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The intestinal tract is densely populated by microbiota consisting of various commensal

microorganisms that are instrumental for the healthy state of the living organism. Such

commensals generate variousmolecules that can be recognized by the Toll-like receptors

of the immune system leading to the inflammation marked by strong upregulation of

various proinflammatory cytokines, such as TNF, IL-6, and IL-1β. To prevent excessive

inflammation, a single layer of constantly renewing, highly proliferating epithelial cells

(IEC) provides proper segregation of such microorganisms from the body cavities. There

are various triggers which facilitate the disturbance of the epithelial barrier which often

leads to inflammation. However, the nature and duration of the stress may determine the

state of the epithelial cells and their responses to cytokines. Here we discuss the role of

the microbiota-TLR-cytokine axis in the maintenance of the epithelial tissue integrity. In

particular, we highlight discrepancies in the function of TLR and cytokines in IEC barrier

during acute or chronic inflammation and we suggest that intervention strategies should

be applied based on the type of inflammation.
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INTRODUCTION

The intestinal barrier represents a complex system of epithelial cells, Paneth cells, goblet cells,
infiltrating immune cells, mucus, immunoglobulin A (IgA) antibodies and antimicrobial peptides
(1). Underneath the epithelial cells multiple immune cell subsets are localized, which contribute to
the maintenance of the border between the host and the microbiota. Disturbance of this barrier
by extrinsic and intrinsic factors may result in the influx of various bacterial products inside of the
host body leading to chronic inflammatory reactions. Such stimuli include dietary components,
commensal microflora or invading pathobionts from the environmental side. Moreover, genetic
variability of the host and adaptive immune response toward these stimuli may also influence
barrier integrity.

The main component of the intestinal barrier is a layer of epithelial cells that forms the very
first physical border between the host organism and its external surroundings, which could be
potentially detrimental for the host cells. These epithelial cells are tightly connected with each
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other to ensure proper control of the molecules that enter
the body from the intestinal fluids. The junctional complex
of intestinal epithelial cells is composed of the three main
different types of connections—tight junction (TJ), adherence
junction and desmosome. Tight junctions between epithelial
cells are facilitated by a set of proteins [Claudin, ZO1,
Occludin, F-actin, Myosin, Myosin light chain kinase (MLCK)],
which form together an apical junctional complex in order
to seal the paracellular space between epithelial cells. There
are two additional zones of cell-to-cell contacts beneath
TJ named “Adherence junction” and “Desmosome.” They
consist of E-cadherin, α-catenin 1, β-catenin, catenin- δ1
and desmoglein, desmocollin, desmoplakin, respectively (2).
Together they provide cell-to-cell and cell-to-matrix connections
and create a paracellular space. Normal gut permeability
facilitates paracellular transport of nutrients, water and essential
solutes. Disruption of such TJ may result in the penetration of
various molecules and microorganisms, leading to inflammation.

The whole spectrum of cell types within the gut epithelium
develops from the epithelial stem cells located at the base of
the crypts. Stem cells give rise to distinct cell types of the
intestinal epithelium: absorptive cells (enterocytes) and secretory
cells (goblet, Paneth, enteroendocrine, and tuft cells). Fate
decision toward the absorptive phenotype is critically dependent
on the NOTCH pathway (3). Genetic and pharmacological
manipulation of NOTCH signaling also revealed its crucial role
in the maintenance of the epithelial stem cell niche (4–6).
Apart from NOTCH, wingless and Int-1 (WNT) signaling plays
an essential role in epithelial stem cell functions influencing
functioning of different transcription factors including Ascl2,
sox9, Lgr5 (7–9).

