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Carnosic acid improves porcine early embryonic development  
by inhibiting the accumulation of reactive oxygen species
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Abstract.  Carnosic acid (CA), a natural catechol rosin diterpene, is used as an additive in animal feeds and human foods. 
However, the effects of CA on mammalian reproductive processes, especially early embryonic development, are unclear. 
In this study, we added CA to parthenogenetically activated porcine embryos in an in vitro culture medium to explore the 
influence of CA on apoptosis, proliferation, blastocyst formation, reactive oxygen species (ROS) levels, glutathione (GSH) 
levels, mitochondrial membrane potential, and embryonic development-related gene expression. The results showed that 
supplementation with 10 μM CA during in vitro culture significantly improved the cleavage rates, blastocyst formation rates, 
hatching rates, and total numbers of cells of parthenogenetically activated porcine embryos compared with no supplementation. 
More importantly, supplementation with CA also improved GSH levels and mitochondrial membrane potential, reduced natural 
ROS levels in blastomeres, upregulated Nanog, Sox2, Gata4, Cox2, Itga5, and Rictor expression, and downregulated Birc5 
and Caspase3 expression. These results suggest that CA can improve early porcine embryonic development by regulating 
oxidative stress. This study elucidates the effects of CA on early embryonic development and their potential mechanisms, and 
provides new applications for improving the quality of in vitro-developed embryos.
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There are significant differences between the in vivo microenviron-
ment and in vitro culture (IVC) systems. Increased oxygen partial 

pressure may be one of the main reasons for the increased oxidative 
stress in IVC environments [1, 2]. In vitro embryo production (IVP) 
procedures, including oocyte in vitro maturation (IVM) and early 
embryo IVC, have attracted attention due to their potential applications 
in agricultural production and scientific research [3–5]. Compared to 
embryos of other species, such as cattle and mice, porcine embryos are 
more sensitive to environmental culture conditions, such as nutrient 
content, ambient temperature and humidity, ROS levels, and osmotic 
pressure [6, 7]. Therefore, optimization of the embryo production 
process is key to improving the production of porcine embryos [8].

Studies have shown that adding antioxidants to the IVC medium 
can effectively reduce ROS accumulation during aerobic metabolism 
of the embryo [9]. Currently, ferulic acid [10], lycopene [11], and 
melatonin [12] have been shown to improve the quality of early 
embryonic development. However, the use of additives has certain 

side effects. For example, melatonin is associated with seasonal 
reproductive capacity and sexual maturation [13], and is not recom-
mended for use in breast-feeding women [14]. Therefore, it is critical 
to develop more additives that can improve the quality of early 
embryonic development.

Carnosic acid (CA) is a phenolic diterpenoid that is abundant in 
the leaves of rosemary [15] and is used to protect chloroplasts from 
oxidative damage [16]. CA is widely used as a food preservative 
and protective agent, and it is used in the nutritional healthcare and 
cosmetic industries due to its fragrance and antibacterial activity. 
In addition, studies have shown that CA can reduce lipid oxidation, 
and exhibits great potential for the protection of nerves and the 
treatment of obesity-related diseases [17–19]. However, its effects 
on mammalian reproductive processes, especially in female ovarian 
development and early embryonic development, are still unclear.

Proper addition of antioxidants can reduce oocyte and embryo 
damage caused by oxidative stress [20, 21]. Studies have shown that 
CA can improve antioxidant activity in cells, inhibiting oxidative 
stress caused by H2O2 or other toxic substances in vivo to reduce 
cell damage. More importantly, CA supplementation improves the 
quality of thawed sperm [22]. However, whether CA has the potential 
to improve early embryonic development by lowering ROS levels 
is still unclear.

In this study, we identified the effects of CA supplementation on 
anti-ROS and mitochondrial functions during early parthenogenetic 
activation in the context of embryonic development. Our findings 
provide a new theoretical basis for improving the quality of in vitro-
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developed embryos and enhance understanding of the biological 
effects of CA.

Materials and Methods

Chemicals and reagents
All chemicals and reagents were purchased from Sigma-Aldrich 

(St. Louis, MO, USA) unless explicitly stated otherwise. CA (Selleck 
Chemicals, TX, USA) was dissolved in dimethyl sulfoxide (DMSO) 
and then diluted to specific concentrations used for the experiment.

