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One major problem in neuroscience is the comparison of functional brain networks

of different populations, e.g., distinguishing the networks of controls and patients.

Traditional algorithms are based on search for isomorphism between networks, assuming

that they are deterministic. However, biological networks present randomness that

cannot be well modeled by those algorithms. For instance, functional brain networks of

distinct subjects of the same population can be different due to individual characteristics.

Moreover, networks of subjects from different populations can be generated through

the same stochastic process. Thus, a better hypothesis is that networks are generated

by random processes. In this case, subjects from the same group are samples from

the same random process, whereas subjects from different groups are generated by

distinct processes. Using this idea, we developed a statistical test called ANOGVA to test

whether two or more populations of graphs are generated by the same random graph

model. Our simulations’ results demonstrate that we can precisely control the rate of

false positives and that the test is powerful to discriminate random graphs generated by

different models and parameters. The method also showed to be robust for unbalanced

data. As an example, we applied ANOGVA to an fMRI dataset composed of controls and

patients diagnosed with autism or Asperger. ANOGVA identified the cerebellar functional

sub-network as statistically different between controls and autism (p < 0.001).

Keywords: random graph, analysis of variance, graph spectrum, network science, functional connectivity, anogva

1. INTRODUCTION

Graphs are widely used to represent interactions such as functional connectivity among brain
regions (Bullmore and Sporns, 2009), social networks (Scott, 2012), and molecular interactions
(Barabási and Oltvai, 2004). Once interaction graphs are obtained, a common problem is
to verify if graphs of different populations are comparable or not. Standard approaches are
based on algorithms to determine isomorphism—one-to-one correspondence—or how close to
isomorphism are different graphs. For example, if the vertices of the graphs are labeled, one may
count how many times a certain edge is present in each population. Otherwise, one may try to find
an isomorphic sub-network, which problem is known to be NP-complete. Both strategies are not
the most adequate given that real-world interaction graphs are heterogeneous and present intrinsic
randomness. For example, functional brain networks of different individuals are structurally
different, even belonging to the same group. Even networks from the same subject can change if
measured on different times. Notice that in both examples, algorithms based on isomorphism will
falsely discriminate graphs belonging to the same group or state. One solution for this problem is to
assume that real-world graphs are generated by probabilistic processes (random graphmodels) and
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then test whether populations of graphs are generated by the
same random graph model. However, the model that generated
the graph is rarely known in practice. Thus, the first step to
discriminate random graphs is to identify highly distinctive
features across different graph models.

The spectrum (set of eigenvalues) of the adjacency matrix
describes several structural properties of a random graph, such
as the number of walks, diameter, and cliques (Van Mieghem,
2010). Therefore, it is a natural candidate to distinguish graphs
generated by different processes (Van Mieghem, 2010). Indeed,
in general, the graph spectrum is a better and more general
characterization of complex networks in comparison to other
features, such as the number of edges, degree, and centrality
measures (Takahashi et al., 2012). By analyzing the graph
spectrum (Takahashi et al., 2012) defined the concept of graph
spectral entropy and developed statistical methods on graphs
for (i) model selection, (ii) parameter estimation, and (iii) a
hypothesis test to discriminate whether two populations of
graphs are generated by the same random graph model and
parameters. These methods are important from amethodological
viewpoint because it provided formal methods for the statistical
inference using graph samples. From a practical perspective,
these methods were essential to identify novel brain sub-
networks associated with attention deficit hyperactivity disorder
(ADHD) (Sato et al., 2013) and autism spectrum disorder (ASD)
(Sato et al., 2015). However, the random graph comparison
method introduced in Takahashi et al. (2012) cannot verify
simultaneously whether three or more groups of graphs are
generated by the same random graph model. For example,
it is not possible to simultaneously test the equality of the
functional brain networks of controls, autism, and Asperger
subjects. One possible solution would be to compare the groups
in a pairwise manner, nevertheless these methods in general
give an inadequate control of type I error. Here, we introduce
a statistical method to discriminate two or more populations
of graphs simultaneously, namely ANOGVA (Analysis of Graph
Structure Variability). Intuitively, if the original test proposed by
Takahashi et al. (2012) is equivalent to a t-test, our proposed test
is equivalent to the analysis of variance (ANOVA) (Fisher, 1918).

