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Abstract

Cell segmentation in microscopy is a challenging problem, since cells are often asymmetric

and densely packed. Successful cell segmentation algorithms rely identifying seed points,

and are highly sensitive to variablility in cell size. In this paper, we present an efficient and

highly parallel formulation for symmetric three-dimensional contour evolution that extends

previous work on fast two-dimensional snakes. We provide a formulation for optimization on

3D images, as well as a strategy for accelerating computation on consumer graphics hard-

ware. The proposed software takes advantage of Monte-Carlo sampling schemes in order

to speed up convergence and reduce thread divergence. Experimental results show that

this method provides superior performance for large 2D and 3D cell localization tasks when

compared to existing methods on large 3D brain images.

Introduction

Quantifying the size and distribution of cell nuclei in optical images is critical to understand-

ing the underlying tissue structure [1] and organization [2, 3]. Segmentation is crucial to this

analysis, by providing quantitative data that pathologists can use to characterize diseases and

evaluate their progression [4]. Since manual analysis of microscopy images is time consuming

and labor intensive, automated cell localization is essential for detecting and segmenting cells

in massive images. Microscopy images exhibit a large degree of variability and complexity, due

to large numbers of overlapping cells and variations in cell types and stages of cell division,

imaging systems, and staining protocols. In order to deal with this complexity, a large number

of algorithms have been proposed [5, 6]. Most current algorithms use basic techniques com-

bined with complicated pipelines to overcome those challenges. These methods include

thresholding [7–9], feature extraction [10, 11], classification [12], c-means [8] and k-means

[13] clustering, region growing [14–16], and deformable models [17–19].

Recently, learning based approaches using artificial neural networks (ANN) and convolu-

tional neural networks (CNN) have gained increased attention. These methods rely on exam-

ple data to train a machine learning algorithm to identify boundary pixels [20] or directly
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perform binary segmentation [21]. In general, most pipelines include prepossessing, finding

cell bounding boxes, extracting either spatial or frequency-based features [2, 22–24] or using

several convolution layers followed by max-pooling [25, 26], and finally classifying the image.

In these approaches, the training phase is time consuming and requires massive amounts of

labeled data [27].

Most current algorithms focus on two-dimensional data, such as histology slides, and

utilize a variety of techniques to deal with specific tissue types, stains, and labels. For exam-

ple, deep CNNs have been used for overlapping clumps in Pap smear images [28], and sup-

port vector machines (SVMs) have been employed to segment epithelial cells [29] and

skeletal muscle [30]. Finally, active contours have been shown to be effective for cell nuclei

[31].

The major limitation of histology slices is that they are limited to 2D sampling. Although

histological assesments convey some of the structure and morphology of the tissue, they

do not provide proper insights into the 3D layout of cells. In addition, 3D images provide

much better separability when cells are overlapping or hidden in the corresponding 2D

images.

To date, several software solutions are available for specialized cell segmentation on 3D

images. FARSIGHT [32] uses graph cuts and multi-scale Laplacian of Gaussian filters to

detect cell seed points. Region growing is then used based on local-maximum clustering.

MINS [33] performs blob detection by smoothing the image with Gaussian kernels at differ-

ent scales and computing eigenvalues of the Hessian matrix at each pixel from these

smoothed images. It then thresholds the respective eigenvalues to obtain a mask of nuclei

and a connected component analysis assigns a unique ID to each nucleus. The 3D object

counter plugin for ImageJ [34] is a simple 3D cell counter which uses a user-specified inten-

sity threshold to separate foreground and background, resulting in an over-segmented

image. Since fundamental thresholding is not robust, adaptive and iterative thresholding on

smoothed 3D images can also be used [35, 36]. In almost all cases, cell localization is a neces-

sary initial step.

One method for addressing large-scale localization relies on simple active contours, such as

snakuscules [37, 38], which are fast to evaluate and rely on very few user-specified input

parameters. However, a three-dimensional application of this algorithm has not been derived.

In addition, the sampling required to evolve a primitive active contour is computationally

intractable for images containing thousands of cells.

Approach

Most deformable models transform an image segmentation task to an optimization problem.

An energy function is defined based on the image content and desired behavior of a curve.

Snakuscules, introduced in [37], are region-based snakes optimized for identifying approxi-

mately circular features. In this section, we will describe the previously published snakuscule

algorithm as well as generalize the mathematics to three-dimensional images.

Snakuscules

Snakuscules are active contours optimized for fast convergence around circular image features.