REGULATION OF THE EPITHELIAL CELL
FUNCTIONS DURING HOMEOSTASIS

In steady state, a delicate balance is maintained between bacterial
composition, the mucosal immune system and the intact
epithelial barrier. Commensal microbiota is transported in a
highly controlledmanner to be recognized by the immune system
in the gut-associated lymphoid tissues (2). Due to the non-
pathogenic nature of such microorganisms, the immune system
responds with the production of non-inflammatory cytokines,
such as TGF-β1, IL-10 and cytokines which are important for
the IEC barrier, like IL-22 (Figure 1). Both mutation of IL-10
pathway in humans and the genetic ablation of Il10 resulted
in development of intestinal inflammation demonstrating a
crucial role for IL-10 in the tolerance maintenance and barrier
integrity (10). Although Il10−/− mice are not defective in mucin
production, but have its defective loose quality that makes mice
suffer from spontaneous colitis (11). Similarly, TGF-β1 directly
modulates TJ protein expression (12, 13), significantly decreasing
JNK-pathway activation and protects cells from TNF-mediated
downregulation of occludin and ZO-1 (14). IL-22 controls not
only the expression of TJ proteins (15), but also the expression of
various antimicrobial proteins. IL-22 deficient animals exhibited
defects in IEC barrier (15) and failed to repair IEC functions in

multiple inflammatory models linked to the disruption of the
IEC barrier. IL-22 was further reported as a necessary cytokine
for TJ formation and mucin production (16). Patients with
HIV infections have decreased IL-22 levels and concomitantly
impaired IEC barrier and increased bacterial translocation (16).
Interestingly, the natural antagonist of IL-22 (IL-22BP; IL-22Ra2)
which regulates the biological actions of IL-22 was found to be
expressed by various immune cells (17). Recent data suggested
that type III innate lymphoid cells (ILC3) instruct a special subset
of dendritic cells in the isolated lymphoid follicles to produce IL-
22BP via lymphotoxin (LTα1β2)–lymphotoxin β receptor (LTβR)
interaction (18), revealing a novel mechanism of the epithelial
barrier control in steady state and during inflammation.

Commensal microbiota produces multiple “non-self ” ligands
and IECs recognize such molecules and tune their transcriptional
program to keep the barrier tight. There are several families of
receptors sensing various microbial products: Toll-like receptors
(TLR), NOD-like receptors (NLR), RIG-like receptors (RLR),
and others (19). TLRs are widely expressed on the epithelial
cells in the small and large intestine and their expression
is tightly regulated in order to ensure the proper innate
immune recognition. Mostly, TLRs are expressed among the
whole IEC lineage: absorptive enterocytes (20, 21), stem cells
(22), enteroendocrine cells (23), goblet cells (24, 25), Paneth
cells (26–28), and micro-fold cells (29, 30). The distribution
pattern of TLR expression on epithelial cells varies among
the intestinal tract. Price et al. recently provided an elegant
analysis of TLRs expression in the large and small intestine
of mice (27). It was shown that TLR2, TLR5, and TLR9 are
more restricted to the small intestine when TLR2, TLR4, and
TLR5 are upregulated in the colonic epithelial cells. In addition,
TLR signaling is controlled by the polarized expression on the
cell surface. For instance, TLR2 and TLR4 are expressed at
low levels on basolateral sides of IEC in the small intestine,
while TLR5 is expressed mainly on basolateral sides of the
colon (31). Furthermore, apical TLR9 recognition of CpG
oligonucleotides prevents NFkB translocation into the nucleus
and limits inflammatory response.

The tuning of the immune responses via IEC-derived TLRs
is achieved by several mechanisms. Epithelial cells modulate
TLR receptor-ligand interactions by the downregulation of the
receptor expression (32) or by translocating receptors from apical
to basolateral sides or to lysosomes (33–36) to avoid excessive
sensing of bacterial products. Indeed, overexpression of Tlr4 on
epithelial cells resulted in the overactivation of TLR4 pathway
in IECs that lead to the increased production of IgA by plasma
B cells (37). This loop potentially demonstrates a regulatory
mechanism where IgA antibodies after being induced neutralize
excessive bacteria-TLR4 interaction (20). Next, expression
of molecules downstream of TLRs is modulated in IEC
via various posttranslational modifications like glycosylation,
phosphorylation, and ubiquitination (38, 39). Finally, IECs
were reported to bind and modify immunogenic parts of
MAMPs in order to diminish ligands property to induce
signals (40, 41).