We illustrate the performance of ANOGVA through
simulation studies and demonstrate the power of the test for
identifying small differences in the parameters of the random
graph models. We also applied our method to study the whole
brain functional magnetic resonance imaging (fMRI) data of 908
controls and patients diagnosed with autism or Asperger.

2. MATERIALS AND METHODS

Let us first formalize our problem. Given k populations of graphs
g1, g2, . . . , gk where each population gi(i = 1, . . . , k) is composed
of |gi| graphs, we would like to verify whether the graphs of the
k populations were generated by the same probabilistic process,
i.e., by the same random graph model [e.g., Erdös-Rényi (Erdös
and Rényi, 1960), Watts-Strogatz (Watts and Strogatz, 1998),
and Barabási-Albert (Barabasi and Albert, 1999) random graph
models] and set of parameters. First we will describe the graph

spectrum. Based on the graph spectrum, we will define the
Kullback-Leibler divergence between two random graphs that
will be used to define the ANOGVA statistics.

2.1. Graphs and Graph Spectrum
A graph is a pair of sets G = (V ,E) where V is a set of n vertices
and E is a set ofm edges that connect two vertices ofV . A random
graph g is a family of graphs, where the members of the family are
generated by some probability law.

An undirected graph G with n vertices can be represented by
its n× n adjacency matrix A where Aij = Aji = 1 if vertices i and
j are connected, and 0 otherwise. The spectrum of G is the set of
eigenvalues (λ1 ≥ λ2 ≥ . . . ≥ λn) of the adjacency matrix A.
For an undirected graph, the adjacency matrix is symmetric, and
thus, its eigenvalues are real (Strang, 2011).

Given a set of random graphs g generated by the same
probability law, the set of eigenvalues 3 are random vectors. Let
δ be the Dirac delta function and the brackets “<>” indicate the
expectation with respect to the probability law of the random
graph, the spectral distribution of a random graph g is defined
as:

ρg(λ) = lim
n→∞

<
1

n

n∑
j=1

δ(λ − λj/
√
n) > . (1)

The spectral distribution is directly associated with the structural
features of the graphs (Albert and Barabási, 2002) and can
be considered as a fingerprint of the random graph, where
each random graph model is associated with a specific spectral
distribution ρg (Van Mieghem, 2010).

2.2. Kullback-Leibler Divergence
Once the spectral distribution of a graph is defined, we
can describe a measure of similarity between two spectral
distributions. If two spectral distributions are different, then the
respective graphs should be different.

Let ρg1 and ρg2 be the spectral distributions of random graphs
g1 and g2, respectively. If the support of ρg2 contains the support
of ρg1 , the Kullback-Leibler (KL) divergence between two spectral
distributions ρg1 and ρg2 is (Kullback and Leibler, 1951):

KL(ρg1 |ρg2 ) =
∫ +∞

−∞
ρg1 (λ) log

ρg1

ρg2
dλ, (2)

otherwise, KL(ρg1 |ρg2 ) = +∞ (we assume 0 log 0
0 = 0).

For Equation (2), ρg2 is called the reference measure. The KL
divergence is non-negative and zero if and only if ρg1 and ρg2 are
equal.

2.3. Estimation of the Spectral Density
To estimate the spectral density (ρ̂g), we use the same procedure
described by Takahashi et al. (2012). First we compute the
eigenvalues of the adjacency matrix of the graph. Then, we
apply a Gaussian kernel regression using the Nadaraya-Watson
estimator (Nadaraya, 1964) for regularization of the estimator.
Finally, we normalize the density to obtain the integral below
the curve equal to one. In general, smaller sample and/or graph
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sizes require larger bandwidth and smaller bin numbers for
the smoothing kernels. The opposite holds for larger sample
and/or graph sizes. The exact bandwidth size and bin number
that maximize the statistical power depends on the data and
the alternative hypotheses, but some rules of thumb exist in the
literature that have shown good performance in our simulations.
The bandwidth of the kernel is chosen as λ1 − λn

number of bins
(Sain,

1996), where the number of bins is selected by using the Sturge’s
criterion (Sturges, 1926). Type I errors are controlled by our
bootstrap procedure discussed below for any choice of bandwidth
size and bin number.