Their fast evaluation time allows the initialization of many contours that cover an entire

image, allowing detection of blob-like features without manual initialization.

A Snakuscule is defined by a pair of concentric disks parameterized by two points p and q

(Fig 1a). The optimization attempts to minimize an energy function measuring the contrast

between the inner disk and annulus in order to completely surround a bright round object

Three-dimensional snakuscules
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with a circular curve. The energy function is defined to balance the weighted inner area against

the weighted outer area of the curve:

Eðp; qÞ ¼
ZZ

rR<kx� ck<R

IðxÞdx �
ZZ

kx� ck<rR

IðxÞdx

R ¼
1

2
kp � qk

c ¼
1

2
pþ qð Þ

ð1Þ

where I(x) is a two-dimensional image, x = [x1, x2]T is an image coordinate, R is the radius of

the snake, and c is its center. The value r ¼ 1ffiffi
2
p , derived previously for the two-dimensional

case [37], enforces the equal area for both inner disk and outer annulus.

One snakuscule can find and segment one light blob in the image. To catch all interesting

features, many initial contours are specified to cover the image (Fig 1b). The contours are then

evolved, and trivial contours that do not converge to image features are eliminated (Fig 2).

3D snakuscules

We first propose a mathematical framework for evolving snakuscules in 3D by moving and

expanding/contracting an initial 3D contour to fit cell nuclei. This generalization makes it via-

ble to extend similar contours to higher-dimensional or hyperspectral data (ex. hypersnakus-

cules). The 3D snakuscule is based on a pair of concentric spheres that are parameterized by

two points p = [px, py, pz]T and q = [qx, qy, qz]T (Fig 3a). The optimization process minimizes a

local energy function, which favors high contrast between weighted inner and outer volumes.

Contours move and evolve within the spatial domain of an image to minimize the contrast

energy function (Eq 2).

Eðp; qÞ ¼
ZZZ

rR<kx� ck<R

IðxÞdx �
ZZZ

kx� ck<rR

IðxÞdx ð2Þ

This optimization leads the contour toward a bright spherical object on a dark background.

To ensure the snake does not move in uniform regions with constant intensity where 8x 2 R3:

Fig 1. (a) A snakuscule is defined by two points p and q. (b) Initial configuration of multitude snakuscules

congregated together at a distance
ffiffiffiffiffiffiffi
1:5
p

R.

https://doi.org/10.1371/journal.pone.0215843.g001
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I(x) = I0, the energy is defined using two sub-terms that cancel each other out; therefore,

r ¼ 1ffiffi
23p .

This prevents the contour from sliding when the surrounding gradient is zero [37]. We

illustrate energy minimization for a generic model of a light blob I(r, θ) = 1 + sgn(r0 − r),

Fig 2. (a) A DAPI stained brain tissue slice. (b) The initial configuration and (c) final configuration of snakuscules on

a zoomed region.

https://doi.org/10.1371/journal.pone.0215843.g002

Fig 3. (a) A 3D snakuscule defined by two points p and q; to simplify computations 3D snakusules identifier points

are considered in the same y and z levels. (b) The initial configuration consists of every two neighboring 3D contours

located at a distance
ffiffiffiffiffiffiffi
1:5
p

R apart. (c) The middle section of the 3D snakuscule with four distinct regions are shown in

different colors. (d) The weight function assigns a weight to any portion of the 3D snakuscule shown in (c).

https://doi.org/10.1371/journal.pone.0215843.g003
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where sgn function is defined as:

sgn ðxÞ :¼

� 1; if x < 0

0; if x ¼ 0

1; if x > 0

8
>>><

>>>:

ð3Þ

It creates a sphere of radius r0 in a black background. When the contour is concentric within

the blob, the resulting energy is given by:

Ê ¼

0; R < r0

�
8

3
pðR3 � r3

0
Þ;

R
ffiffiffi
23
p < r0 < R

�
8

3
pr3

0
; R �

ffiffiffi
2

3
p

r0

ð4Þ

8
>>>>>>><

>>>>>>>:

The energy achieves an optimal value for any contour equal or larger than the blob, so there is

no unique optimal contour. To ensure that the volume occupied by the contour is also mini-

mized, a normalization term α is used to reformulate the energy function:

�EðR; aÞ ¼
Ê
Ra

ð5Þ

where α> 0 to apply a penalty when the contour becomes larger than the blob. To balance the

expansion and contraction speed when the contour is approaching the blob size, we force the

energy gradient to be symmetric as the optimal value is approached:

lim
R!
ffiffi
23p
� �

d�EðR; aÞ
dR

¼ lim
R!
ffiffi
23p
þ�

�
d�EðR; aÞ
dR

which results in a normalization value α = 3. Fig 4 depicts the energy function with respect to

Fig 4. Energy changes of the 3D snake with and without normalization term w.r.t its radius. Energy function with

normalization term has a single local minimum when the snake fit the blob.

https://doi.org/10.1371/journal.pone.0215843.g004
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the contour radius with and without normalization. Note that this normalization term can be

optimized as desired for objects that are not binary indicator functions (ex. Gaussian kernels).

A discrete formulation of the energy function is generated by substituting summation for

integration in the pixel domain. The final discrete energy function is given by:

Eðp; qÞ ¼
1

kp � qk3

X

k2K
SðrÞIðkÞ ð6Þ

where K is the set of all pixels within Rþ 1

2
DR of the 3D snake center, r = |k − c|, and S(r) is a

differentiable weight function (Fig 3d), so that
R1

0
SðrÞr2dr ¼ 0. The 3D snake is composed of

four different regions (Fig 3c); two dynamic and two fixed regions. During evolution, the

entire footprint becomes smaller or larger while ΔR and Δr remain unchanged:

Dr ¼ DR=
ffiffiffi
23
p

To simplify calculations, the two identifier points p and q are considered to be in the same line

along both the y and z directions (py = qy and pz = qz). The energy function can be rewritten as:

Eðp; qÞ ¼
1

ðqx � pxÞ
3

X

k2K
SðrÞIðkÞ ð7Þ

3D contour evolution

The 3D snakuscule evolves by movements of p and q in the opposite direction ofrE to mini-

mize the energy function using gradient descent. Therefore, partial derivatives of the energy

function E with respect to the identifier points p and q are required:

@E
@px
¼ g

3

qx � px

X
SðrÞIðkÞ þ

X @S
@px

IðkÞ
� �

ð8Þ

@E
@qx
¼ g

� 3

qx � px

X
SðrÞIðkÞ þ

X @S
@qx

IðkÞ
� �

ð9Þ

@E
@qy
¼
@E
@py
¼ g

X @S
@py

IðkÞ ð10Þ

@E
@qz
¼
@E
@pz
¼ g

X @S
@pz

IðkÞ ð11Þ

where

g ¼
1

ðqx � pxÞ
3 ð12Þ
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We minimize the energy (Eq 7) using gradient descent to update the position of the identi-

fier points. Each point k 2 K applies a force to p and q that dictate its motion over time:

dp
dt
¼ �

X

k2K

@EðkÞ
@p

ð13Þ

dq
dt
¼ �

X

k2K

@EðkÞ
@q

ð14Þ

pnþ1 ¼ pn þ �
dp
dt

ð15Þ

qnþ1 ¼ qn þ �
dq
dt

ð16Þ

where � ¼
�0ffiffi
n
p is learning rate, �0 is constant and n is the iteration number.

Parallelizing the process

Regarding cell localization and counting, 3D snakuscules can be initially placed on the 3D

image in a lattice (Fig 3b) similar to the 2D case (Fig 1b). They evolve independently to seg-

ment a nearby spherical structure (blob). However, the higher dimensional integration results

in excessive computing time, making a serial implementation impractical for large high resolu-

tion images.

Since the evolution of each contour is completely independent from the others, this process

is highly data-parallel and an ideal application for graphic processing units (GPUs). GPUs

consist of a large number of parallel processors that can be used for general purpose parallel

computing to improve the performance of algorithms that are highly data parallel and can be

split into a large number of independent threads. A GPU has a local single-instruction on mul-

tiple data (SIMD) architecture, making execution of the same program on multiple values

extremely efficient. The set of instructions applied on each element is called a kernel [39]. We

define our evolutionary instructions as a GPU kernel that can be executed for thousands of

snakes in parallel.

For instance, snakuscules are run on various pieces of a 2D DAPI stained rat brain tissue

image. The image is a whole rat brain slice with resolution of 350 nm/pixel. The initial and

final snakuscules configurations for a 1000 × 1000 image are shown (Fig 2). Fig 5 illustrates

performance of GPU implementation in comparison to an optimized CPU version. By

increasing number of contours, image size, CPU execution time increases significantly, quickly

becoming impractical.