Oocyte collection and IVM
Briefly, porcine ovaries were collected from a local slaughterhouse 

and transferred to the laboratory within 1 h in normal saline at 30–35ºC. 
A 10 ml syringe was used to aspirate the cumulus-oocyte complexes 
(COCs) from 3–6 mm follicles. Oocytes with at least three layers 
of cumulus cells were washed thrice in Tyrode’s Lactate HEPES 
(TL-HEPES) and selected for further experiments. No more than 
100 oocytes were transferred to 500 µl of mineral oil-covered IVM 
medium (medium 199 supplemented with 10% porcine follicular fluid, 
1 μg/ml insulin, 75 μg/ml kanamycin, 0.91 mM sodium pyruvate, 
0.57 mM L-cysteine, 10 ng/ml epidermal growth factor, 0.5 μg/ml 
porcine follicle-stimulating hormone, and 0.5 μg/ml sheep luteinizing 
hormone) and cultured at 38.5ºC in an atmosphere of 5% CO2 and 
100% humidity for 44 h.

All experimental procedures performed in this study have been 
approved by the Animal Protection and Use Committee of Jilin 
University (201802070).

Parthenogenetic activation and early embryo IVC
Denuded mature oocytes were parthenogenetically activated using 

two direct-current pulses of 120 V for 60 µsec in 297 mM mannitol 
containing 0.5 mM HEPES, 0.05 mM MgSO4, 0.1 mM CaCl2, and 
0.01% polyvinyl alcohol (PVA). Next, the oocytes were cultured 
in bicarbonate-buffered porcine zygote medium 5 (PZM-5) [23] 
containing 4 mg/mL BSA and 7.5 µg/ml cytochalasin B for 3 h to 
suppress the extrusion of the pseudo-second polar body. Finally, the 
oocytes were washed and cultured in 500 μl of bicarbonate-buffered 
PZM-5 containing 4 mg/ml BSA with or without CA, covered with 
mineral oil at 38.5°C in 5% CO2 without changing the medium. 
Embryos cultured in IVC medium with 0.1% DMSO served as 
negative control (NC) groups. To determine the dose-dependent 
effects of CA on early porcine embryos cultured in vitro, activated 
embryos were cultured with different concentrations (0 μM, 5 μM, 
10 μM, 25 μM, and 50 μM) of CA (the final concentration of DMSO 
was 0.1%). Blastocyst formation rates were detected on days 5 and 6.

Cell counting and TUNEL assays
Apoptosis was analyzed using a TUNEL (terminal deoxynucleotidyl 

transferase biotin-dUTP nick end labeling) assay kit (Invitrogen, Grand 
Island, NY, USA) following the manufacturer’s instructions. In brief, 
blastocysts were washed three times with phosphate-buffered saline 
containing 0.1% PVA (PBS-PVA), fixed with 3.7% paraformaldehyde, 
and permeabilized by incubation in 0.1% Triton X-100 for 30 min at 
room temperature. Next, the embryos were washed three times with 
PBS-PVA and incubated with fluorescein-conjugated dUTP and the 

terminal deoxynucleotidyl transferase enzyme (Roche Diagnostics, 
Indianapolis, IN, USA) in the dark for 1 h at 37°C. After incubation 
with 1 mg/ml Hoechst 33342 for 5 min at 37°C to label the nuclei, 
a fluorescence microscope (Olympus, Tokyo, Japan) and ImageJ 
software (NIH, Bethesda, MD, USA) were used to analyze the 
fluorescence intensities, the numbers of apoptotic nuclei, and the 
total number of nuclei observed. Apoptosis was evaluated based on 
the percentages of apoptotic nuclei in the blastocysts.

ROS and glutathione (GSH) level assays
After culture for 48 h, intracellular ROS and GSH levels in the 

blastomeres were determined by incubating the 4-cell-stage embryos in 
PBS-PVA medium containing 10 mM 2’,7’-dichlorodihydrofluorescein 
diacetate (H2DCFDA; Invitrogen) and 10 mM 4-chloromethyl-6,8-
difluoro-7-hydroxycoumarin (CMF2HC, Invitrogen) for 15 min and 
30 min at 37°C, respectively. After washing three times in PBS-PVA, 
a fluorescence microscope (Olympus) and ImageJ software were 
used to analyze the fluorescence intensities.