2.4. Analysis of Graph Structure
Variability—ANOGVA
We are now able to describe ANOGVA. Given k populations
of graphs g1, g2, . . . , gk, the test consists of verifying if all
populations of graphs were generated by the same random graph
model. For this, we test if all the spectral distributions are equal.

Let ρ̂g1 , ρ̂g2 , . . . , ρ̂gk be the estimated spectral distributions
of populations of graphs g1, g2, . . . , gk, respectively, where ρ̂gi
(i = 1, . . . , k) is the average of the graphs spectra in population

gi. Also, set ρ̂gM =
∑k

i=1 ρ̂gi
k

. The support of ρ̂gM includes the
support of ρ̂gi for any i. Formally, we test:

H0: KL(ρg1 , ρgM ) = KL(ρg2 , ρgM ) = . . . = KL(ρgk , ρgM ) = 0,
i.e., the graphs from g1, g2, . . . , gk are generated by the same
random graph model (the spectral distributions are equal).

H1: “At least one population of graphs is generated in a
different manner”.

We will use the statistic 1 =
∑k

i=1 KL(ρ̂gi , ρ̂gM ) to build the
test statistic. This statistic is the generalization of the Jensen-
Shannon divergence (Jensen, 1906; Shannon, 1948) for k >

2 . Under the null hypothesis, we expect small 1, while large
1 suggests a rejection of the null hypothesis. The exact or
asymptotic distribution of 1 under the null hypothesis is not
known; therefore, we use a computational procedure based on
the permutation test to construct the empirical distribution. The
steps for the permutation test is as follows:

1. Construct permuted samples g∗i , for i = 1, . . . , k by
resampling (without replacement) |gi| graphs from the entire
dataset {g1 ∪ g2 ∪ . . . ∪ gk}.

2. Calculate ρ̂g∗i for each g∗i (i = 1, . . . , k).

3. Calculate 1̂∗ =
∑k

i=1 KL(ρ̂g∗i , ρ̂gM ).
4. Repeat steps 1 to 4 until the desired number of replications is

obtained.
5. The p-value for the observed statistic 1̂ is the fraction of times

1̂∗ obtained in the permuted dataset is at least as large as 1̂

estimated in the original dataset.

Figure 1 illustrates the idea behind ANOGVA. In summary,
the spectral distribution of each population is compared to the
reference distribution (the average of the spectral distributions,
ρgM ). If the sum of the distances (KL divergence) is large, it means
that at least one of the spectral distributions is different when
compared to the reference (ρgM ). In other words, at least one of
the populations of graphs was generated by a different random
graph model and/or set of parameters.

2.5. Graph Models
2.5.1. Erdös-Rényi Random Graph
Erdös-Rényi random graph (Erdös and Rényi, 1960) is defined as
n labeled vertices where each pair of vertices (vi, vj) is connected
by an edge with a given probability p.

2.5.2. Geometric Random Graph
A geometric random graph (Penrose, 2003) is constructed by
randomly placing n vertices in a space Rd according to a specified
probability distribution (usually, uniform distribution) and
connecting two vertices by an edge if their distance (according
to some metric) is smaller than a certain neighborhood radius r.

2.5.3. K-regular Random Graph
A k-regular random graph (Meringer, 1999) is a graph where
every vertex has the same degree (number of adjacent vertices).
A k-regular random graph with degree deg is called a deg-regular
random graph or regular random graph of degree deg.

2.5.4. Watts-Strogatz Random Graph
Watts-Strogatz random graph (Watts and Strogatz, 1998)
presents small-world properties (short average path lengths) and
a higher transitivity (clustering coefficient) than Erdös-Rényi
random graphs.

The algorithm for constructing a Watts-Strogatz random
graph is as follows:

Input: Let n, nei, and pw be the number of vertices, mean
degree, and the rewiring probability, respectively.

1. construct a ring lattice with n vertices, in which every vertex is
connected to its first nei neighbors ( nei2 on either side);

2. choose a vertex and the edge that connects it to its nearest
neighbor in a clockwise sense. With probability pw, reconnect
this edge to a vertex chosen uniformly at random over the
entire ring. This process is repeated by moving clockwise
around the ring, considering each vertex in turn until one lap
is completed. Next, the edges that connect vertices to their
second-nearest neighbors clockwise are considered. As in the
previous step, each edge is randomly rewired with probability
pw; continue this process, circulating around the ring and
proceeding outward to more distant neighbors after each lap,
until each edge in the original lattice has been considered once.

