc 19.9 1888.11 1493.07 86.16 314.04 364.47 106.06
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produced posterior samples for �, �, and � that had the largest levels 
of autocorrelation among all of the methods considered (when fit‐
ting the RSR model).

Table 3 tabulates the run times (in minutes) and effective sam‐
pling rate (ESR2  = the effective sample size per unit run time) of 
α, β, and τ for each of the sampling algorithms used to analyze the 
two data sets. For completeness sake, we also include the statis‐
tics related to the ICAR model when using stocc. We observe that 
stocc and Rcppocc had faster run times than JAGS and Stan. Rcppocc 
had the fastest running times and completed the 70,000 MCMC 
iterations approximately 12 times faster than JAGS and between 7 
and 10 times faster than Stan. Rcppocc has the largest ESR of all of 
the algorithms considered and produced ESR values which ranged 
between 1.5 and 6 times larger than those obtained by Stan; 3–11 
times larger than those obtained by stocc and 11–60 times larger 
than those obtained by JAGS. The ICAR models took approximately 
8 times longer to run than the RSR model when using stocc and 
resulted in significantly larger levels of autocorrelation within the �,  
�, and � chains.

The posterior summaries for some of the parameters of the 
nonspatial and spatial model are displayed in Table 4. The fixed re‐
gression effects of all of the parameters (for both data sets) were 
statistically different from zero since none of the 95% highest 

density credibility interval of the parameters contained zero. In all 
cases, the regression effect for nspp was positive (as expected), 
while the regression effects of the occupancy effects were neg‐
ative. The detection regression effects for both model types (for 
the respective species) were identical. The regression effects for 
the occupancy process for the Cape weaver were significantly dif‐
ferent for the two model types, while the same regression effects 
for the helmeted guineafowl were identical for both model types 
(except for the intercept). The posterior distribution of the spatial 
standard deviation parameter (� = 1∕

√
�) indicates that the spatial 

process does significantly contribute to the variability of the occu‐
pancy process across South Africa. The 95% posterior highest den‐
sity credibility interval for � is [5.56, 10.59] and [4.26, 8.42] for the 
Cape weaver and the helmeted guineafowl data sets, respectively.

Figure 3a,c displays the estimated occupancy probabilities 
(Pr (zi = 1|.)) across South Africa estimated using Rcppocc for the Cape 
weaver and helmeted guineafowl data set, respectively. The figures illus‐
trate that there is a high probability that the Cape weaver occupies coastal 
regions throughout South Africa and low occupancy probability (close to 
zero) in the interior areas of South Africa. In contrast, the helmeted guin‐
eafowl has very high occupancy probabilities in most regions of South 
Africa except for the North West regions of South Africa. Figure 3b,d 
displays the difference between the estimated occupancy probabilities 

TA B L E  4   Posterior summaries of the parameters of the Bayesian nonspatial and spatial occupancy models (posterior mean, Monte Carlo 
standard error, standard deviation, 2.5% and 97.5% quantiles)

Type Species Parameter Mean MCSE SD 2.5% 97.5%

Nonspatial Cape weaver �0 −0.32 0.0002 0.03 −0.38 −0.26

�1 0.56 0.0002 0.03 0.49 0.62

�0 −0.49 0.0006 0.10 −0.68 −0.30

�1 −0.71 0.0005 0.06 −0.84 −0.59

�2 −0.24 0.0004 0.06 −0.36 −0.12

Helmeted guineafowl �0 −0.10 0.0001 0.02 −0.15 −0.06

�1 0.78 0.0002 0.03 0.72 0.84

�0 −0.35 0.0006 0.06 −0.48 −0.22

�1 −0.36 0.0005 0.09 −0.54 −0.20

�2 −0.39 0.0008 0.08 −0.56 −0.24

Spatial Cape weaver �0 −0.33 0.0001 0.03 −0.39 −0.27

�1 0.58 0.0001 0.03 0.52 0.64

�0 −1.54 0.0030 0.30 −2.17 −1.00

�1 −1.51 0.0027 0.20 −1.96 −1.16

�2 −0.55 0.0012 0.15 −0.86 −0.27

� 0.02 0.0001 0.01 0.01 0.03

Helmeted guineafowl �0 −0.10 0.0001 0.02 −0.15 −0.05

�1 0.80 0.0001 0.03 0.74 0.85

�0 1.85 0.0029 0.25 1.40 2.40

�1 −0.36 0.0005 0.09 −0.54 −0.20

�2 −0.36 0.0004 0.10 −0.56 −0.17

� 0.03 0.0002 0.01 0.01 0.05
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obtained when using Rcppocc and stocc, respectively (“Rcppocc‐stocc”). 
The figures illustrate that we obtain similar estimates of the mean oc‐
cupancy probabilities when using either estimation method with small 
discrepancies at the majority of the grid cells across South Africa.

4  | DISCUSSION AND CONCLUSIONS

Through several studies, Bayesian methods have been developed 
to undertake occupancy models. They, however, either use probit 

link functions to model the detection and occupancy processes of 
the model; use general Bayesian analysis software such as JAGS, 
WinBUGS, OpenBUGS, or Stan to undertake their analysis or make 
use of the Metropolis–Hastings algorithm to sample from the pa‐
rameters of the model. We develop a Gibbs sampling algorithm to 
obtain posterior samples of the parameters of a restricted spa‐
tial regression (RSR) occupancy model and demonstrate that the 
method has a larger expected sampling rate (ESR) and faster run 
times when compared to previous Bayesian methods used in the 
literature to date.

