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Abstract

Objective: There have been no recent improvements in the glioblastoma multiforme (GBM)

outcome, with median survival remaining 15 months. Consequently, the need to identify novel

biomarkers for GBM diagnosis and prognosis, and to develop targeted therapies is high. This

study aimed to establish biomarkers for GBM pathogenesis and prognosis.

Methods: In total, 220 overlapping differentially expressed genes (DEGs) were obtained by

integrating four microarray datasets from the Gene Expression Omnibus database (GSE4290,

GSE12657, GSE15824, and GSE68848). Then a 140-node protein–protein interaction network

with 343 interactions was constructed.

Results: The immune response and cell adhesion molecules were the most significantly enriched

functions and pathways, respectively, among DEGs. The designated hub genes ITGB5 and RGS4,

which have a high degree of connectivity, were closely correlated with patient prognosis, and

GEPIA database mining further confirmed their differential expression in GBM versus normal

tissue. We also determined the 20 most appropriate small molecules that could potentially

reverse GBM gene expression, Prestwick-1080 was the most promising and had the highest

negative scores.

Conclusions: This study identified ITGB5 and RGS4 as potential biomarkers for GBM diagnosis

and prognosis. Insights into molecular mechanisms governing GBM occurrence and progression

will help identify alternative biomarkers for clinical practice.
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Introduction

Glioblastoma multiforme (GBM) is the
most common malignant central nervous
system tumor and is highly fatal.
Although multimodal treatments for
GBM, including surgical resection, chemo-
therapy, radiation, and targeted therapy,
have improved, the overall survival of
patients remains far from ideal with a
median time of approximately 15 months.
Additionally, after recurrence, survival time
drops to below 6 months.1–4

Recent studies have focused on targeting
tumor growth factor receptors, epigenetic
regulation, angiogenesis, and immune
responses to improve overall survival and
decrease the recurrence rate.5 To date, indi-
vidualized therapies against molecular tar-
gets and signaling pathways that drive
GBM malignancy have been unsuccessful
in randomized clinical trials.6 Thus, identi-
fying promising novel biomarkers and
understanding their molecular mechanisms
will enhance our understanding of GBM
initiation and progression.

Approximately 20% of GBM patients
have deletions of the epidermal growth
factor receptor gene (EGFR) in exons 2 to
7 that induce a constitutively-active carci-
nogenic variant, which is also commonly
related to EGFR amplification
(EGFRvIII). Results from phase III ran-
domized trials with newly diagnosed
EGFRvIII-positive GBM patients showed
that rindopepimut, an EGFRvIII
peptide vaccine, did not significantly pro-
long overall survival compared with the
controls.7

Amplification of the platelet-derived
growth factor receptor A gene (PDGFRA)
is present in 15% of GBM patients. This
receptor is highly active in all types of glio-
mas and could be the most promising target
for treating GBM. However, multiple
multi-kinase inhibitors that target PDGFR
showed no clinical activity or response in
GBM patients.8,9 Finding new biomarkers
that correlate with GBM pathogenesis and
prognosis is therefore a crucial necessity.

This study integrated gene expression
profiles from four Gene Expression
Omnibus (GEO) datasets (GSE4290,
GSE12657, GSE15824, and GSE68848) to
identify differentially expressed genes
(DEGs) in GBM versus adjacent normal
tissue. We also mined the Connectivity
Map (CMap) database for specific candi-
date small molecules that could conceivably
reverse the DEGs in GBM, which yielded
two novel biomarkers that were significant-
ly correlated with patient diagnoses and
prognoses. These new biomarkers may
also help reveal the molecular mechanisms
involved in GBM initiation and progres-
sion. In summary, this study was designed
to deliver new insights into GBM, which is
a multi-gene hereditary disease, while also
exploring promising novel biomarkers for
diagnosis, prognosis, and targeted thera-
pies. Figure 1 shows the study workflow.