Output: the Watts-Strogatz random graph.

2.5.5. Barabási-Albert Random Graph
Barabási-Albert random graph (Barabasi and Albert, 1999) has a
power-law degree distribution due to preferential attachment of
vertices (the more connected a vertex is, the more likely it is to
receive new edges).

Barabasi and Albert (1999) proposed the following
construction: start with a small number of (n0) vertices. At
each iteration, add a new vertex with m1 (m1 ≤ n0) edges that
connect the new vertex tom1 different vertices already present in
the graph. To select which vertices the new vertex will connect,
assume that the probability that a new vertex will be connected
to vertex vi is proportional to the degree of vertex vi and the
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FIGURE 1 | Schema of ANOGVA analysis. In this example, k = 3 populations of graphs are tested to verify whether they were generated by the same random

graph model. First, the spectral distribution of each graph is estimated and then, the average spectral distribution of each population is estimated (ρgi (i = 1, . . . , k)).

Second, the average spectral distribution of all the spectral distributions (ρgM ) is estimated (average of the average distributions). Finally, the sum of the

Kullback-Leibler divergence (KLD) between ρgi (i = 1, . . . , k) and ρgM is calculated. Under the null hypothesis, i.e., when all k = 3 populations of graphs are generated

by the same random graph model, we expect a small 1.

scaling exponent ps (P(vi) ∼ degree(vi)
ps , where degree(vi) is the

number of adjacent edges of vertex vi in the current iteration.

2.6. Simulations Description
For the simulation studies, we analyzed five random graph
models, namely Erdös-Rényi (Erdös and Rényi, 1960), geometric
(Penrose, 2003), k-regular (Meringer, 1999) , Watts-Strogatz
(Watts and Strogatz, 1998), and Barabási-Albert (Barabasi
and Albert, 1999). All simulations were carried out in R

using the package igraph. The name of the functions and
respective parameters analyzed in our study are: function
erdos.renyi.game - parameter p; function grg.game -
parameter radius; function k.regular.game - parameter
k; function watts.strogatz.game - parameter p; and
function barabasi.game - parameter power. For the Watts-
Strogatz random graph model, we selected the parameter p as
the varying parameter in our simulations because it changes the
graph structure without altering the number of edges.

2.6.1. Simulation 1
To verify the controls of types I and II errors of ANOGVA in
inferring whether populations of graphs are equally generated,
we constructed four scenarios.

1. Scenario 1—under the null hypothesis: We constructed three
populations of graphs (g1, g2, g3) with n = 300. Graphs
were generated by an Erdös-Renyi (ER) random graph model
(Erdös and Rényi, 1960). The parameters pj’s (the probability
of inclusion of an edge) of the ER random graph models
were generated by a truncated normal distribution with lower
bound, upper bound, mean and variance set as 0, 10, 1, and
1, respectively, for each graph, and then linearly normalized
to the interval [0; 1] (i.e., let pj, j = 1, . . . , |g1|+|g2|+|g3|,
be the random numbers generated by the truncated normal
distribution. Then, we linearly normalize each pj to the
interval [0; 1] by dividing it by the upper bound). Notice that
this normalization is necessary because the parameter of the
ER random graph model is the probability of inclusion of
an edge. The parameters were generated in the same manner
for all graphs of the three populations. This scenario was
constructed to evaluate the control of the rate of false positives
under the null hypothesis (all graphs were generated by the
same random process).

2. Scenario 2—under the alternative hypothesis: Populations of
graphs g1 and g3 were constructed as described in scenario 1.
The parameters of the graphs of population g2 were generated
by a truncated normal distribution with mean 1.5 and unit
variance, and then linearly normalized to the interval [0; 1].
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This scenario was constructed to evaluate the power of the test
when the parameters of the graphs are different.

3. Scenario 3—under the alternative hypothesis: Populations of
graphs g1 and g3 were constructed as described in scenario 1.
The parameters of the graphs of population g2 were generated
by a truncated normal distribution with mean and variance
set as 1.5, and 1, respectively, and then linearly normalized to
the interval [0; 1]. The number of graphs are set as |g1| =
|g3| = 125 and |g2| = 50, 75, 100. This scenario was
constructed to evaluate the power of the test when the datasets
are not balanced.