Determination of mitochondrial membrane potential  
(MMP, ΔΨm)

Mitochondrial function was detected by measuring the ΔΨm. 
Briefly, 4-cell-stage embryos were washed three times with PBS-PVA 
and incubated in PBS-PVA containing 2 μM 5,5′,6,6′-tetrachloro-
1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine-iodide dye (JC-1; 
Invitrogen) at 37°C for 30 min. After washing with PBS-PVA three 
times, the red and green fluorescence intensities were captured using 
a fluorescence microscope. The average ΔΨm values of entire 4-cell-
stage embryos were then calculated as the ratios of red fluorescence 
intensity (corresponding to active mitochondria) to green fluorescence 
intensity (corresponding to inactive mitochondria) using ImageJ 
software.

RNA extraction and qRT-PCR assay
Total mRNA was extracted from approximately 30 blastocysts 

using a Dynabeads mRNA DIRECT Purification Kit (Invitrogen). 
cDNA was synthesized from the extracted mRNA using a reverse 
transcription kit (Tiangen Biotech, Beijing, China). Each 20 µl 
qRT-PCR reaction mixture included 8 µl of deionized water, 10 µl 
of SuperReal PreMix Plus (Tiangen), 1 µl of cDNA, 0.5 µl of the 
forward primer (10 mM), and 0.5 µl of the reverse primer (10 mM). 
The qRT-PCR conditions included denaturation at 95°C for 300 sec 
followed by 40 cycles of 95°C for 20 sec, 60°C for 20 sec, and 72°C 
for 20 sec. Gene expression was quantified using a Mastercycler ep 
realplex (Eppendorf, Hamburg, Germany) and the 2–ΔΔct method 
with 18S rRNA as the standard. The primer sequences are shown in 
Supplementary Table 1 (online only).

Statistical analysis
The statistical results are presented as means ± standard deviation 

(SD). The total number of embryos used (n) and the number of 
independent repeats (R) for each experiment are shown in the figure 
notes. Data for two groups were compared using Student’s t-test. 
Three or more means were analyzed using one-way ANOVA (Tukey-
Kramer). All statistical analyses were performed using SPSS version 
22.0 (IBM,  Chicago, IL, USA) software. Significant differences are 
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represented with * (P < 0.05) and ** (P < 0.01).

Results

Different CA concentrations affect porcine early embryonic 
development

In this study, four concentrations were selected. As shown in 
Fig. 1, the blastocyst rates in the 0 μM, 5 μM, 10 μM, 25 μM, and 
50 μM concentration groups on Day 5 were 23.06 ± 1.50, 27.30 ± 
4.22, 38.91 ± 2.80, 17.71 ± 2.31, and 4.14 ± 0.75%, respectively, 
while those on Day 6 were 31.88 ± 0.71, 36.04 ± 2.37, 45.59 ± 
4.01, 21.89 ± 2.16, and 7.74 ± 2.05%, respectively. On the basis of 
these results, the 10 μM concentration was selected for subsequent 
experiments in this study.

CA improves early embryonic development
As shown in Fig. 2, the cleavage rates (86.06 ± 2.42 vs. 93.73 ± 

1.31%), blastocyst formation rates (22.08 ± 2.29 vs. 31.70 ± 4.16% on 
Day 5, 32.07 ± 2.11 vs. 45.59 ± 3.97% on Day 6, and 41.61 ± 2.94 vs. 
51.38 ± 3.56% on Day 7), hatching rates on Day 7 (10.92 ± 1.25 vs. 
13.76 ± 1.05%), and blastocyst diameters on Day 7 (179.92 ± 37.38 
vs. 205.66 ± 40.89 μm) were significantly higher in parthenogenetic 
embryos cultured with CA in the IVC medium than in those cultured 
without CA in the medium.

CA improves total cell numbers and reduces apoptosis in 
blastocysts

Subsequently, Hoechst 33342 staining and TUNEL staining (Fig. 
3A) were used to assess changes in total cell numbers and apoptosis 
in early embryos, respectively. CA increased the total number of 
blastocyst cells from 59.25 ± 21.36 in the control group to 72.34 ± 
23.05 in the treated group (Fig. 3B, P < 0.01). The apoptosis rate of 

blastocysts decreased from 6.71 ± 2.85% in the control group to 3.10 
± 1.71% in the CA-treated group (Fig. 3C, P < 0.05).