Materials and methods

Data resources

This study investigated DEGs in GBM
versus normal samples by analyzing
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GSE4290, GSE12657, GSE15824 and

GSE68848 GEO gene expression profiles

downloaded from the GEO database

(http://www.ncbi.nlm.nih.gov/geo/). GEO

serves as a public repository for experimen-

tal high-throughput microarray data.

These RNA profiles were generated with

the GPL570 (Affymetrix Human Genome

U113 Plus 2.0) and GPL8300 (Affymetrix

Human Genome U95 Version 2) array plat-

forms. We aggregated 345 GBM and 61

control samples for our study, with

Figure 1. Study workflow to identify key genes and pathways in GBM.
GBM, glioblastoma multiforme.
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individual profile counts being: GSE4290,

77 tumor and 23 normal; GSE12657,

seven tumor and five normal; GSE15824,

33 tumor and five normal; and GSE68848,

228 tumor and 28 normal.

Identification of DEGs

Original CEL files downloaded were classi-

fied into GBM and normal groups. The

Bioconductor package ‘affy’ (http://www.

bioconductor.org/) facilitated data stan-

dardization and converted raw data into

expression values. DEGs between GBM

samples and normal tissues were identified

via a significance analysis of the empirical

Bayes methods, which was applied within

the Limma package.10 The cut-off criteria

set to designate significant DEGs were P

value <0.05 and |logFC| >1.

Functional enrichment analysis

Gene ontology (GO) enrichment analysis

using the Database for Annotation

Visualization and Integrated Discovery

(DAVID) was conducted to study potential

biological processes, molecular functions,

and cellular components related to the over-

lapping DEGs. DAVID is a universal

online biological information database

with comprehensive annotations on gene

and protein functions (version 6.7; http://

david.ncifcrf.gov).11–14 The Kyoto

Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis further eluci-

dated the potential signaling pathways

associated with the overlapping DEGs.

KEGG is a compilation of several data-

bases with large amounts of information

on genomes, diseases, biological pathways,

chemical substances, and drugs that is

extensively used to ascertain functional

and metabolic pathways.15 A P value

<0.05 was deemed statistically significant.

Protein–protein interaction (PPI) network

construction and module analysis

The Search Tool for the Retrieval of

Interacting Genes (STRING; https://
string-db.org/) database is designed to eval-

uate PPI information.16 The previously

identified DEGs were all submitted to this
database to explore potential interactions;

those with a combined score >0.4 were con-

sidered significant and extracted for PPI
network construction in Cytoscape.17

Molecular Complex Detection (MCODE)

was subsequently used to screen significant

modules from the PPI network, with the
degree cutoff set as 2, node score cutoff as

0.2, k-core as 2, and maximum depth as

100.18 Functional and pathway enrichment
analyses of these modules were also con-

ducted. The Biological Process analysis of

the hub genes was visualized via the
Cytoscape plugin Biological Networks

Gene Oncology tool (BiNGO).19

Analysis and validation of hub genes

The UCSC Cancer Genomics Browser
(http://genome-cancer.ucsc.edu) was used

to construct a hierarchical clustering of

module genes, and the cBioPortal online
platform (http://www.cbioportal.org)

established a network of co-expressed

genes. The reliability of hub gene expression
levels in GBM relative to normal samples

was further confirmed via Gene Expression

Profiling Interactive Analysis (GEPIA),

which is an interactive web application
that comprises 8587 normal and 9736

tumor samples from the Genotype–Tissue

Expression and The Cancer Genome Atlas
databases.20–22 The prognostic significance

of hub genes was additionally explored on

the GEPIA platform. A hazard ratio for
overall survival (OS) was calculated with a

95% confidence interval (CI), and Kaplan–

Meier curves and boxplots used to show
correlations with DEGs and patient
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prognosis. The protein expression of hub

genes in GBM relative to normal tissues

was investigated via the Human Protein

Atlas (HPA; www.proteinatlas.org) data-

base, which is an online tool allowing

users to analyze protein levels in clinical

samples.

