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Transcriptome profiles of three 
Muscat table grape cultivars to 
dissect the mechanism of terpene 
biosynthesis
Lei Sun1, Baoqing Zhu2, Xuanyin Zhang1, Guojun Zhang1, Ailing Yan1, Huiling Wang1, 
Xiaoyue Wang1 & Haiying Xu3,4

Vitis vinifera is widely grown worldwide for making wine and for use as table grapes. Of the existing 
cultivars, some have a floral and fruity flavour, referred to as a Muscat flavour. It is well-documented 
that this flavour originates from a series of terpene compounds, but the mechanism of terpene content 
differences among the Muscat-type cultivars remains unclear. Transcript and terpene metabolite 
profiles were integrated to elucidate the molecular mechanism of this phenomenon. In this research, 
three genotypes with different aromatic strengths were investigated by RNA sequencing. A total of 27 
fruit samples from three biological replicates were sequenced on Illumina HiSeq2000 at three stages, 
corresponding to the veraison; berries had intermediate Brix value and were harvest-ripe. After quality 
assessment and data clearance, a total of 254.18 Gb of data with more than 97% Q20 bases were 
obtained, approximately 9.41 Gb data were generated per sample. These results will provide a valuable 
dataset for the discovery of the mechanism of terpene biosynthesis.

Background & Summary
The trait of aroma is one of the most important parameters for the quality of grapes and is the main concern when 
consumers buy grape products. For genetic improvement research and breeding, the biosynthesis mechanism of 
aromatic compounds and their regulation has attracted much attention. Terpenes are the typical aromatic com-
pounds in Muscat grapes, and they belong to the second metabolites1–4; they have a low olfactory threshold and 
can be easily precepted by humans. The terpenes mainly exist in the pericarp and in the flesh of some cultivars5, 
with their content being affected by the genotype6,7, developmental stage8,9, environment and management of the 
grape10–13. Terpenes have two forms: the free form, which directly leads to the aromatic flavour, and the glycoside 
bound form, in which the potential aromatic compounds transfer to the free form by hydrolysis14–16.

Biologically, the biosynthesis of terpene compounds in plants are synthesized by two pathways, the 
methyl-erythritol-4-phosphate pathway (DXP/MEP) in the plastid and the mevalonate pathway (MVA) in the 
cytoplasm17, with terpenes located in the mesocarp and pericarp18. Starting from pyruvic acid and 3-phosphate 
glyceraldehyde, by 1-deoxy-D-xylulose-5-phosphate synthase (DXS), which is the entrance enzyme in the MEP 
pathway, the two compounds were changed into 1-deoxy-D-xyulose-5-phosphate and, then, through six enzy-
matic reactions, were converted into geranyl-diphosphate (GPP). Geranyl-diphosphate was the substrate for all 
the terpenes. Then, by a series of terpene synthases, the GPP was synthesized into hemiterpenes (C5), monoter-
penes (C10), sesquiterpenes (C15) or diterpenes (C20)19–22.

The genetic mechanism of Muscat flavour in grapevines has been studied through quantitative trait loci analy-
sis (QTL) in different F1 populations23,24, and in selfing populations, it has been shown that VvDXS is a structural 
candidate gene for geraniol, nerol, and linalool concentrations in wine grapes25. Battilana reported that single 
nucleotide polymorphism (SNP) mutations in VvDXS are the main cause of the Muscat flavour. The substitution 
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of a lysine with an asparagine at position 284 of the VvDXS amino acid sequence affects the monoterpene content 
of Muscat flavour and neutral cultivars26.

In Muscat grapes, some cultivars have a very strong flavour, while others have moderate or light flavour. 
The terpene type and concentration varied among the cultivars. To date, terpene accumulation has been 
well-documented in some wine grapes. Terpene accumulation in developing Gewurztraminer grapes has been 
shown to be correlated with an increase in the transcript abundances of early terpenoid pathway enzymes27. Some 
transcription factors involved in controlling terpene biosynthesis have been predicted in the grapevine cultivar 
Muscat Blanc à Petits Grains through gene co-expression network analysis28. A Nudix hydrolase was also found 
to be a component of a terpene synthase-independent pathway, with cytochrome P450 hydroxylases, epoxide 
hydrolases and glucosyltransferases genes potentially involved in monoterpene metabolism29. However, there are 
few reports on the table grape30.