Apart from this, TLRs are involved in crypt dynamics
control. For instance the depletion of MyD88 or TLR2 was
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FIGURE 1 | Role of the TLR induced cytokines in acute and chronic intestinal inflammation. The intestinal mucosa is separated from the body immune environment by

a single layer of the intestinal epithelial cells (IECs) that provides a physical and functional barrier. Beneath the IECs immune cells reside in the lamina propria,

maintaining the intestinal tissue at the hyporesponsive state. Intestinal immune homeostasis: Constant recognition of microbiota by TLR4 and TLR1/2 leads to IL- 6,

IL−10, TGF-β1 production within IECs. Autocrine recognition of these cytokines maintains IEC barrier integrity by promoting expression of the TJ proteins (ZO-1,

claudin-1, occludin). Moreover, action of the IL-10 induce Wnt signaling within IECs, which maintains their proliferation. A20 and Tollip are the main inhibitors of the

TLR1/2 signaling facilitating the avoidance of undesired response toward microbiota. Rorgt+ cells during homeostasis produce IL-17A to maintain constant

production of claudin-1 and occluding within IECs. Acute inflammation: Sensing microbiota within the lamina propria induces production of pro-inflammatory

cytokines and cytoprotective factors via NFkB dependent mechanism. Basolateral TLR5 mediated recognition of bacteria leads to MUC2 production in IECs. IL-6,

TNF production by M?s and DCs during acute inflammation enables barrier repair program within IECs. TNF induced production of the glucocorticoids and ErbB4

receptor tyrosine kinase in IECs induce tissue repair functions and resolve late stages of the acute inflammation. Pro-inflammatory cytokines IL-18, IL-12 involved in

IEC barrier dysfunction by downregulating TJ proteins (ZO-1, occludin). TLR1/2 basolateral recognition of bacteria promotes ZO-1/occluding expression in IECs.

Chronic inflammation: Chronic TNF sensing by IECs reduces their ability to migrate toward crypts villi, modulates MLCK which decreases claudin-1, ZO-1, and ZO-2

expression and decreases glucocorticoids synthesis, which is indispensable for later inflammation resolution. IFN-γ activates the expression of ICAM-1 which resulted

in increased IEC barrier permeability caused by neutrophil migration into subepithelial layers and paracellular space via modulation of MLCK. TLR4 dependent

recognition of the HSPs, HMGB1 and S100A8/S100A9 by IECs leads to downregulation of the expression of ZO-1.

associated with an abrogation of trefoil factor 3 (TFF3)
expression, which is required for goblet cells maturation
(24). Furthermore, TLR4 was shown to mediate NOTCH
expression implying that TLRs may interfere with processes
of stemness and differentiation in the stem cell niche (1).
However, the role of TLR4 on stem cell differentiation remains
controversial (42, 43). Deletion of TLR1 or TLR5 in mice
induced the loss of the mucus layer integrity via impaired MUC2
production in goblet cells (1). Moreover, ablation of the TLR
recognition by MyD88 deletion abrogated the production of
antimicrobial peptides RegIIIβ and RegIIIγ by goblet cells inmice
(20). Thus, sensing of bacterial products via TLRs modulates
mucus layer permeability that limits the direct interaction of
commensals with the epithelium and induction of spontaneous
inflammation (33, 44).

Altogether, IEC barrier exerts multiple strategies to avoid
activation of inflammatory pathways in normal conditions via
cytokine production and regulation of TLR signaling to maintain
its integrity.

REGULATION OF THE EPITHELIAL CELL
FUNCTIONS DURING ACUTE
INFLAMMATION

Disruption of the cell-to-cell contacts at the epithelial layer
leads to increased bacterial products penetration, which triggers
inflammatory immune responses. The nature of the damage may
further define the type of immune response and subsequent
immune reactions driving IEC repair (Figure 1). Epithelial
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barrier disruption may be induced by acute stimuli, such as
ingestion of toxic substances (oxazolone, dextran sodium sulfate
etc.) (45), by physical force or by the invasion of various
pathogens, such as Clostridium difficles, Citrobacter rodentium,
Salmonella enterica etc. These acute stimuli result in IEC layer
erosion, the influx of commensal bacteria and activation of
the innate arm of the immune system (46), while the chronic
reduction of the barrier leads to the mobilization of both arms
of the immune system as well as the genomic instability of
epithelial cells (47). In case of the acute damage of the epithelium
caused by pathogens, the immune system should eliminate the
causing agent or pathogen, while ensuring the proper restoration
of the barrier. Thus, the gut immune system is determined to
restore the barrier functions in both acute and chronic settings,
but triggers are different and, thereby, advocate for different
intervention strategies.