Identification of small molecules

CMap (http://www.broadinstitute.org/

cmap/) was used to predict potential small

molecules that may dampen or even reverse

the existing biological status of GBM

regarding its particular gene expression sig-

nature.23 We compared the DEGs in our

study with those that contribute to small

active molecular interference in the CMap

database to discover potentially correlated

small molecules. The overlapping DEGs

were initially allocated as downregulated

and upregulated groups, and probe sets

from each with significant differential

expression were then designated for Gene

Set Enrichment Analysis. The scores signi-

fied a high to low similarity amongst the

compared genes, ranging correspondingly

from �1 to þ1, such that a positive value

approaching þ1 denoted the small mole-

cules that were predicted to induce a

GBM-like cell state, while a negative score

nearing �1 implied that the small molecule

reversed the GBM-like state of gene

expression.

Results

Identification of DEGs in GBM

A Limma package analysis mined 220 over-

lapping DEGs in GBM samples from the

GSE4290, GSE12657, GSE15824, and

GSE68848 GEO datasets. Figure 2a

presents the volcano plot, and Figure 2b

the Venn diagrams for these DEGs.

Enrichment analyses

The biological functions of the identified

DEGs were explored via functional and
pathway enrichment analyses, using

DAVID. GO analysis showed significant

enrichment of up- and down-regulated
DEGs in immune, inflammatory, and

wound responses, as well as in antigen proc-

essing and the expression of peptide antigen.

Cell component analysis revealed that these
DEGs were specifically active in the plasma

membrane compartment, major histocom-

patibility complex (MHC) protein complex,
neuron projections, and cell fraction.

Likewise, the molecular functions of the

DEGs were significantly enriched in purine
nucleotide, ribonucleotide, purine ribonu-

cleotide, lipopolysaccharide, and glycosami-

noglycan binding. Furthermore, KEGG
pathway analysis suggested that these

DEGs were also significantly enriched for

cell adhesion molecules, type I diabetes mel-
litus, focal adhesion, allograft rejection, and

graft-versus-host disease (Figure 3, Table 1).

PPI network construction and

module analysis

Using Cytoscape, a STRING database was
used to establish a PPI network of these

DEGs, with 140 nodes and 343 interactions

(Figure 4). The three most significant mod-
ules were extracted by MCODE (Figure 5).

The signaling pathway enrichment analysis

suggested the existence of significantly

enriched genes of module 1 in type I diabe-
tes mellitus, allograft rejection, and graft-

versus-host disease (Figure 5a), of module

2 in hypertrophic cardiomyopathy, dilated
cardiomyopathy, and focal adhesion

(Figure 5b), and of module 3 in circadian

entrainment, retrograde endocannabinoid
signaling, and glutamatergic synapse

(Figure 5c, Table 2). Hierarchical clustering

suggested these module genes could essen-
tially discern GBM and noncancerous
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Figure 2. (a) Volcano plot of gene expression profile data between GBM and normal tissues in each
dataset. Red dots: significantly upregulated genes in GBM; green dots: significantly downregulated genes in
GBM; black dots: non-DEGs. P<0.05 and |log2 FC|>1 were considered significant. (b) Venn diagram of the
220 overlapping DEGs from the GSE4290, GSE12657, GSE15824, and GSE68848 datasets.
GBM, glioblastoma multiforme; DEG, differentially expressed gene.
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tissues (Figure 6a). Biological process anal-
ysis revealed that module genes were signif-
icantly correlated with cell division site, cell
division site part, and actomyosin contrac-
tile ring (Figure 6b). Table 3 lists the full
names and functions of all hub genes.
ITGB5 and RGS4 were selected for further
analysis because of their high degree of
connectivity.