In this study, we present the transcriptome analysis of three genotypes of table grapes. During berry devel-
opment, 27 samples, in total, were sequenced on the Illumina HiSeq Platform. After quality assessment and data 
clearance, a total of 254.18 Gb high-quality base pairs with more than 97% Q20 bases were obtained, and an 
approximately 9.41 Gb per sample. In the aggregate, a total of 776 million reads were yielded, with an average of 
31.66 million reads per sample. Furthermore, approximately 76.65% of the total reads were uniquely aligned to 
the grape genome (V2)31. These data will provide useful information for investigating terpene biosynthesis.

Methods
Overview of the experimental design.  The berries of three genotypes were collected at three develop-
mental stages. Approximately 300 grape berries were randomly collected for each replicate, with three replicates 
harvested for each stage. The experimental design and analysis pipeline are shown in Fig. 1.

Materials and methods.  Plant materials.  Three V. vinifera cultivars were used for transcript study. 
‘Xiangfei’ was registered by our team and has a strong Muscat flavour and a green to golden skin colour, while 
‘Italia,’ the famous mid-late season table grape cultivar that originated in Italy, has a moderate Muscat flavour. 
‘Zaomeiguixiang’ has a purple-reddish colour and a strong Muscat flavour.

Sampling.  The vines were grown in the experimental vineyard at the Beijing Academy of Forestry and Pomology 
Sciences in China (39°58′N and 116°13′E) under a plastic cover and were trained into a two-wire vertical trellis 
system with a 2.5-m row space and a 0.75 m plant space. In 2017, berry samples from three vines were harvested 
at the developmental stages corresponding to EL35, EL36, and EL3832. The berry begins to colour and soften at EL 
35 (about 5% of the berries started to colour and soften), progresses to the complete veraison with an intermediate 
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Fig. 1  Flowchart of the experimental design. Berry samples were collected at three developmental stages, 
and three biological replicates per sample were used for transcriptome sequencing. All raw reads were quality 
controlled and assessed. Then, the clean data were mapped to the V. vinifera reference genome (V2) by Hisat2. 
Gene expression levels were calculated with RSEM.
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Brix of EL 36, and reaches harvest ripeness at EL38. At each stage, three replicates were harvested; approximately 
300 grape berries were randomly collected for each replicate.

Physiochemical parameters.  Fifty berries of each replicate were pressed and centrifuged to determine total sol-
uble solids (TSS), pH value and titratable acidity. TSS was measured by a digital refractometer (PAL-1, Atago, 
Tokyo, Japan). The pH value was measured by a pH meter (FiveGo F2-Standard, Mettler Toledo, Switzerland). 
Titratable acidity was analysed by titration with NaOH (0.1M) to the end point of pH 8.2 and expressed as tar-
taric acid equivalents in accordance with the National Standard of People’s Republic of China (GB/T15038-2006, 
2006). The other berries were then frozen in liquid nitrogen and stored at −80 °C.

RNA extraction and sequencing.  The extraction of total RNA from the berries was carried out by a Plant RNA 
extraction kit (Aidlab Biotechnologies, Beijing, China). The quality of the RNA was verified by agarose gel elec-
trophoresis, and the concentration was determined by the absorbance ratio (A260/A280, 1.8–2.0) on an Implen 
P330 nanophotometer (Implen GmbH, Munich, Germany).

The RNA-Seq libraries were constructed from 27 samples according to the methods of Wang33. The enriched 
mRNA was obtained by using oligo (dT) magnetic beads then fragmented by 94 °C for 5 min. cDNA was syn-
thesized by Superscript®III Reverse Transcriptase, followed by purification, end repair and dA-tailing and was 
then ligated with the sequencing adaptor. Afterwards, PCR amplification was conducted by indexed primers. The 
constructed library was QC checked by Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-Time PCR System 
and then sequenced by Illumina HiSeq2000 platform at BGI Life Tech Co., Ltd. (Shenzhen, China). Low quality 
reads (more than 20% of the base qualities are lower than 10), reads with adaptors and reads with unknown bases 
(N bases more than 5%) were filtered to get clean reads and were stored in FASTQ format. The clean reads were 
mapped onto the reference grapevine genome (V2) using Hisat234.

