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ABSTRACT 

Mouse models with humanized immune systems are becoming increasingly prevalent in pharmaceutical research as 
a platform for preclinical testing with potential for greater translatability to clinical applications. However, the presence 
of both mouse and human cells that respond to TLR ligands poses a challenge for investigating therapeutic modalities 
targeting TLR signaling. AZ617 is a human TLR4 agonist, which has been shown in vitro to preferentially induce human 
cytokines via the TLR4 signaling pathway. We sought to examine the ability of AZ617 to preferentially induce human 
cytokines in CD34+ stem cell-engrafted NOG-EXL mice (huNOG-EXL), to determine its suitability as an in vivo human 
functional readout. AZ617 elicited a strong human TNFα and IL-6 response in vivo that demonstrated a 10- and 5-fold 
preference, respectively, over the mouse TNFα and IL-6. To assess efficacy of inhibiting a key protein in the TLR4 
signaling pathway, PF-06650833, a small molecule inhibitor of IRAK4, was used as a tool molecule. PF-0660833 was 
found to effectively inhibit AZ617-induced human TNFα release in vitro. Likewise, PF-06650833 reduced AZ617-induced 
human TNFα in the huNOG-EXL mouse model, with a weaker effect on human IL-6. A longitudinal study tracking func-
tionality of monocytes revealed that the ability of monocytes to respond to ex vivo stimuli was increased by 21 weeks 
after engraftment. Taken together, our data suggests that human selective TLR ligands could preferentially drive cytokine 
production from human cells in huNOG-EXL mice. This model will allow for investigation of pharmacological inhibition 
of human TLR signaling pathways in an in vivo model system.  
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INTRODUCTION

Pre-clinical mouse models for immunological research are 
well-characterized and widely used to test agents targeting various 
aspects of the immune response. However, a common hurdle in 
the development of therapeutics for autoimmune indications is 
the differences in relevant immunological signaling cascades 
between human and model species [1,2]. Screening candidate 
molecules in rodents provides critical pharmacokinetic (PK) 

data regarding systemic absorption and metabolism, and phar-
macodynamic (PD) changes that the drug elicits along the target 
pathway, which aid in decision-making in drug discovery. While 
many canonical innate immune features are conserved between 
mice and humans, even minor divergences can result in over- or 
under-estimation of the effects of a pharmacological interven-
tion on humans [3-5]. In addition, some targets of interest are 
only expressed on human cells, limiting our capability to assess 
these targets pre-clinically in mouse models [6]. Development 
of translatable humanized models for immunological research 
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is important for the successful advancement of drug candidates 
for clinical use.

Recently, murine models in which super-immunodeficient mice 
are reconstituted with human immune cells [hematopoietic stem 
cells (HSC) or peripheral blood mononuclear cells (PBMC)], 
have emerged as a strategy for characterizing drug candidates in 
mice while ensuring that the on-target activity and mechanism 
of action are validated on human cells [1,7]. Much of the current 
research in humanized mice is in immuno-oncology, in well-char-
acterized models where patient-derived tumor xenografts (PDX) 
are implanted into mice bearing a humanized immune system,  
to better capture the human anticancer immune response [8,9]. 
The ability for human immune cells to infiltrate the tumors in 
these humanized PDX models has allowed for improved ways 
of pre-clinically assessing targeted immune therapy and immune 
checkpoint blockade in a human-relevant environment [10-12]. 
Treatment response in humanized PDX models has been shown 
to correlate with clinical data [13], thereby supporting the utility 
of humanized models in cancer research and strengthening the 
notion that humanized models for immunological targets could 
provide translatable pre-clinical data.