Fig. 1. Blastocyst rates on Day 5 and Day 6 after treatment with 
different carnosic acid (CA) concentrations. (A) Embryonic 
development on Day 5 and Day 6 after treatment with different 
CA concentrations. Scale bar = 400 μm. (B) Blastocyst rates in 
the groups treated with 0 μM (n = 160), 5 μM (n = 173), 10 μM 
(n = 180), 25 μM (n = 182), and 50 μM (n = 168) CA. R = 3. 
Significant differences are represented with ** (P < 0.01). 

Fig. 2. Effects of carnosic acid (CA) on the development 
of parthenogenetic embryos. (A) Embryonic development 
in the negative control (NC) and CA-treated groups on 
different days. Scale bar = 400 μm. (B) Cleavage rates of 
embryos in the NC group (n = 214) and the CA-treated 
group (n = 217). R = 4. (C) Blastocyst formation rates 
in the NC group (n = 254) and the CA-treated group (n 
= 298) on different days. R = 5. (D) Average diameters 
of blastocysts on Day 6 in the NC group (n = 107) and 
the CA-treated group (n = 133). R = 4. Plot depicting the 
distributions of embryo diameter for black dots in the 
NC and CA-treated groups. (E) Hatching rates in the NC 
group (n = 254) and the CA-treated group (n = 298). R = 5. 
Significant differences are represented with * (P < 0.05) 
and ** (P < 0.01).
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CA reduces ROS accumulation and improves GSH levels  
in porcine embryos

Excessive ROS levels in vivo cause oxidative stress, which greatly 
reduces early embryonic developmental competence. Therefore, we 
first analyzed whether supplementation with CA could reduce ROS 
levels during early embryonic development. As shown in Figs. 4A 

Fig. 3. Total cell numbers and apoptotic nuclei in blastocysts with or 
without carnosic acid (CA) treatment. (A) Apoptotic nuclei in 
the negative control (NC) and CA-treated groups. The white 
arrows indicate nuclei positively stained for apoptosis. Scale bar 
= 100 μm. (B) and (C) Total cell numbers and apoptosis rates 
in blastocysts with (n = 57) or without (n = 73) CA treatment, 
respectively. R = 3. Black dots represent the tested values. 
Significant differences are represented with * (P < 0.05) and ** (P 
< 0.01).

Fig. 4. Effects of carnosic acid (CA) on oxidation resistance in 4-cell-
stage embryos. (A) Fluorescence intensity of H2DCFDA staining 
in different groups. Scale bar = 200 μm. (B) Fluorescence 
intensity of CMF2HC staining in the negative control (NC) and 
CA-treated groups. Scale bar = 200 μm. (C) Relative reactive 
oxygen species (ROS) levels in 4-cell-stage embryos. Plot 
depicting the distributions of relative embryo ROS levels for 
blue (n = 86), green (n = 104), red (n = 90), and orange (n =  
74)-colored dots in different groups. Significant differences are 
represented with different capital letters (P < 0.01). R = 5. (D) 
Relative GSH levels of 4-cell-stage embryos in the NC (n = 91) 
and CA-treated (n = 93) groups. R = 3. Significant differences are 
represented with different capital letters (P < 0.01) and ** (P < 
0.01).

Fig. 5. Carnosic acid (CA) enhances mitochondrial activity. (A) JC-1 staining in 4-cell-stage embryos with or without CA treatment. (B) Relative 
fluorescence levels of JC-1 in the negative control (NC) (n = 126) and CA-treated (n = 140) groups. R = 5. Black dots represent the tested values. 
Scale bar = 100 μm. Significant differences are represented with ** (P < 0.01).
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and 4C, the ROS levels in embryos treated with CA were lower 
(0.81 ± 0.23-fold) than those in the negative control (NC) embryos. 
To further confirm the effect of CA on oxidation resistance, we 
treated parthenogenetic embryos with H2O2 for 30 min before IVC 
with CA. At the 4-cell stage, we found that CA-treated embryos 
exposed to H2O2 showed significantly lower ROS production than 
non-CA-treated embryos exposed to H2O2, although the levels in 
the CA-treated H2O2-exposed group were still higher than those in 
the NC group. In addition, the relative GSH fluorescence intensity 
was significantly higher (1.41 ± 0.24-fold, P < 0.01) in CA-treated 
embryos than in NC embryos (Figs. 4B and 4D).