Eliciting a protective immune response is required for
the successful restoration of the barrier during bacteria-
induced colitis. Here TLR-proinflammatory cytokine module is
instrumental for the clearance of the inflammatory triggers and
it is also involved in further tissue repair processes. Indeed,
there are multiple examples of protective functions of TLR
receptors in this setting. For instance, TLR1 is found to be
crucial for the protection during acute intestinal inflammation
induced by Yersinia enterocolitica in mice and the maintenance
of the increased IEC barrier permeability (48). TLR5 was
reported to limit intestinal colonization with vancomycin-
resistant Enterococcus (VRE) by the induction of RegIIIγ
expression (49) and IEC-derived TLR5 mediates production
of IL-6 and IL-12 by CD11c+ in response to Salmonella
enterica infection (50). The significance of TLR/MyD88 signaling
pathway for the recovery of IECs was also shown during
acute colitis induced by Helicobacter hepaticus or Citrobacter
rodentium (51). Furthermore, Myd88−/−, Tlr1−/−, Tlr2−/−

mice were characterized by the early loss of tight junctions
and diminished transepithelial resistance during acute intestinal
inflammation (52).

Apart from IEC barrier disruption by pathogens, there is a
significant amount of the research directed toward the dissection
of the pathways which are crucial for IEC barrier restoration
during injury caused by chemical agents, such as DSS, oxazolone
and others. Herein the inflammation is caused by the influx
of commensal microbiota in the intestinal tissue. Thus, TLR
signaling pathways and pro-inflammatory cytokines facilitate the
inflammation that is needed for the clearance of the bacteria
andmay possess protective functions. Consistently, seminal work
from Medzhitov’s lab showed the crucial role of TLR4/MyD88
signaling for the maintenance of the intestinal homeostasis and
barrier repair during acute DSS colitis in microbiota dependent
manner (53). Activation of TLR4 signaling pathways was crucial
for the clearance of commensal bacteria by infiltrating innate
immune cells (54). In contrast, several other studies highlighted
the pathogenic function of TLR4 signaling in DSS colitis. In
particular, an increase of E. Coli in the microbiota was associated
with less severe colitis in TLR4 deficient mice (55). LPS, main
TLR4 agonist, also may induce epithelial damage in vitro and in
vivo via excessive phosphorylation of the focal actin kinase (FAK)
in TLR4/MyD88 dependent pathway in epithelial cells (56). Using

an ileal cell line, LPS was further reported to be instrumental
in the induction of paracellular permeability via ZO-1 and
occludin downregulation via TLR4 (57). Interestingly, LPS
serotypes differentially affect inflammatory cytokines expression
in vitro. Among others, LPS from S. marcescens has the
most pronounced effect on the reduction of transepithelial
electrical resistance. That correlated with an increase in NFkB
activation, IL-8 production as well as TNF (58). Furthermore,
E. coli LPS, but not LPS from B. dorei, influenced the
incidence of autoimmune diabetes in non-obese diabetic mice
and correlated with the development of autoimmunity in
humans (59). Therefore, the role of TLR4 during acute IEC
disruption is determined by the microbiota composition and
therapeutic strategies targeting TLR4 should be considered given
the prevalence of various microorganisms and pathogens in
individual contexts.