F I G U R E  3   Estimated occupancy probability for the Cape weaver and helmeted guineafowl estimated using Rcppocc (a and c). The 
difference between the estimated occupancy probabilities obtained when using Rcppocc and stocc for the Cape weaver and helmeted 
guineafowl, respectively (b and d). The grid cells where the species have been detected at least once are displayed in (b) and (d)

(a)

(c) (d)

(b)
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Similar to Broms, Johnson, Altwegg, and Conquest (2014) and 
Johnson et al. (2013), we show that the ICAR model produced poste‐
rior samples with significantly larger autocorrelations than the RSR 
model when using stocc. As an example, the autocorrelations of the 
occupancy regression effects as well as the spatial precision param‐
eter (of both data sets) had autocorrelations in excess of 0.7 at lag 
500 indicating that the posterior chain of the model mixed poorly 
for those parameters of the ICAR model. Additionally, the run times 
of the ICAR model were approximately 5 times longer than the run 
times of the RSR model and thus we do not recommend its use when 
fitting a spatial occupancy model.

Based on the two data sets, we observed that the new algo‐
rithm not only ran faster (approximately 35%) than the Gibbs sam‐
pler implemented in stocc, it also generated expected sample size 
(ESS) statistics between 2 and 6 times larger than those obtained 
using stocc. The main reason for the time difference is that stocc has 
been coded using R, while Rcppocc uses Rcpp and RcppArmadillo 
to undertake all matrix computations. Stan uses compiled C++ code 
to implement the no‐U‐turn Hamiltonian Monte Carlo algorithm and 
generated ESS statistics between 2 and 7 times larger than those 
obtained using Rcppocc. In many applications, Stan has been shown 
to be much faster than JAGS although at present Stan has run times 
that are approximately 7–10 times slower than Rcppocc when fitting 
spatial occupancy models. The opportunity thus exists to develop 
suitable Stan (or NIMBLE) code that can fit spatial occupancy models 
in a shorter period of time.

ACKNOWLEDG MENTS

This research was partially supported by two South African National 
Research Foundation grants, namely, 99385 (Clark) and 81685 
(Altwegg). The financial assistance of the NRF toward this research is 
hereby acknowledged. Opinions expressed and conclusions arrived at, 
are those of the author and are not necessarily to be attributed to the 
NRF. Allan Clark would also like to acknowledge the help of Andrew D. 
Crosby, a Postdoctoral Fellow at the Boreal Avian Modelling Project, 
Department of Biological Sciences, University of Alberta. He shared 
code (with Allan Clark) on how to fit the single‐season occupancy 
model using Stan via email correspondence. The authors would also 
like to thank Prof Linda Haines (University of Cape Town) for reading 
the initial manuscript and providing helpful comments.

CONFLIC T OF INTERE S T

The authors have no conflict of interests to declare.

AUTHOR CONTRIBUTION

Below, Allan Ernest Clark is denoted as “AEC”, while Res Altwegg 
is denoted as “RA”. AEC and RA conceived and designed the paper. 
AEC analyzed the data. AEC wrote and, AEC and RA reviewed the 
paper. AEC designed and coded the software used in the analysis. 
AEC wrote computer code used to perform all analysis.

Notes
1An R package has been developed to fit these models using MCMC. 

All code can be obtained from https://github.com/AllanClark/Rcppocc. 
Appendix S7 in the Supporting Information includes a worked example 
explaining how to run RSR models using stocc, Stan, and Rcppocc. 

2ESR = the effective sample size per unit run time. The effec‐
tive sample size for the ith parameter in the model is defined as 
ESSi = M∕1 + 2

∑k

j=1
�i(j), where M is the number of retained samples, 

and �i(j) is the jth lagged autocorrelation of parameter i  (Holmes & 
Held, 2006). We use the coda package (Plummer, Best, Cowles, & 
Vines, 2006) to estimate ESSi. 
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APPENDIX 
Certain posterior distributions
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Figure A1. Posterior distributions of the parameters of the Bayesian spatial occupancy model using JAGS, Stan, and the Pólya‐Gamma formula‐
tion for the Cape weaver data set [(a) = �0, (b) = �1, (c) = �0, (d) = �1, (e) = �2, (f) =  1√
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Figure A2. Posterior distributions of the parameters of the Bayesian spatial occupancy model using JAGS, Stan, and the Pólya‐Gamma formula‐
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APPENDIX 
Certain lagged sample autocorrelation functions
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Figure A3. Estimated lagged sample autocorrelations of the posterior samples of the parameters of the Bayesian spatial occupancy model 
using JAGS, the Pólya‐Gamma formulation, Stan and stocc for the Cape weaver data set [(a) = �0, (b) = �1, (c) = �0, (d) = �1, (e) = �2, (f) =  1√
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Figure A4. Estimated lagged sample autocorrelations of the posterior samples of the parameters of the Bayesian spatial occupancy model using 
JAGS, the Pólya‐Gamma formulation, Stan and stocc for the helmeted guineafowl data set [(a) = �0, (b) = �1, (c) = �0, (d) = �1, (e) = �2, (f) =  1√
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