Analysis and validation of hub genes

The HPA and cBioPortal for Cancer
Genomics databases facilitated further
analysis, which validated the correlation of
hub gene expression with the clinical
aspects of GBM. Figure 7a shows the
median expression of ITGB5 and RGS4 in
normal and tumor samples from BodyMap.
GEPIA database mining also established
the significant differential expression of

ITGB5 and RGS4 in GBM versus normal

tissues. These findings corroborated that

expression levels of these hub genes were

closely related to GBM onset (Figure 7b).
The GEPIA database had 162 GBM

patients for OS analysis, and these were

divided into high- and low-expression

groups. This demonstrated that ITGB5

upregulation and RGS4 downregulation

were significantly correlated with poorer

OS in GBM patients (Figure 7c), and that

the expression levels of ITGB5 and RGS4

could collectively serve as prognostic bio-

markers to predict survival in GBM

patients. However, because gene expression

is not always consistent with protein levels,24

we further analyzed the protein levels of

hub genes in clinical GBM tissues.

Immunohistochemical staining results from

the HPA database suggested considerably
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Figure 3. Functional and signaling pathway analysis of the overlapping DEGs in GBM. (a) Biological pro-
cesses. (b) Cellular components. (c) Molecular function. (d) KEGG pathways. DEG, differentially expressed
gene; GBM, glioblastoma multiforme; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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higher ITGB5 positivity in cancer tissues rel-

ative to adjacent normal tissues (Figure 7d).

The cBioPortal online platform facilitated

construction of a network for this module

and gene co-expression (Figure 7e).
We further explored molecular mecha-

nisms of these hub genes in GBMby predict-

ing transcription factors that could regulate

their expression (Figure 8a), thereby also

constructing a regulatory long non-coding

(lnc)RNA, micro (mi)RNA, and mRNA

network via Gene-Cloud Biotechnology

Information analysis (Figure 8b).

Identification of potentially active

small molecules

Gene Set Enrichment Analysis of up- and

downregulated DEGs was uploaded to the

CMap database to screen for candidate

small molecules that could potentially serve

as therapeutic drugs for GBM. This primarily

aimed to discover small molecules that could

reverse the altered gene expression in GBM.

Table 4 and Figure 8c list the 20 most signif-

icant small molecules along with their enrich-

ment scores and p values; amongst these,

Prestwick-1080 (enrichment score: �0.906)

and verteporfin (enrichment score: �0.903)

had highly significant negative scores (P¼
0.00014 and 0.00176, respectively), suggest-

ing they could restore the normal cell state.

Ethics

This research was based on GEO database

and bioinformatics analysis. No human and

animal studies were conducted.

Discussion

The recently developed high-throughput

sequencing technologies instill hope, as

Table 1. Functional and pathway enrichment analysis of overlapping DEGs.