TLR signaling mediates the production of multiple pro-
inflammatory cytokines, among them TNF, IL-6, and IL-1β.
TNF a cytokine with pleiotropic functions in the body is of
particular significance in this context. On the one hand, TNF
is crucial for the host defense against intracellular pathogens
(60) but on the other hand it drives multiple autoimmune
pathologies associated with a reduction of the epithelial barrier,
such as inflammatory bowel disease (IBD), ankylosing spondylitis
and rheumatoid arthritis. Importantly, anti-TNF therapy is
highly effective in the treatment aforementioned autoimmune
pathologies (61). Despite the tremendous success of the TNF
blockade, a significant proportion of patients do not respond
to this type of biological interventions further highlighting the
heterogeneity of given autoimmune conditions and pleiotropy of
TNF itself. It is worth mentioning that TNF exerts its functions
via two receptors, TNFR1 and TNFR2 (62) inducing distinct
transcriptional programs. TNF plays a protective role during
acute colitis induced by DSS, as TNF deficient mice and anti-
TNF therapy in wild type mice during colitis resulted in severe
inflammation (63). Short acute IEC exposure to TNF induced
glucocorticoid synthesis and, thereby, ameliorated the late stages
of DSS colitis (64). Furthermore, TNFR1 mediated protective
functions, while TNFR2 was deleterious upon acute disruption of
epithelium (65). Apart from the induction of anti-inflammatory
mediators that are crucial for the barrier restoration, TNF
also contributes to the restoration of the epithelial barrier via
modulation of Wnt (66). TNF administration during acute DSS
colitis promoted the intestinal cell survival and restitution via
elevating expression the ErbB4 receptor tyrosine kinase (67). In
addition, another study conducted on the IL-10 deficient mice
colitis model suggested that the binding of TNF by TNFR1 and
following Il1b upregulation is essential for the early defensive
response within colonic epithelial cells (68, 69). Kuhn et al.
showed that Bacteroidales spp. induced IL-6 secretion by IECs
in a MyD88-dependent manner, while Il6−/− mice were more
susceptible to Citrobacter rodentium infection and had a thinner
mucus layer, as well as decreased claudin-1 expression (70).
Finally, IL-6 also activated NOTCH dependent program of IEC
barrier restoration during acute DSS colitis (71).

Thus, proinflammatory cytokines exert its protective
functions during acute barrier injury to facilitate efficient
clearance of invading microorganisms.
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REGULATION OF THE EPITHELIAL CELL
FUNCTIONS DURING CHRONIC
INFLAMMATION

Various extrinsic factors, such as the environment, particular diet,
and exposure to hazardous chemicals, may result in the chronic
elevation of pro-inflammatory cytokines and the reduction of
the gut permeability for a long period of time (Figure 1). The
state of an increased gut permeability and the perturbation of
local immunity in the gut is called “leaky gut.” This phenomenon
has been described not only in IBD patients, but also in many
metabolic and autoimmune disorders. “Leaky gut” syndrome
is characterized by an impaired mucin synthesis, a decreased
expression of junctional proteins and epithelial cell death.
Importantly, increased permeability of the epithelium is often
found before the development of clinical symptoms (72).

Taking into account the fundamentally different nature of
IEC barrier reduction during acute and chronic stress, it is
plausible that TLR and cytokines may have distinct, and even
opposing functions depending on the duration of inflammation.
Consistently, deep analysis of the mutational landscape from
inflamed IBD tissue and corresponding non-inflamed parts
revealed mutations in several genes, such as NFKBIZ, ZC3H12A
(Regnase-1) and PIGR. Interestingly, Regnase-1 is activated in
response to TLR stimulation and degrades mRNA of many
downstream immune signaling genes (47), including PIGR
(73), NFKBIZ (74), and members of the IL-17 pathway (75).
Furthermore, DNA methylation patterns and transcriptional
program in IECs differed between healthy and IBD patients
(76). Chronic exposure of IECs to TNF exclusively affected their
migration from the crypt to the villus (77). In addition, chronic
inflammationmodeled by long-term culture of colonic organoids
in the presence of TLR agonists and pro-inflammatory cytokines
resulted in chronic NFkB activation and the transformation of
epithelial cells. Finally, organoid cultures from IBD patients
showed an inflammatory phenotype with decreased size and
budding capacity and inverted polarization (78). Altogether,
these data suggested that chronic inflammation might transform
the genetic program and the functions of IECs and their ability to
maintain the epithelial barrier.