The 3D snakuscule is computationally more expensive because of integration over a 3D

space using a uniform grid. Therefore, parallel computing using a GPU is employed to assign

one contour evolution to one GPU thread.

Monte-Carlo integration

In order to further accelerate contour evolution, Monte-Carlo (MC) integration is used. It esti-

mates the integral values using a uniform distribution of randomized samples. In the 2D case,

samples are chosen from a uniform distribution inside of a circle with radius (R + ΔR/2). If r
and θ are random numbers in [0, 1] and [0, 2π) respectively; a uniform set of points within the

Three-dimensional snakuscules
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circle with radius r are computed:

x ¼
ffiffi
r
p

cos y

y ¼
ffiffi
r
p

sin y

MC integration is selected because it provides two advantages over uniform sampling:

• Convergence is significantly faster for higher-dimensional data sets, providing an error of 1

N,

regardless of the number of dimensions.

• The use of MC sampling allows us to specify a constant number of samples per snake, mini-

mizing branch divergence in the GPU-based SIMD algorithm.

One constraint of MC integration is that we are relying on an underlying assumption that

the integral is well-behaved (smooth). Given that we expect cell nuclei to be relatively consis-

tent in size, this assumption is well founded. However, it can be mathematically enforced

using a low-pass filter that forces the image to be smooth.

For 3D images, uniform sampling is done within a sphere with radius (R + ΔR/2). Execu-

tion time using Monte-Carlo sampling in comparison with the original integration for

different number of snakes on the 2D (Fig 6) and the 3D (Fig 7) images shows significant

improvement. As expected, a significantly greater acceleration can be seen in the 3D algo-

rithm, with an� 4X gain in performance on average.

Parallel contour evaluation

In order to improve the GPU efficiency by utilizing more GPU resources, we further parallelize

each 3D contour. We instead assign each block to one contour so that threads in that block are

responsible for smaller parts of Eqs 13 and 14. For each snake, if MC integration selects N ran-

dom samples and the CUDA kernel is launched with T threads (the maximum number of

threads per block), each thread calculates a portion of the energy (Eqs 8–11) corresponding to

Fig 5. Execution time for the method implemented on CPU and GPU. Time axis is plotted on a logarithmic scale.

https://doi.org/10.1371/journal.pone.0215843.g005
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N/T spatial locations within the contour. The results are stored in shared memory and com-

bined (Eqs 13 and 14) to calculate the final contour at each iteration. This allows employing

more GPU threads to cooperatively walk through a snake evolution process (Fig 8).

Results and discussion

In order to find all sphere-like objects in an 3D-image without user interaction, the image is

covered by close initial 3D contours. The 3D contours update their current configurations by

individually optimizing their energies. Contour evolution is stopped when either (a) they meet

maximum number of iterations or (b) they converge where contours reach the minima and

the moving step is much less than one pixel such as 0.001.Overlapping snakes, as defined by

kc0 � c@k < max ðR0;R@Þ=
ffiffiffi
2

3
p

, undergo a competition with the lower energy snake surviving.

3D snakuscules with energy greater than a threshold (E0) are also removed.

Fig 6. Execution time of snakuscules (2D) on GPU with and without Monte-Carlo sampling.

https://doi.org/10.1371/journal.pone.0215843.g006

Fig 7. Execution time of 3D snakuscules on GPU with and without Monte Carlo sampling.

https://doi.org/10.1371/journal.pone.0215843.g007
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Images of the hilus region of the dentate gyrus in the mouse hippocampus were collected

with a 40X oil objective on a Leica TCS SP8 confocal microscope (1024 × 1024 pixels;

387.5 × 387.5μm). A 405 nm laser excited the DAPI signal that was detected between 415 to

500nm). A 1μm step size was set for z stack collection of the entire tissue thickness. Acquisition

speed was set to 600 HZ, with a 0.75 zoom factor. Raw images for all data analysis were

exported as TIFFs. Transgenic mice that model Dravet syndrome with spontaneous seizure

onset at postnatal day 15 were housed in a 12 hour light/dark cycle. These mice have a knock-

in mutant Scn1A gene containing a nonsense substitution (CgG to TgA) in exon 21 [40]. All

animal experiments were approved by the Institutional Animal Care and Use Committee of

the University of Houston.