CA enhances mitochondrial activity during early porcine 
embryonic development

Mitochondrial activity is related to oocyte quality and embryonic 
developmental potential. We subsequently tested mitochondrial activity 
in early porcine embryos (Fig. 5). Our results showed that the ΔΨm 
values of embryos in the CA treatment group were significantly 
higher (1.34 ± 0.48-fold, P < 0.01) than those of NC embryos. Thus, 
ΔΨm increased significantly after CA treatment, indicating that 
supplementation with CA enhanced mitochondrial activity.

Differential gene expression in blastocysts with or without CA
To analyze the potential mechanism by which CA influenced 

embryonic development, the expression of pluripotency-related 
genes (Nanog and Sox2), hatching-related genes (Cox2, Gata4, and 
Itga5) and apoptosis-related genes (Rictor, Caspase3, and Birc5) were 
detected by qRT-PCR (Fig. 6). The results showed that the expression 
levels of Nanog (P < 0.05), Sox2 (P < 0.05), Gata4 (P <  0.05), Cox2 
(P < 0.05), Itga5 (P < 0.05), and Rictor (P < 0.01) were higher, while 
those of Birc5 (P < 0.05) and Caspase3 (P < 0.01) were lower, in the 
CA-supplemented group compared with the NC group.

Discussion

At present, CA is mainly used as an anti-inflammatory, antibacterial, 
and anticancer agent, as well as for cardiovascular disease therapy. 
However, studies on its effects on mammalian reproductive processes, 
especially its antioxidant effects during early embryonic development, 
are limited. This study found that 10 μM CA significantly increased 
the blastocyst rates and hatching rates of early embryos (Fig. 1 and 
Fig. 2). More importantly, the cleavage rates and the developmental 
competency of embryos at the 4-cell stage were significantly improved 
with CA supplementation. The cleavage stage and the 4-cell stage are 
key stages in porcine embryonic development and zygotic genome 
activation [24]. Appropriate additives can be beneficial for overcoming 
blocks in embryonic development and for improving embryonic 
developmental potential [11, 25, 26]. Therefore, we also investigated 
the effects of CA on 4-cell-stage embryonic development.

Many factors, such as visible light, ambient air, and the composi-
tion of the culture medium, can accelerate the production of ROS 
in embryos in IVC [27–30], affecting the growth and development 
of early stage embryos or even causing their death [30, 31]. In this 
study, CA supplementation significantly decreased ROS levels and 
significantly increased GSH levels in 4-cell-stage embryos (Fig. 4). 
Studies have shown that the regulatory effects of CA on HO-1, NQO-1, 

γ-GCS, and Nrf2 indicate the potential of CA in regulating GSH 
[32–34]. GSH is a major non-enzymatic member of the antioxidant 
stress system and plays a central role as an endogenous antioxidant 
scavenger [35]. GSH is involved in various cellular processes and 
regulates intracellular redox reactions to protect cells from oxida-
tive damage and maintain normal cell states [36]. Therefore, we 
hypothesized that CA could not only reduce ROS levels in cells but 
also remove ROS from porcine embryos cultured in IVC medium. 
We used H2O2 to induce intracellular production of large amounts 
of ROS and found that CA supplementation effectively inhibited 
H2O2-induced increases in ROS levels. Thus, consistent with other 
research results, our results indicated that CA could effectively 
reduce ROS levels during early embryonic development (Fig. 4A). 
The main mechanism may involve regulation of ERK, Keap1/Nrf2, 
PI3K/Akt, and the c-fos signaling pathway [37–40].

Mitochondria are important energy supply units during embryonic 
development [41]. Whether or not mitochondrial function is normal 
directly affects embryonic development competency [42, 43]. Most of 
the adenosine triphosphate (ATP) required for cell growth is produced 
by mitochondrial oxidative phosphorylation, and ATP insufficiency 
in cells leads to cell aging and apoptosis [44–46]. Cells and embryos 
show better growth, proliferation, and growth potential when ΔΨm is 
high [47–49]. In this study, CA supplementation effectively improved 
porcine early embryo ΔΨm values (Fig. 5), which suggested that CA 
can strengthen mitochondrial function in all blastomeres. Studies have 
shown that high levels of ROS usually cause mitochondrial dysfunc-
tion, resulting in DNA, protein, and lipid oxidation and ultimately 
lead to cell aging and death [50–52]. However, supplementation 
with CA increased intracellular GSH levels and decreased ROS 
levels, which meant that CA can stabilize or enhance mitochondrial 
function by inhibiting ROS production, consistent with the results of 
other studies [53, 54]. This mechanism may be an important way in 
which CA effectively improves embryonic developmental capacity.