Category Term Count P-value

GOTERM_BP_FAT GO: 0006955�immune response 28 1.04E-06

GOTERM_BP_FAT GO: 0019882�antigen processing and

presentation

10 2.16E-06

GOTERM_BP_FAT GO: 0006954�inflammatory response 18 2.89E-06

GOTERM_BP_FAT GO: 0009611�response to wounding 23 4.46E-06

GOTERM_BP_FAT GO: 0048002�antigen processing and presenta-

tion of peptide antigen

6 3.73E-05

GOTERM_CC_FAT GO: 0044459�plasma membrane part 52 3.72E-05

GOTERM_CC_FAT GO: 0005886�plasma membrane 75 1.09E-04

GOTERM_CC_FAT GO: 0042611�MHC protein complex 7 1.12E-04

GOTERM_CC_FAT GO: 0043005�neuron projection 14 7.29E-04

GOTERM_CC_FAT GO: 0000267�cell fraction 28 0.001274

GOTERM_MF_FAT GO: 0017076�purine nucleotide binding 40 0.007919

GOTERM_MF_FAT GO: 0032553�ribonucleotide binding 38 0.011224

GOTERM_MF_FAT GO: 0032555�purine ribonucleotide binding 38 0.011224

GOTERM_MF_FAT GO: 0001530�lipopolysaccharide binding 3 0.011515

GOTERM_MF_FAT GO: 0005539�glycosaminoglycan binding 7 0.013306

KEGG_PATHWAY hsa04514: cell adhesion molecules 10 7.24E-04

KEGG_PATHWAY hsa04940: type I diabetes mellitus 6 0.001008

KEGG_PATHWAY hsa04510: focal adhesion 11 0.004007

KEGG_PATHWAY hsa05330: allograft rejection 5 0.004261

KEGG_PATHWAY hsa05332: graft-versus-host disease 5 0.005702

DEG, differentially expressed gene; MHC, major histocompatibility complex.
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they can uncover vital genetic and epigenet-
ic changes that accompany tumor initiation
and progression. Integrated bioinformatics
analysis plays a vital role in screening
DEGs, hub node discovery from PPI net-
works, and prognostic analysis. This tech-
nology has been widely used to identify
potential novel biomarkers related to
tumor diagnosis, prognosis, and treat-
ment.25–27 The present study aimed to
uncover novel diagnostic and prognostic
biomarkers, as well as targeted therapies
for GBM. We integrated four microarray
datasets from the GEO database to detect
DEGs between GBM and adjacent normal
tissues. Additionally, we identified candi-
date small molecules that could reverse the
tumoral status of GBM, providing new

directions and molecular mechanisms for
the development of new anti-GBM drugs.

A total of 202 overlapping DEGs were
identified that could be significantly associ-
ated with the occurrence and progression of
GBM, suggesting they could be used as
potential biomarkers for GBM diagnosis,
prognosis, and treatment. We performed a
GO enrichment analysis of these overlap-
ping DEGs with regard to biological pro-
cess, molecular function, and cellular
component to reveal the potential molecu-
lar mechanisms underlying GBM pathogen-
esis. Immune response, antigen processing
and presentation, and inflammatory
response were the top three major functions
among the biological processes. Molecular
function enrichment for the DEGs was

Figure 4. The constructed protein–protein interaction (PPI) network.

Qi et al. 9



Module pathway ID pathway descrip�on 
Module1 hsa4940 Type I diabetes mellitus 
Module1 hsa5330 Allogra� rejec�on 
Module1 hsa5332 Gra�-versus-host disease 
Module1 hsa5168 Herpes simplex infec�on 
Module1 hsa5320 Autoimmune thyroid disease 
 

Module pathway ID pathway descrip�on 
Module2 hsa5410 Hypertrophic cardiomyopathy (HCM) 
Module2 hsa5414 Dilated cardiomyopathy 
Module2 hsa4510 Focal adhesion 
Module2 hsa4810 Regula�on of ac�n cytoskeleton 
Module2 hsa5412 Arrhythmogenic right ventricular cardiomyopathy (ARVC) 
 

Module pathway ID pathway descrip�on 
Module3 hsa4713 Circadian entrainment 
Module3 hsa4723 Retrograde endocannabinoid signaling 
Module3 hsa4724 Glutamatergic synapse 
Module3 hsa4725 Cholinergic synapse 
Module3 hsa4726 Serotonergic synapse 
 

(a)

(b)

(c)

Figure 5. The top three most significant modules extracted from the PPI network and the KEGG pathway
analysis of the module genes.
PPI, protein–protein interaction; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 2. Functional and pathway enrichment analyses of genes in the most significant modules.

Module Pathway ID Pathway description

Observed

gene count

False

discovery rate

Module 1 hsa4940 Type I diabetes mellitus 3 0.00053

Module 1 hsa5330 Allograft rejection 3 0.00053

Module 1 hsa5332 Graft-versus-host disease 3 0.00053

Module 1 hsa5168 Herpes simplex infection 4 0.000698

Module 1 hsa5320 Autoimmune thyroid disease 3 0.000698

Module 2 hsa5410 Hypertrophic cardiomyopathy (HCM) 3 0.00011

Module 2 hsa5414 Dilated cardiomyopathy 3 0.00011

Module 2 hsa4510 Focal adhesion 3 0.000732

(continued)
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Table 2. Continued