Data Records
The RNA-Seq clean data of the 27 samples were deposited at the NCBI Sequence Read Archive with accessions 
SRP18415235. The files of gene expression level were deposited in NCBI’s Gene Expression Omnibus (GEO), 
and are accessible through GEO Series accession number GSE13038636. The information of the differentially 
expressed genes (DEGs) between samples were deposited in figshare37.

Sample name Total soluble solids Titratable acidity(g/l) pH

X-EL35-1 10.84 4.25 3.11

X-EL35-2 10.80 4.20 3.15

X-EL35-3 10.95 4.26 3.16

X-EL36-1 13.46 4.01 3.53

X-EL36-2 13.30 3.98 3.50

X-EL36-3 13.80 4.05 3.58

X-EL38-1 16.62 3.73 3.75

X-EL38-2 16.40 3.70 3.71

X-EL38-3 16.42 3.68 3.77

Y-EL35-1 5.18 5.15 3.07

Y-EL35-2 5.20 5.20 3.05

Y-EL35-3 5.18 5.22 3.01

Y-EL36-1 7.61 4.85 3.14

Y-EL36-2 7.45 4.80 3.18

Y-EL36-3 7.40 4.79 3.17

Y-EL38-1 14.80 4.51 3.47

Y-EL38-2 14.50 4.52 3.48

Y-EL38-3 14.57 4.48 3.45

Z-EL35-1 9.78 3.96 3.30

Z-EL35-2 9.70 3.95 3.32

Z-EL35-3 9.80 3.99 3.32

Z-EL36-1 12.90 3.48 3.75

Z-EL36-2 12.95 3.55 3.78

Z-EL36-3 12.88 3.52 3.71

Z-EL38-1 17.25 3.05 3.85

Z-EL38-2 17.20 2.96 3.80

Z-EL38-3 17.29 3.07 3.82

Table 1.  Physiochemical parameters for each sample. X stands for cultivar Xiangfei, Y for cultivar Italia and Z 
for cultivar Zaomeiguixiang. EL35: the berry begins to colour and soften, EL36: complete of veraison with an 
intermediate Brix, EL38: berry reaches harvest ripeness.
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Technical Validation
Quality control.  The physiochemical parameter of the samples was shown in Table 1. A total of 27 RNA sam-
ples were prepared and sequenced, with the sequencing depth ranging between 22.48 and 33.08 million reads; the 
Q20 values for the clean reads were above 97%, and the average mapping ratio was 84.72% (Online-only Table 1).

Analysis of RNA-Seq data.  After novel transcript detection, novel coding transcripts were merged with 
reference transcripts to get a complete reference. Clean reads were mapped to the transcript by using Bowtie238. 
Gene expression levels were calculated with RSEM39. The distribution of reads based on the detection of read 
coverage skewness showed good fragmentation randomness (Fig. 2). The differentially expressed genes (DEGs) 
between samples were identified by the R package, DESeq240. The DEGs with a |log2ratio| ≥ 1 and a false discov-
ery rate probability ≤ 0.001 were considered statistically significant. The statistical analyses of DEG are shown in 
Fig. 3.

Usage Notes
The RNA-Seq fastq.gz files were deposited at Gene Expression Omnibus and can be downloaded using the 
fastq-dump tool of the SRA Toolkit (https://www.ncbi.nlm.nih.gov). The V2 reference genome of V. vinifera, the 
annotated file, could be retrieved at (http://genomes.cribi.unipd.it/grape/).
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Fig. 2  Reads distribution on transcripts. The x-axis represents the position along transcripts, and the y-axis 
represents the number of reads.
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Code Availability
SOAPnuke: https://github.com/BGI-flexlab/SOAPnuke. Version: v1.5.2. Parameters: -l 5 -q 0.51 -n 0.55 -i -Q 
2–seqType 1.

HISAT2: http://www.ccb.jhu.edu/software/hisat. Version:v2.0.4.Parameters:–phred64–sensitive–no-discord-
ant–no-mixed -I 1 -X 1000.

Bowtie2: http://bowtie-bio.sourceforge.net/Bowtie2. Version: v2.2.5. Parameters: -q–phred64–sensitive–dpad 
0–gbar 99999999–mp 1,1–np 1–score-min L,0, −0.1 -I 1 -X 1000–no-mixed–no-discordant -p 1 -k 200.

RSEM: http://deweylab.biostat.wisc.edu/RSEM. Version: v1.2.12. Parameters: default.
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