We applied our method to the image of size 256 × 256 × 40 (Fig 9a). In order to deal with

pixel anisotropy, where z-axis resolution is commonly worse than lateral (x,y) resolution, the

Fig 8. Parallel implementation on GPU. (a) Assignment of each contour to a thread block. (b) The algorithm implemented on GPU.

https://doi.org/10.1371/journal.pone.0215843.g008

Fig 9. (a) A section of DAPI stained mouse hippocampus 3D image and (b) the final configuration of 3D snakuscules

on the section.

https://doi.org/10.1371/journal.pone.0215843.g009
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pixel size is specified using lateral pixels and the axial direction is linearly interpolated using

GPU hardware. the images were re-sampled to obtain a uniform pixel size. The contours are

initialized as a lattice of 3D snakuscules. The 3D snakuscules are evolved and culled using the

proposed methods. Fig 9b depicts the final configuration of them on a 2D slice.

To quantitatively evaluate the performance of our method, 3D snakuscules are considered

as either a cell (foreground) or non-cell (background) using a K-nearest neighborhood (KNN)

search. The four evaluation parameters, precision (Pr), recall (Re), F-measure (F) and Jaccard

(J), are calculated as follows:

Pr ¼
TP

TP þ FP

Re ¼
TP

TP þ FN

F ¼
2PrRe

Pr þ Re

J ¼
PrRe

Pr þ Re � PrRe

Where the true positive (TP) value is number of accurately detected cells, the false positive

(FP) value is the number of falsely detected cells, and the false negative (FN) value is number

of undetected cells. The ground truth is the manual detection of cell centers. The annotations

are done using Gimp for 2D and an in-house tool for 3D images under an expert supervision.

Fig 10 illustrates the precision-recall curve for MINIS, FARSIGHT, 3D object counter, Cell-

Segm and the proposed method on a DAPI-labeled image with 53 annotated cells. The perfor-

mance for each algorithm is shown in Table 1. We initialized the 3D snake parameters with an

initial radius of 15 pixels (� 6 μm), the energy threshold E0 = −3(E0� 0), and the maximum

number of iterations to 400. Also, We adjusted the hyperparameters of other methods to opti-

mize their performance on our dataset. The results clearly demonstrate that 3D snakuscules

are suitably capable of capturing round cell nuclei, and provide considerable performance

advantages over other conventional methods with F-measure of 90% in comparison with that

of 82%, 74%, 62% and 82% for MINIS, FARSIGHT, 3D object counter and CellSegm respec-

tively. Additional advantages include the minimal number of parameters required for

initialization.

We also evaluated our algorithm on two publicly available data sets (Fig 11) available at

www.celltrackingchallenge.net:

• Fluo-N3DH_CE: Caenorhabditis elegans embryos stained with green flourescent protein

(GFP) transfection collected with Plan-Apochromat 63X/1.4 (oil) objective lense on Zeiss

LSM 510 Meta and the voxel size 0.09 × 0.09 × 1.0μm3 [41, 42].

• Fluo-N3DH-SIM+: A simulated video from fluorescently labeled nuclei of the HL60 cells

stained with Hoescht. It is imaged using Plan-Apochromat 40X/1.3 (oil) objective with reso-

lution 0.125 × 0.125 × 0.2μm3 [41, 42].

Segmentation results for the proposed method are shown in Table 2.

The sensitivity of our algorithm to noise was tested by generating a phantom based on man-

ually segmented three-dimensional images of cells acquired using KESM [43]. Incremental

reduction in signal-to-noise ratio (SNR) demonstrates robust localization with an F-measure

ranging from 0.96 (original image) to 0.75 (SNR = 0.2dB) (Fig 12).

Three-dimensional snakuscules
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GPU occupancy

Occupancy is a measure of how many warps the kernel has active on the GPU, relative to the

maximum number of warps supported by the GPU. The graphic processor used in our experi-

ments is GetForce GTX-1070 with 1920 CUDA cores, 8GB of global memory, 2MB of L2

cache size, and 48kB of on-chip shared memory. The compute capability is 6.1, the global

memory bandwidth is 256.256GB/s, and the single precision FLOP/s is 6.852TeraFLOP/s. The-

oretical occupancy provides an upper bound while achieved occupancy indicates the kernel’s

actual performance. When the GPU does not have enough work, resources are wasted.

The theoretical occupancy for our algorithm is 50%, limited by the number of registers

required for contour evolution. This is a relatively standard theoretical occupancy for complex

Fig 10. Evaluation of different algorithms on the same DAPI stained image. Our proposed method (3D snakuscule) provides results which matches the ground

truth better than others.

https://doi.org/10.1371/journal.pone.0215843.g010

Table 1. Performance of different algorithms against manually segmented ground truth through evaluation parameters, precision, recall, Fmeasure and Jaccard.