4. Scenario 4—under the alternative hypothesis: Populations of
graphs g1 and g3 were constructed as described in scenario 1.
The population g2 is generated by a Watts-Strogatz random
graph model (Watts and Strogatz, 1998) with the dimension
of the starting lattice equal to one and the neighborhood
within which the vertices of the lattice is connected equal
to four. The rewiring probability is generated by a truncated
normal distribution with lower bound, upper bound, mean
and variance set as 0, 10, 1, and 1, respectively, and then
linearly normalized to the interval [0; 1]. The purpose of
this scenario is to evaluate the power of the test when one
of the populations of graphs is generated by a different
random graph model. To make this scenario more realistic,
we misclassified the labels of the graphs in rates of 0, 20, 30,
and 40%.

For scenarios 1, 2, and 4, the number of graphs varied (|g1| =
|g2| = |g3| = 50, 75, 100, 125). For each number of graphs,
the experiment was repeated 1,000 times. Then, we constructed
receiver operating characteristic (ROC) curves to evaluate the
control of the rate of false positives and the power of the proposed
statistical test.

2.6.2. Simulation 2
One alternative to verify whether graphs are generated by the
same probabilistic process is the application of ANOVA on
the features of the graphs (e.g., the betweenness centrality).
To compare the performance of ANOGVA with a simple
application of ANOVA on the features, we constructed three
populations of graphs (g1, g2, g3), each one composed of |g1| =
|g2| = |g3| = 100 graphs. The number of vertices was set to
n = 300. The graphs were generated by Erdös-Renyi (Erdös and
Rényi, 1960), geometric (Penrose, 2003), k-regular (Meringer,
1999), Watts-Strogatz (Watts and Strogatz, 1998), and Barabási-
Albert (Barabasi and Albert, 1999) random graph models. The
parameter of the random graph models were generated by
normal distributions with mean one for g1 and g3 and mean 1.5
for g2, all of them with unit variance. Then, they were linearly
normalized to the interval [0; 1]. The parameters for these five
graph models are: the probability of adding an edge for Erdös-
Rényi, the radius for the geometric, i.e., a vertex is connected
to all vertices at distance smaller than the radius (we set the
space dimension where the vertices are located to two), the vertex
degree for the k-regular, the rewiring probability for Watts-
Strogatz, and the power of the preferential attachment probability
for the Barabási-Albert. Since the parameters for k-regular and

Barabási-Albert random graph models are integers, we took
the floor of the parameter normalized between zero and one
and multiplied it by 10. Then, we measured five features that
are commonly considered in the literature, namely the number
of edges, the average betweenness centrality (Freeman, 1977)
(number of shortest paths from all vertices to all others that pass
through that vertex), the average closeness centrality (Bavelas,
1950) (one divided by the sum of the distances from one vertex
to all other vertices), assortativity (Newman, 2002) (preference of
a vertex to attach to others in terms of degree), and transitivity
(Wasserman and Faust, 1994) (relative number of triangles in the
graph, compared to total number of connected triples of vertices)
for each graph. Finally, we applied ANOVA on these features and
compared the statistical power with ANOGVA. A p-value cut-
off of 0.05 was set to determine whether the test rejected the
hypothesis that the three populations were generated by the same
random graph model. This experiment was repeated 1,000 times
and the proportion of rejected null hypothesis was calculated.

2.7. Application to the ABIDE Dataset
2.7.1. Dataset Description
A large resting state fMRI dataset initially composed of
908 individuals comprising controls and subjects diagnosed
with autism and Asperger was downloaded from the ABIDE
I Consortium website (http://fcon_1000.projects.nitrc.org/indi/
abide/). The ABIDE I dataset is fully anonymized in compliance
with the Health Insurance Portability and Accountability
(HIPAA) Privacy Rules and the 1,000 Functional Connectomes
Project/INDI protocols. Protected health information identifiers
and face information from structural images are not included in
this dataset. For further details, refer to Di Martino et al. (2014).