Module Pathway ID Pathway description

Observed

gene count

False

discovery rate

Module 2 hsa4810 Regulation of actin cytoskeleton 3 0.000732

Module 2 hsa5412 Arrhythmogenic right ventricular

cardiomyopathy

2 0.00716

Module 3 hsa4713 Circadian entrainment 2 0.00534

Module 3 hsa4723 Retrograde endocannabinoid signaling 2 0.00534

Module 3 hsa4724 Glutamatergic synapse 2 0.00534

Module 3 hsa4725 Cholinergic synapse 2 0.00534

Module 3 hsa4726 Serotonergic synapse 2 0.00534
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Figure 6. (a) Heatmap of module genes between GBM and normal samples. (b) The biological processes of
module genes as analyzed by BiNGO. The color depth of nodes represents the corrected P-value; node size
represents the number of genes involved.
GBM, glioblastoma multiforme; BiNGO, Biological Networks Gene Oncology tool.
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primarily within purine nucleotide binding,
ribonucleotide binding, and purine ribonu-
cleotide binding. Changes in cell compo-
nents were mainly associated with the
plasma membrane and MHC protein com-
plex. Additionally, the overlapping DEGs
were enriched in five KEGG pathways,
including cell adhesion molecules, type I
diabetes mellitus, focal adhesion, and allo-
graft rejection.

A wide variety of cell adhesion molecules
are involved in the intercellular and cell–
extracellular matrix interactions of tumors.
Some adhesion molecules play a vital role in
tumor recurrence, metastasis, and invasion.
For example, the high expression of focal
adhesion kinase (FAK) has been reported
to be associated with increased fibrosis and
poor infiltration of CD8þ T cells, while
inhibiting FAK can significantly limit
tumor progression and prolong the OS of
patients.28,29 Our bioinformatics findings
were consistent with this. The PPI network

among the overlapping DEGs revealed the
top three most significant network modules.
ITGB5 and RGS4 had a high degree of con-
nectivity, and thus were selected as hub
genes. To validate these results, we used
the GEPIA database to determine their
expression levels and prognostic value in
GBM patients. Mining the GEPIA data-
base confirmed the same trend found in
the GEO database, with ITGB5 and RGS4
expression having a significant impact on
the prognosis of GBM patients. High
ITGB5 expression was significantly corre-
lated with a worse OS in GBM patients,
while low RGS4 expression indicated a
better OS in GBM patients.

Immunohistochemical staining results
from the HPA database were consistent
with sequencing data, further supporting
our findings. No studies have yet reported
a role for these two key genes in the initia-
tion or progression of GBM, and ours is the
first to reveal their diagnostic, prognostic,

Table 3. The full name and functional roles of eight hub genes.

Gene symbol Full name Function

ITGB5 Integrin Subunit Beta 5 This gene encodes a beta subunit of integrin, which can

combine with different alpha chains to form a variety of

integrin heterodimers. Integrins are integral cell-surface

receptors that participate in cell adhesion as well as cell-

surface mediated signaling. The alpha v beta 5 integrin is

involved in adhesion to vitronectin.

RGS4 Regulator Of G

Protein Signaling 4

Regulator of G protein signaling (RGS) family members are

regulatory molecules that act as GTPase activating pro-

teins (GAPs) for G alpha subunits of heterotrimeric G

proteins. RGS proteins are able to deactivate G protein

subunits of the Gi alpha, Go alpha, and Gq alpha sub-

types. They drive G proteins into their inactive GDP-

bound forms. Regulator of G protein signaling 4 belongs

to this family. All RGS proteins share a conserved 120-

amino acid sequence termed the RGS domain. Regulator

of G protein signaling 4 protein is 37% identical to RGS1

and 97% identical to rat Rgs4. This protein negatively

regulates signaling upstream or at the level of the het-

erotrimeric G protein and is localized in the cytoplasm.