Conveniently, some humanized models are commercially 
available and ready-to-use, removing certain challenges associ-
ated with the development of stably engrafted humanized mice 
in-house. NOG mice are super-immunodeficient due to the Prk-
dcscid mutation on an NOD background plus  a targeted mutation 
in the gamma chain of the IL-2 receptor (Il2rgtm1Sug), resulting 
in lack of development of murine immune cells due to deficient 
cytokine signaling and defects in V(D)J recombination [14,15]. 
Moreover, NOG-EXL mice transgenically express human GM-
CSF and IL-3, which supports the expansion of a human myeloid 
compartment in addition to the lymphoid compartment, resulting 
in a more complete humanized immune system following human 
HSC engraftment [1,14]. Toll-like receptors (TLRs) are evolu-
tionarily conserved receptors which play a crucial role in innate 
immunity. TLR4, the most widely studied of the TLR family, is a 
cell-surface receptor that recognizes bacterial lipopolysaccharide 
(LPS) and upon engagement, signals the release of pro-inflam-
matory cytokines and chemokines [4,16,17]. Even though TLR4 
functions similarly across species, species-specific differences 
exist and need to be considered when using pre-clinical pharma-
cological models. Several groups have suggested that differences 
in myeloid differentiation factor-2 (MD-2), a molecule which 
associates with TLR4 and is required for signaling, may play a 
role in immune response differences between species [18-20]. It 
is possible that species-specific MD-2 recognizes different LPS 
ligands. For example, LPS-A is easily recognized by human and 
mouse, but LPS-IVa and Taxol are only recognized by mouse 
[18,19,21]. Given this information, using a human-specific TLR4 
agonist in humanized mice may result in more robust agonism of 
human TLR4 without contribution from murine TLR signaling.

Marshall and colleagues have developed a new class of small 
molecule TLR4 agonists, known as the Ugi compounds, which 

display preferential activity for human over mouse TLR4 [21]. 
Using HEK cells transfected with combinations of human or 
mouse TLR4 or MD2, they found that the Ugi compounds had the 
highest activity on cells transfected with both human TLR4 and 
MD2. Moreover, they found that cells transfected with hTLR4 in 
the absence of MD2 did not respond to stimulation, suggesting that 
MD2 is required for the event. The highest observed responses to 
the Ugi compounds were in cells expressing hMD2, regardless of 
the TLR4 species, suggesting that the MD2 component is critical 
for human-specific activation of the TLR4 pathway [21]. Of the 
Ugi compounds tested, AZ617 potently induced human, but not 
mouse cytokines and is easily solubilized in aqueous solution, 
rendering it an ideal candidate for in vivo studies [21].

In this study, we characterized the ability of AZ617 to preferen-
tially induce human cytokines in vitro using human PBMCs and 
mouse splenocytes. We then examined whether administration 
of AZ617 to huNOG-EXL mice resulted in preferential induc-
tion of human cytokines in vivo. We hypothesized that AZ617 
would induce human-specific cytokines in huNOG-EXL mice, 
and that pharmacological intervention with a small molecule 
IRAK4 inhibitor would decrease or prevent cytokine release, 
thus providing a straightforward immunological PD model in 
which human-specific drug candidates can be tested and possibly 
provide greater clinical translatability. 

MATERIALS AND METHODS

Mice
All animal work was performed under the guidelines of 

AbbVie's Institutional Animal Care and Use Committee. Female 
C57BL/6NTac (C57BL/6) mice and human CD34+ hemato-
poietic stem cells (HSC)-engrafted female NOG-EXL [NOD.
Cg-PrkdcscidIl2rgtm1SugTg(SV40/HTLV-IL3,CSF2)10-7Jic/JicTac] 
mice (huNOG-EXL) used for ex vivo stimulation studies were 
purchased from Taconic Biosciences (Rensselaer, NY). Female 
huNOG-EXL mice used for in vivo stimulation studies were 
provided by Taconic. Mice were housed 3-5/cage and given 
Teklad 2914-irradiated rodent diet and sterile water ad libitum. 
Housing rooms were maintained at temperature and humidity 
consistent with the IACUC guidelines. It is recommended that 
immunodeficient mice are housed in sterilized cages containing 
sterilized bedding, food, and water. huNOG-EXL mice are often 
anemic, so if multiple blood sampling is required, extra care 
should be exercised to collect only the minimum amount of 
blood required and to provide recovery and hydration support.  