Method Precision Recall Fmeasure Jaccard

MINS 0.75 0.90 0.82 0.69

FARSIGHT 0.64 0.88 0.74 0.58

object counter- imagej 0.59 0.66 0.62 0.45

CellSegm 0.66 0.90 0.82 0.61

3D snakuscules 0.97 0.84 0.90 0.81

https://doi.org/10.1371/journal.pone.0215843.t001
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calculations, however a more rigorous optimization may yield better results in the future.

Since any 3D contour is assigned to one GPU thread, the number of utilized threads is equal to

the number of initial 3D snakes. Therefore, a small image with a small number of cells occupies

fewer resources, resulting in low compute performance that is unable to hide operation and

memory latency (Fig 13a). Comparing achieved occupancy with and without Monte-Carlo

sampling shows that MC integration improves GPU performance and occupancy by reducing

Fig 11. Representing one section of different 3D datasets used for cell detection. (a) Fluo-N3DH_CE (b) Fluo-N3DH-SIM+ (c) Mouse-Brain.

https://doi.org/10.1371/journal.pone.0215843.g011

Table 2. Performance of 3D snakescules on datasets with varying numbers of cells.

Dataset # Cells Precision Recall Fmeasure Jaccard

Fluo-N3DH_CE 209 0.93 0.98 0.95 0.91

Fluo-N3DH-SIM+ 39 0.97 0.92 0.94 0.89

Mouse-Brain(sec.1) 172 0.94 0.82 0.87 0.77

Mouse-Brain(sec.2) 53 0.97 0.84 0.90 0.81

https://doi.org/10.1371/journal.pone.0215843.t002

Fig 12. Quantification of the effect of Gaussian-distributed noise on localization accuracy. Reducing SNR to 0.2

results in a drop in F-measure from 0.96 to 0.75.

https://doi.org/10.1371/journal.pone.0215843.g012
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thread stalls. Since there are cells with various sizes in the image, uniform integration takes

longer for contours corresponding to bigger cells, resulting in additional stalls. These are miti-

gated using MC integration.

Since the reduction in efficiency is due primarily to low occupancy, further parallelizing

each 3D contour allows for the generation of more threads. This provides an achieved occu-

pancy much closer to the theoretical limit (Fig 13a), further reducing processing time (Fig

13b).

Conclusion

We developed a 3D blob-detector, based on the miniscule snakes (snakuscule) algorithm, that

provides a method for 3D nuclei detection with minimal user interaction. This paper describes

a unified formulation of snakuscules in three dimensional space, so that the new cost function

is minimized with respect to two points which define the contour. Although the method is ini-

tially computationally expensive, it is extremely data parallel and can be efficiently imple-

mented using GPU hardware. A GPU implementation, combined with Monte-Carlo

sampling, results in a simple and fast blob detector for large images with numerous cells. Our

method requires the specification of a minimum contour size, which is usually readily available

for microscopy images. We have illustrated that the GPU implementation and Monte Carlo

sampling significantly increase performance, making 3D snakuscules viable for cell localiza-

tion. The experimental results demonstrate that the proposed method outperforms state of art

methods in overall accuracy.

One major limitation of this algorithm is that a significant portion of the evaluation is

devoted to the evolution of snakes that will ultimately be culled. This suggests that any method

that reliably places initial contours could significantly increase snakuscule performance. A

more optimal placement of initial contours could significantly improve performance beyond

Fig 13. (a) Theoretical occupancy, green, and achieved occupancy using different size images (different number of initial 3D snakuscules) with and without Monte

Carlo integration, blue and red respectively. Parallel 3D snakuscules provide an achieved occupancy (purple) comparable to the theoretical limit. (b) The diagram

shows execution time of the method implemented on GPU using MC integration before and after further parallelization for different number of initiated 3D

snakuscules.

https://doi.org/10.1371/journal.pone.0215843.g013
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what we were able to achieve with a lattice. However, methods such as iterative voting and

Laplacian of Gaussian blob detection resulted in reduced accuracy when tested. Therefore

more advanced algorithms, such as dynamic culling or insertion of contours during evolution,

may be a better approach.

In addition, further optimization of the evolution kernel to increase theoretical occupancy

limited by register usage could double performance.
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