Fig. 6. Differential gene expression in blastocysts. Gene expression 
levels were analyzed in porcine blastocysts with or without 
carnosic acid (CA) treatment on Day 7. Significant differences 
are represented with * (P < 0.05) and ** (P < 0.01).
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Furthermore, our TUNEL results showed that supplementation with 
CA effectively reduced apoptosis while increasing the total viable cell 
numbers of blastocysts (Fig. 3). This finding is related to the ability 
of CA to increase GSH levels and reduce ROS accumulation, because 
high levels of ROS can damage cell membranes and DNA, causing 
apoptosis [55, 56]. The downregulation of the apoptotic genes Birc5 
and Caspase3 and the upregulation of the anti-apoptotic gene Rictor 
in the CA-supplemented group also support the anti-apoptotic effect 
of CA [57–59]. In addition, CA is known to alleviate endoplasmic 
reticulum stress [60], which reduces apoptosis through inhibition 
of the JNK, p38, MAPK, and NF-κB signaling pathways [61–63]. 
However, we also found that the blastocyst rate in the 25 μM CA 
group was lower than that in the NC group; this result is similar 
to the findings of some studies indicating that CA also affects the 
degradation of CDK [64] and induces apoptosis by regulating Akt, 
NF-κB, mTOR, and the Src/STAT3 signaling pathways, depending 
on the concentration and cell line [65–68].

Finally, we examined the expression of the pluripotency-related 
genes Nanog and Sox2 and the blastocyst formation-related genes 
Gata4, Cox2, and Itga5 to explore the effects of CA on early embryo 
pluripotency (Fig. 6). The gene expression of Sox2 and Nanog were 
upregulated by supplementation with CA, indicating that CA can 
maintain pluripotency and self-renewal as well as the development of 
pre-implantation embryos [69, 70]. The higher expression of Gata4, 
Cox2, and Itga5 genes in the CA group compared to the NC group 
was consistent with the higher blastocyst rate and better blastocyst 
quality in the CA supplementation group [71–73]. This finding also 
indicated that CA can affect blastocyst hatching and embryonic stem 
cell differentiation into mature functional cells by regulating Gata4 
and Itga5 [74, 75], and that it can affect embryo implantation and 
spacing by regulating Cox2 [76, 77].

In this study, we tested the effects of CA on early parthenogenetic 
embryo development, because we can easily obtain a larger number of 
embryos with similar biological properties. Parthenogenetic embryos 
have been widely accepted as a model for embryo development 
mechanism research as well as drug screening, toxicity research, and 
human-assisted reproduction [78, 79]. However, gene expression and 
certain biological characteristics of parthenogenetic embryos still have 
some differences compared with IVF embryos [80, 81]. Therefore, 
before applying CA as an antioxidant to IVP or a functional health 
care drug, more in-depth research on its safety and biological effects 
is still needed. Nevertheless, our results suggest that supplementa-
tion of IVC medium with appropriate concentrations of CA can 
enhance early embryonic development by reducing ROS levels 
and apoptosis, as well as enhancing mitochondrial function. More 
importantly, CA-supplemented feeds or diets may not only have 
benefits on improving the plasma lipid profile [82], detoxifying 
the body [83], and delaying aging [84], but also have potential on 
stabilizing the microenvironment and physiological functions of 
female mammals by reducing the content of ROS accumulation in 
the ovary and reproductive tract, as well as in the fertilization of 
eggs and implantation [85, 86].

In summary, this study suggests that supplementation of the 
IVC medium with 10 μM CA can improve the quality of early 
embryos, enhancing parameters such as cleavage rates, blastocyst 
rates, blastocyst diameters, hatching rates, and total cell numbers in 

blastocysts. More importantly, we confirmed that CA can improve 
GSH levels, inhibit ROS accumulation, enhance mitochondrial 
function, upregulate embryo pluripotency, and suppress early embryo 
apoptosis. These results will aid in the development of antioxidants 
and in the improvement of IVC systems in the future.
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