Cells and reagents
Human LEUKOMAX products were purchased from BioIVT 

(Westbury, NY) and peripheral blood mononuclear cells (PBMCs) 
were isolated via magnetic negative selection with a MultiMACS 
Cell24 Separator (Miltenyi, Gaithersburg, MD) prior to cryo-
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preservation. Human whole blood was collected from healthy 
volunteer donors (Sanguine, Waltham, MA) into CPT tubes (BD 
Biosciences, 362753) and centrifuged to isolate PBMCs to be 
used fresh without cryopreservation. These healthy donor samples 
were taken from consented and deidentified volunteers at AbbVie 
Bioresearch Center under IRB approved protocol SAN-05252 
through a service agreement with Sanguine Biosciences. Donor 
demographic information can be found in Table S2. Naïve mouse 
splenocytes were isolated from C57BL/6 mouse spleens [14] 
that were crushed through 100 µm filters (Falcon, 352360) and 
subjected to red blood cell lysis using 1X eBioscience RBC Lysis 
Buffer, multi-species (eBioscience, 00-4300-54). In all in vitro 
studies, cells were resuspended in RPMI 1640 (Thermo Fisher, 
11875-085) supplemented with 10% heat-inactivated fetal bovine 
serum (Thermo Fisher, 10438-026), 1% HEPES (Thermo Fisher, 
15630-080), and 1% penicillin-streptomycin (Thermo Fisher, 
10378-016). AZ617 (AOBIOUS, AOB8299) was resuspended 
in 100% DMSO (Sigma, D2650), aliquoted, and frozen at -20ºC 
for long-term storage. 

In vitro studies
For titration studies, AZ617 was titrated on 500,000 cells of 

either species per well containing DMSO with a final concentration 
of 0.5% and incubated at 37ºC and in 5% CO2 for 24 hours. For 
TLR4-dependency studies, human PBMCs were pre-incubated 
with 12.5 µg/mL anti-human TLR4 blocking antibody (Invivogen, 
mabg-htlr4) for 1 hour at 37ºC prior to stimulation with 50 ng/mL 
AZ617 for an additional 24 hours. For inhibition studies, cells ± 
dexamethasone or PF-06650833 (both AbbVie) dose responses 
were pre-incubated at 37ºC for 30 minutes prior to stimulation 
with 50 ng/mL AZ617 for an additional 24 hours. For all in vitro 
experiments, supernatants were pulled and secreted cytokines 
were quantified using Meso Scale Discovery (MSD) assays ac-
cording to the manufacturer’s instructions. Dose-response curves 
were generated by using GraphPad Prism version 9 and fit to a 
logistic, four-parameter function to identify the IC50. Unpaired 
t-tests were performed using GraphPad Prism version 9. 

In vivo dose response experiments
huNOG-EXL mice were used at approximately 16 weeks 

post-engraftment (WPE) of human HSC (approximately 21-22 
weeks of age). On average, mice weighed approximately 20 
grams and dose calculations were based on this average weight. 
Approximately 2-4 days prior to the beginning of the study, a 
small blood sample was collected by puncture of the retro-orbital 
sinus under oxygen/isoflurane anesthesia and analyzed by flow 
cytometry for human CD45+ cell frequencies. %CD45+ values 
were used to normalize the treatment groups, and mice were 
enrolled appropriately. LPS (Sigma, L4130) and AZ617 were 
formulated in sterile 1X phosphate-buffered saline (PBS), and bath 
sonicated for dissolving prior to dosing. Mice were challenged 
intraperitoneally [22] with LPS at 10 mg/kg, or AZ617 at 50, 

150, 300, or 500 µg/mouse. At 1, 3 and 6-hours post-challenge, 
approximately 100-150 µl of blood was harvested by retro-or-
bital puncture under isoflurane/oxygen anesthesia into K2EDTA 
Microtainer tubes (BD Biosciences) for cytokine measurement 
and flow cytometry (6 h only). Mice were humanely euthanized 
by isoflurane overdose after the 6-hour time point, and spleens 
were collected into sterile PBS for flow cytometric analysis.