To pre-process the brain imaging data, we carried out
the Athena pipeline downloaded from (http://www.nitrc.org/
plugins/mwiki/index.php/neurobureau:AthenaPipeline) which
can be summarized as follows: exclusion of the first four scans;
slice timing correction; deoblique dataset; correction for head
movements; masking the volumes to exclude non-brain regions;
co-registration of mean image to the respective anatomic image
of the subject; spatial normalization toMNI space (4× 4× 4mm
resolution); extraction of BOLD time series from white matter
and cerebrospinal-fluid; removing effects of white matter,
cerebrospinal-fluid, motion and trend using linear multiple
regression; temporal band-pass filter (0.009 < f < 0.08Hz);
and spatial smoothing the filtered data using a Gaussian filter
(FWHM = 6mm). We used the CC400 atlas (Craddock et al.,
2012) to define the 351 regions of interest (ROIs). Then, we
removed 35 ROIs including the ventricles (identified by using
the MNI atlas), resulting 316 ROIs (vertices of the graph) for
the construction of functional brain networks. The average
time series within the ROIs were considered as to be the region
representatives. The head movement during magnetic resonance
scanning was treated by using the “scrubbing” procedure
described by Power et al. (2012). Individuals with a number of
adequate scans less than 100 after the “scrubbing” procedure
were discarded. It resulted in 896 subjects for subsequent
analyses. Thus, the dataset used in this study is composed of 529
controls (430 males, mean age± standard deviation, 17.47±7.81
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years), 285 autistic patients (255 males, 17.53 ± 7.13 years), and
82 Asperger patients (70 males, 19.97± 11.37 years). For further
details, see Table 1.

2.7.2. Functional Brain Networks
A functional brain network can be modeled as a graph, i.e., a pair
of sets G = (V ,E), in which V is the set of regions of interest—
ROIs (vertices), and E is the set of functional connectivity (edges)
among ROIs. In the current study, the functional connectivity
between two ROIs was obtained by calculating the Spearman’s
correlation coefficient between ROIs i and j (i, j = 1, . . . , 316)
for each individual q = 1, . . . , 896. Thus, a functional brain
network Gq with 316 ROIs can be represented by its adjacency
matrixAq with 316×316 elementsA

q
ij containing the association

between the ROIs i and j (i, j = 1, . . . , 316; q = 1, . . . , 896). Site,
gender, age effects and the proportion of removed volumes by
the “scrubbing” were modeled with a generalized linear model
(GLM) with the strength of association (z-value associated with
the Spearman correlation coefficient) as the response variable
and the effects as covariates. The residuals of the model were
considered as the connectivity filtered by these effects. Then,
p-values for each Spearman’s correlation coefficient (without site,
gender, age effects) between ROIs i and j were calculated and
corrected for the false discovery rate (FDR) (Benjamini and
Hochberg, 1995). The choice for the Spearman’s correlation is
based on the fact that it is robust to outliers and is also able to

TABLE 1 | Description of the ABIDE data set.

Site TR (ms) TE (ms) Voxel-size (mm) Scanner

Caltech 2,000 30 3.50×3.50×3.50 SIEMENS MAGNETOM TrioTim

syngo MR B17

CMU 2,000 30 3.00×3.00×3.00 SIEMENS MAGNETOM Verio

syngo MR B17

KKI 2,500 30 3.05×3.15×3.00 PHILIPS Achieva 3T

Leuven 1,667 33 3.59×3.59×4.00 PHILIPS INTERA 3T

MaxMun 3,000 30 3.00×3.00×4.00 SIEMENS MAGNETOM Verio

syngo MR B17

NYU 2,000 15 3.00×3.00×4.00 SIEMENS MAGNETOM Allegra

syngo MR 2004A

Olin 1,500 27 3.40×3.40×4.00 SIEMENS MAGNETOM Allegra

syngo MR 2004A

Pitt 1,500 25 3.10×3.10×4.00 SIEMENS MAGNETOM Allegra

syngo MR A30

SBL 2,200 30 2.75×2.75×2.72 PHILIPS INTERA 3T

SDSU 2,000 30 3.43×3.43×3.40 GE 3T MR750

Stanford 2,000 30 3.12×3.12×4.50 GE SIGNA 3T

Trinity 2,000 28 3.00×3.00×3.50 PHILIPS INTERA 3T (conferir)

UCLA 3,000 28 3.00×3.00×4.00 SIEMENS MAGNETOM TrioTim

syngo MR B15

UM 2,000 30 3.44×3.44×3.00 GE SIGNA 3T

USM 2,000 28 3.40×3.40×3.00 SIEMENS MAGNETOM TrioTim

syngo MR B17

Yale 2,000 25 3.40×3.40×4.00 SIEMENS MAGNETOM TrioTim

syngo MR B17

identify non-linear monotonic relationships (de Siqueira Santos
et al., 2014).