Chronic subclinical inflammation is characterized by an
increase in cytokine production and in release of endogenous
TLR4 ligands. In particular, high mobility group box 1 (HMGB1)
protein, the heat shock proteins and calcium binding protein
A8 and A9 (S100A8/S100A9) (79) are released during an
inflammation and chronic conditions, like metabolic disorders
(80). Their binding to TLR4 leads to the secretion of the pro-
inflammatory cytokines IL-1β, TNF, IL-6, IL-17A, IL-18, and IL-
12 in the intestine (31, 81). Furthermore, TLR4 activation within
the gut epithelium is associated with the activation of myosin
light chain kinase (MLCK), which reduces the tight junction of
IEC barrier and may lead to the development of “leaky gut”
(82–84).

As mentioned earlier, increased gut permeability may be
induced by extrinsic factors, like diet, environmental factors
but also by intrinsic factors, such as elevated levels of
pro-inflammatory cytokines (85, 86). In particular, TNF, IL-6

and IFN-γ are associated with the epithelial barrier impairment
and increased gut permeability (31, 87–89). These cytokines
once produced chronically may significantly reduce IEC barrier.
So IFN-γ was found to modulate the expression of the
neutrophil adhesion molecule ICAM-1, which resulted in
increased permeability and the migration of neutrophils into
the subepithelial layers and paracellular space (90). Apart from
this, IFN-γ enhanced Th1 immune responses and also increased
CD14 and TLR4 expression, as well as LPS uptake by IECs
(86). For instance, IL-6 increased permeability-promoting tight
junction protein (claudin-2) in colonic cell culture via activation
of c-Jun N-terminal kinase (JNK) pathway (91). IEC stimulation
with TNF lead to the upregulation of theMLCK, phosphorylation
of myosin II light chain (MLC) and the subsequent decrease
in barrier integrity. Furthermore, TNF induced the loss of
ZO-1 and occludin expression and decreased trans-epithelial
electrical resistance (92). In immune-mediated colitis model,
it was further shown that TNFR2 pathway, but not TNFR1
signaling, increases MLCK expression resulting in tight junction
dysregulation, barrier loss, and more severe disease (93). Chronic
exposure to TNF, in contrast to acute stimuli, actually decreased
glucocorticosteroid production and perpetuated inflammation
(94). Given multiple effects of TNF on the intestinal biology, it
is predicted that anti-TNF therapy restores the intestinal barrier
in many autoimmune diseases (95). It has been shown in several
reports that anti-TNF therapy directly influenced tight junction
protein expression (96), while others showed the restoration of
EC survival rate (97). In vitro experiments also indicated that
sera from IBD patients directly regulates ZO-1 and occludin
expression in IECs via TNF. Moreover, TNF was further shown
to downregulate claudin-1, claudin-2, claudin-4, and occludin
expression in IECs layer (95). Interestingly, IL-6 promoted crypt
organoid proliferation stem cell numbers (98). Furthermore,
anti-IL-6 therapy in IBD patients ameliorated the disease, but
increased the risk of developing GI abscesses and perforation
(99), suggesting that IL-6 contribute to inflammatory processes,
but also may maintain epithelial barrier. Thus, upon chronic
inflammatory stimuli epithelial cells modify their transcriptional
program, expression patterns of receptors and, thereby, may
respond differently toward pro-inflammatory cytokines.

CONCLUSIONS

IEC barrier integrity is maintained not only by a complex
system of tight junction proteins and strict compartment-
dependent distribution of TLRs on apical and basolateral sides
of IECs but also by a network of immune cells that mediate
cell proliferation and epithelial permeability via cytokines. In
a healthy state IECs exhibit multiple mechanisms that dampen
TLR-dependent recognition of the microbiota. During acute
injury of IEC barrier by chemical agents or pathogens the
TLR-TNF axis is triggered toward the clearance of the pro-
inflammatory stimuli and further drives IEC layer restoration
via activation of the glucocorticosteroid synthesis, WNT pathway
and ErbB4 kinase. In contrast to acute damage, chronic
inflammation induces genetic instability, changes of methylome,
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transcriptome and the polarity of TLRs expression in IECs.
This results in their modified response toward TLR agonists
and TNF. Thus, the character and duration of inflammation
should be considered for the modeling of studies aiming
to dissect the mechanisms of IEC barrier integrity during
various injury.
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