Efficacy experiments
Studies were performed at approximately 16 WPE, and pre-

study engraftment checks and normalization of treatment groups 
were performed as previously described. Vehicle for LPS and 
AZ617 was sterile 1X PBS. Vehicles used for the IRAK4 inhibitor 
(PF-06650833) were 10:30:60 EtOH:PEG400:Phosal50PG (ex-
periment 1) and 5:10:10:30:25:20 DMSO:PEG400:PG:MaisineC-
C:KolliphorEL:LabrafilM1944CS (experiment 2). PF-06650833 
was administered at 100 mg/kg orally [22], 30 minutes prior to 
challenge. At the time of challenge, LPS was administered IP 
at 5 mg/kg (200 µl of a 0.5mg/mL solution), and AZ617 was 
given IP at 500 µg/mouse. Sample collections were performed 
as described for the dose response experiments, except spleens 
were not collected for flow cytometry.

Longitudinal assessment of functional response
Three mice each reconstituted with CD34+ HSCs from 3 dif-

ferent donors were followed longitudinally to assess functional 
response of myeloid cells to ex vivo stimuli over time. Blood 
was collected every 2 weeks from each mouse by retro-orbital 
sinus puncture as previously described, starting at 17-18 WPE 
(22-24 weeks of age) and ending at 23-24 WPE (28-30 weeks 
of age). After each bleed, 2 ml of lactated Ringer’s solution was 
administered subcutaneously to support recovery and hydration. 
Additionally, Hydrogel (ClearH2O, 70-01-5022) was provided on 
the cage bottoms throughout the duration of the study. At each 
time point, blood samples were processed by lysing red blood 
cells in a 1X solution of RBC Lysis Buffer, multi-species for 15 
minutes at room temperature, followed by addition of 1X PBS 
to neutralize buffer and by centrifugation at 300 g for 5 minutes 
to pellet cells. One sample per donor was flow cytometrically 
assessed for presence and frequencies of human CD45+ leukocytes 
and CD14+ monocytes. Total leukocyte pellets (n=1-3/donor, 
depending on the time point) were stimulated overnight with 10 
ng/ml LPS (Sigma, L5293) with 10 ng/ml recombinant human 
IFNγ (PeproTech, 300-02), and supernatants were collected for 
measurement of human cytokines (TNFα, IL-6, IL-1β, IL-8) by 
MSD immunoassay (Meso-Scale Discovery, K15053D).

Flow cytometry
50-200 µL aliquots of blood were pipetted either into individ-

ual 15 ml conical tubes or into individual wells of a 96-well 2 
ml assay block. 5 ml (dose response and experiment 1) or 1 ml 
(experiment 2 and longitudinal study) of a 1X solution of RBC 
lysis buffer, multi-species (diluted from 10X stock in dH2O) was 
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added to each tube/well, and samples were incubated at room 
temperature for 10-15 minutes. 10 mL of 1X PBS was added to 
neutralize the lysis buffer and centrifuged at 300 g for 5 minutes 
to pellet the cells. Supernatants were decanted and samples were 
resuspended in 200 µL of FACS buffer, then moved to a 96-well 
non-treated, round-bottom plate for staining. Plate was centrifuged 
at 300 g for 5 minutes and supernatants were poured off. Cells 
were resuspended in pre-diluted live/dead Near-IR (Life Tech-
nologies) and incubated at room temperature for 5-10 minutes, 
protected from light. Samples were washed with FACS buffer 
and centrifuged as described to remove live/dead dye. Samples 
were resuspended in 50 µL total volume blocking solution, con-
taining 2 µL each of Human TruStain FcX (Biolegend) and rat 
anti-mouse CD16/32 (BD or eBioscience) Fc receptor block and 
incubated for 10 minutes at room temperature, protected from 
light. 50 µL of a surface marker staining cocktail was added and 
incubated on ice or at 4ºC for 20-30 minutes, protected from light. 
Surface markers used were anti-huHLA-DR BUV395 [BD], 
and anti-huCD16 BV421, anti-huCD20 BV510, anti-huCD19 
BV711, anti-huCD45 BV785 or PE, anti-huCD14 FITC or BV421, 
anti-CD11c PE-Cy7, anti-huCD3 AF700, anti-huCD11b PE 
Dazzle 594, and anti-muCD45 BV605 or AF647 (Biolegend). 
Complete information for all staining antibodies can be found 
in Table S1. After staining, the cells were washed twice with 
FACS buffer, with then 200 µL PBS added, and acquired on a 
BD LSR Fortessa. Data were analyzed using FlowJo version 10 
and graphed using GraphPad Prism version 9. Statistical analyses 
were performed in GraphPad.