Functional sub-networks were defined as the same as defined
by Sato et al. (2015), namely somatomotor, visual, default-mode,
cerebellar, and fronto-parietal.

3. RESULTS

3.1. Simulations
We evaluated the controls of types I and II errors of ANOGVA
in verifying whether graphs are generated by the same random
graph model.

Figures 2A–D illustrate, respectively, the ROC curves
obtained by simulating scenarios 1, 2, 3, and 4 described in
Section 2.6.1. The x-axis represents the p-value threshold and the
y-axis represents the proportion of rejected null hypothesis given
a p-value threshold. The ROC curve under the null hypothesis
lies in the diagonal. Under the alternative hypothesis, we expect
to obtain a curve above the diagonal. In our case, the nominal
p-value is on the x-axis and the proportion of rejected null
hypotheses is on the y-axis.

The further is the curve above the diagonal, the higher is the
power of the test. By analyzing the ROC curves, it is possible
to notice that (i) Figure 2A—the ROC curves under the null
hypothesis lie in the diagonal as expected, i.e., the statistical test is
effectively controlling the rate of false positives (the proportion of
rejected null hypothesis is as expected by the p-value threshold);
(ii) Figure 2B—the power of the test increases as the number of
graphs increases under the alternative hypothesis (the parameter
of one of the populations is generated in a different manner);
(iii) Figure 2C—the power of the test increases as the datasets
are more balanced; and (iv) Figure 2D—the case the graph
samples are generated by different models, the power of the test
increases as the number of misclassified graphs decreases. When
the number of misclassification is zero, it is possible to notice that
the power of the method is higher than when only the parameter
is different (Figure 2C).

We compared ANOGVA with the application of ANOVA
on other features, such as the number of edges, betweenness
centrality, closeness centrality, assortativity, and transitivity in
five random graph models namely, Erdös-Rényi, geometric,
k-regular, Watts-Strogatz, and Barabási-Albert. Figure 3

describes the proportion of rejected null hypotheses in these
graph models. By analyzing Figure 3, we notice that only
ANOGVA followed by transitivity are able to discriminate all
random graph models with different parameters, including the
Watts-Strogatz random graph model. Betweenness centrality
presented low power for geometric, k-regular, Watts-Strogatz,
and Barabási-Albert random graph models. Closeness centrality
was not able to identify differences between Watts-Strogatz
random graph models. Assortativity coefficient presented low
power for Erdös-Rényi and Watts-Strogatz random graph
models.

3.2. Autism Spectrum Disorder
Functional brain networks were constructed as described in
Section 2.7.2. The five sub-networks depicted in Figure 4 are

Frontiers in Neuroscience | www.frontiersin.org 6 February 2017 | Volume 11 | Article 66

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Fujita et al. A Method to Distinguish Functional Brain Networks

FIGURE 2 | ROC curves for simulation 1. The x-axis represents the p-value threshold. The y-axis represents the proportion of rejected null hypothesis in 1,000

repetitions. (A) Scenario 1: under the null hypothesis. Notice that, under the null hypothesis, the rate of false positives is as expected by the p-value threshold.

(B) Scenario 2: parameters of the graphs are different among populations. Under the alternative hypothesis, the greater the number of graphs

(|g1| = |g2| = |g3| = 50, 75, 100, 125), the greater is the power to reject the null hypothesis. (C) Scenario 3: unbalanced data. The numbers of graphs are set as

|g1| = |g3| = 125 and |g2| = 50, 75, 100. Notice that the more balanced is the number of graphs among populations, the greater is the power. (D) Scenario 4: the

graph models are different among populations (g1 and g2 are Erdös-Rényi and Watts-Strogatz random graph models, respectively) and the labels were misclassified

in proportions of 0, 20, 30, and 40%. The greater is the number of mislabeled samples, the lower is the power of the test. Notice that the power when the rate of

mislabeling is zero is greater than when the random graph models are equal but the parameter is different.

based on sub-networks defined by Sato et al. (2015), namely
somatomotor, visual, default-mode, cerebellar, and fronto-
parietal.