Alternatively spliced transcript variants have been found

for this gene.
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and therapeutic value. To further explore

the potential mechanism of ITGB5 and

RGS4 in the pathogenesis of GBM and

enhance our understanding of this multi-

gene hereditary disease, we predicted poten-

tial transcription factors that could be

involved in the regulation of their expres-

sion and constructed a molecular regulatory

network of lncRNAs, miRNAs, and

mRNAs. ITGB5 overexpression was previ-

ously shown to abolish the inhibition of gly-

colysis, growth, and proliferation induced

(a)

(b)

(d)

(e)

(c)

Figure 7. (a) Median expression of ITGB5 and RGS4 in tumor and normal samples in BodyMap. (b&c) The
expression levels of ITGB5 and RGS4 and their prognostic value according to the GEPIA database. (d)
Representative immunohistochemistry results revealing the protein levels of ITGB5 in GBM and normal
tissues. (e) The network of module genes and their co-expressed genes constructed by cBioPortal. Nodes
with thick outline: hub genes; nodes with thin outline: co-expressed genes.
GEPIA, Gene Expression Profiling Interactive Analysis; GBM, glioblastoma multiforme.

Qi et al. 13



(a)

(b)

(c)

Figure 8. (a) The transcription factors that could be involved in regulating the expression of ITGB5 and
RGS4. (b) A regulatory network of lncRNAs, miRNAs, and mRNAs constructed by GCBI. Purple nodes:
related lncRNAs; blue nodes: targeted miRNAs. (c) Pop plot of the top 20 identified small molecules that
could reverse the gene expression of GBM.
GBM, glioblastoma multiforme; GCBI, Gene-Cloud of Biotechnology Information.
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by cisplatin in breast and cervical cancer
cells,30 while the absence of RGS4 in pedi-
atric nephroblastoma tissue correlates with
poor prognosis. Moreover, pristimerin
upregulated RGS4 expression, thereby sup-
pressing lamellipodia formation and inva-
sion in breast cancer cells.31 The exact
mechanisms of ITGB5 and RGS4 in
GBM initiation and progression should be
investigated in future studies.

Based on the overlapping DEGs and the
CMap database, we identified a set of
potential small molecules that could reverse
the cellular status of GBM. Candidate small
molecules with highly significant negative
enrichment values may reverse the abnor-
mal gene expression induced by GBM,
thereby offering a fresh perspective to
advance future targeted therapies.
Prestwick-1080 (enrichment score: �0.906)
was the most significant small molecule
related to the status of GBM cells, but it

has not been investigated for its efficacy
or safety in any cancer type. However, a
recent study reported that verteporfin
(enrichment score: �0.903) selectively kills
hypoxic glioma cells by iron binding.32

Nevertheless, studies to validate their appli-
cation in GBM pathogenesis are needed to
further our understanding of therapeutic
mechanisms from the perspective of DEGs
induced by GBM.

By mining the gene expression profiles of
GBM and performing a comprehensive bio-
informatics analysis, we uncovered two key
genes that could contribute to understand-
ing the molecular mechanism of GBM ini-
tiation and progression. ITGB5 and RGS4
may serve as novel biomarkers for the diag-
nosis, prognosis, and treatment of GBM,
and a series of detailed analyses further
confirmed their vital roles in GBM patho-
genesis. We additionally identified a group
of candidate small molecules that could

Table 4. Top 20 significant small molecule drugs that can reverse the tumoral status of
GBM.

CMap name Enrichment P-value

Prestwick-1080 –0.906 0.00014

verteporfin –0.903 0.00176

tetrahydroalstonine –0.823 0.00185

docosahexaenoic acid ethyl ester –0.821 0.06304

proxyphylline –0.813 0.00225

chrysin –0.809 0.0138

(-)-MK-801 –0.781 0.00465

phenazone –0.771 0.02462

butirosin –0.743 0.00871

harmaline –0.731 0.01056

methyldopate –0.729 0.01074

guanethidine –0.727 0.0418

molsidomine –0.724 0.0118

vinblastine –0.723 0.04383

L-methionine sulfoximine –0.721 0.01239

clebopride –0.719 0.01265

STOCK1N-35696 –0.716 0.16108

5182598 –0.715 0.16142

exisulind –0.715 0.16213

pepstatin –0.71 0.01446

GBM, glioblastoma multiforme.

Qi et al. 15



offer new insights into the molecular mech-

anisms of GBM and help develop new tar-

geted therapies. In summary, we uncovered

several promising novel biomarkers for

GBM that provide new insights into the

altered disease biology.
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