Here, we focused on the identification of which sub-network
is associated with autism and Asperger by using ANOGVA. The
number of permutations was set to 1,000. First, we compared
the three groups (controls vs. autism vs. Asperger) for each sub-
network to verify if there is at least one population that differs
from the others. The test indicated a significant difference at
a p-value threshold of 0.05 for cerebellar (p = 0.04), and not
for somatomotor (p = 0.13), visual (p = 0.95), default-mode
(p = 0.17), and fronto-parietal (p = 0.21). These results suggest
that the structure of the cerebellar functional sub-network is
different at least in one of the populations among controls,
autistic and Asperger patients. To identify which population
is not equally generated in the cerebellar cluster, we carried
out pairwise comparisons among the groups. Results indicate
that there is no statistical evidence to discriminate controls vs.
Asperger (p = 0.99) and autism vs. Asperger (p = 0.13), but there
is significant difference between controls and autism (p < 0.001).

This result indicates that the random process underlying the
group control and autism are different.

DISCUSSIONS

We introduced a method that is able to test two or more
groups of graphs simultaneously. Our permutation-based test
allows the estimation of p-values even for datasets with unknown
probability distributions.

In a simulation study, we showed that the proposed method
can indeed discriminate samples of graphs generated by different
models and parameters. Similar to ANOGVA, the application of
ANOVA on the number of edges can also discriminate a wide
range of graph models. However, when the number of edges do
not change, such as in the case of the Watts-Strogatz random
graph model (the parameter is the rewiring probability), the
ANOVA on the number of edges fails. Notice that the parameter
of the Watts-Strogatz model only changes the structure of the
graph and, in general, graph features are associated with the
number of edges.
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FIGURE 3 | Proportion of rejected null hypotheses at a p-value threshold of 0.05 in 1,000 repetitions. Error bars indicate the 95% confidence interval. Each

color represents the ANOGVA (gray) or the analyzed feature with ANOVA (NE, number of edges; BC, Betweenness centrality; CC, closeness centrality; AS,

assortativity; TR, transitivity or clustering coefficient; GE, global efficiency).

FIGURE 4 | Functional brain sub-networks defined by Sato et al. (2015). Each sub-network is represented by a different color, namely somatomotor, visual,

default-mode, cerebellar, and fronto-parietal. R, right; L, left.
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In the illustrative fMRI application example, we found that
the cerebellar is associated with autism spectrum disorder. This
result is consistent with other findings reported in the literature
(Fatemi et al., 2012; Becker and Stoodley, 2013). Sato et al.
(2015) showed that the network entropy of the cerebellar system
is lower in autism than controls. Other fMRI studies reported
reduced connectivity within cerebro-cerebellar motor networks
during finger sequence tapping (Mostofsky et al., 2009) and also
related to verb generation (Verly et al., 2014). Mosconi et al.
(2015) showed that feedforward and feedback motor control
abnormalities implicate cerebellar dysfunctions. We didn’t find
statistical differences between control and Asperger groups and
between autism and Asperger groups. These results do not mean
that there are no differences in graph structures between these
groups as there is evidence in the literature that the brain
activity and structure between these groups can be distinguished
(McAlonan et al., 2002; Welchew et al., 2005). This result is most
probably a result in lack of statistical power that can be improved
by increasing the sample size, improving the classification criteria
of the groups, and/or changing the experimental setup.

One limitation of our study is that the data collection
protocols are heterogeneous among labs belonging to the ABIDE
consortium. This issue was addressed by including the site as
covariate in the GLM. Another solution would be to select the
lab presenting the greater number of samples. However, since
the number of samples decrease considerably when compared
to analyzing the entire ABIDE dataset, the power of the test
also decreases considerably. Another limitation is the fact that

the results are based on a resting-state fMRI protocol, and
caution has to be taken to extend to other cognitive states.
Regarding the method, ANOGVA can only be applied to
undirected graphs. For directed graphs, more studies of the
spectrum are necessary. Since the statistical test is based on a
permutation procedure, one supposition is that the parameters of
the model are sampled from probability distributions with finite
variance.

ANOGVA is implemented in R (R Core Team, 2014) and is
available in the package statGraph (http://www.ime.usp.br/~
fujita/software.html).
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