Cytokine measurement in plasma samples from in 
vivo studies

After pulling blood aliquots for FACS staining from the in 
vivo studies, the remaining blood was centrifuged at top speed 
on a benchtop microcentrifuge to separate plasma. Plasma was 
carefully pipetted off and placed in 96-well round-bottom plates 
for assessment of human and mouse cytokine panels. Pre-con-
figured panels from Meso-Scale Discovery (MSD) were used, 
including V-Plex Proinflammatory Panel 1 Human Kit (IFNγ, 
IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNFα) and 
U-Plex TH1/TH2 Combo Mouse (IFNγ, IL-1β, IL-2, IL-4, IL-5, 
IL-10, IL-12p70, IL-13, KC/GRO, TNFα). An individual MSD kit 
was used to measure mouse IL-6. For ex vivo LPS stim studies, a 
pre-configured panel from MSD containing TNFα, IL-1β, IL-6, 
and IL-8 was employed to measure human cytokine production.

RESULTS

AZ617 in vitro characterization
To confirm the species specificity of the TLR4 agonist AZ617, 

naïve healthy human PBMCs and naïve mouse splenocytes were 
incubated for 24 hours with dose titrations of compound. Concen-

tration-dependent secretion of human, but not mouse TNFα, IL-6, 
IL-1β, and IFNγ were detected by MSD cytokine assays from the 
culture supernatants (Fig. 1A). AZ617 did not induce expression 
of IFNα in either human or mouse cells (Fig. S1), suggesting 
the activity was primarily NFκB-mediated. Pre-treating human 
PBMCs with a human-specific TLR4 blocking antibody prior 
to stimulation with AZ617 resulted in a significant reduction of 
secreted human TNFα and human IL-6, supporting that AZ617 
is a TLR4-dependent agonist (Fig. 1B). 

AZ617-induced TNFα release was inhibited by the pharmaco-
logical agents dexamethasone and PF-06650833, a small molecule 
inhibitor of interleukin 1 receptor-associated kinase 4 (IRAK4), 
with an IC50 of 0.0036 and 0.015 µM, respectively (Fig. 2).

AZ617 in vivo dose response
Treatment with AZ617 resulted in a dose-dependent increase 

of human TNFα and IL-6 in vivo in huNOG-EXL mice (Fig. 3) 
and demonstrated a selectivity towards human TLR4 agonism. 
Human TNFα was detectable by 3 h post-challenge with both 
300 and 500 µg doses, resulting in 15-fold or 10-fold higher 
levels, respectively of human TNFα compared to mouse TNFα 
(Fig. 3A). Interestingly, the 500 µg, but not the 300 µg dose, 
resulted in continued elevation of TNFα for up to 6 hours, where 
an approximate 15-fold greater level of human TNF versus 
mouse TNF was maintained (Fig. 3A). Similarly, human IL-6 
was induced to a greater degree than mouse IL-6 at both the 300 
and 500 µg doses at the 3 and 6 h time points (Fig. 3B). The 300 
µg dose resulted in a greater window between human and mouse 
IL-6 levels vs. the 500 µg dose at both 3 and 6 h, demonstrating 
a 10-fold or 25-fold window, respectively (Fig. 3B).

In vivo efficacy using IRAK4 inhibitor
Consistent with observations from the dose response ex-

periment (Fig. 3), treatment with 500 µg AZ617 resulted in 
significantly higher levels of circulating human TNFα at 3 h as 
compared to mouse TNFα, and oral pre-treatment with 100 mg/
kg of PF-06650833 30 minutes prior to challenge resulted in 
significant reduction of human TNFα (Fig. 4A). AZ617 resulted 
in elevated levels of human IL-6 over mouse IL-6, the difference 
being non-significant, and PF-06650833 did not significant-
ly reduce circulating human IL-6 (Fig. 4B). The difference in 
circulating human cytokines between AZ617 and LPS was not 
significant for both TNFα and IL-6. Conversely, LPS resulted in 
mouse cytokine induction to a significantly greater degree than 
AZ617 (Fig. 4).

These data recapitulate what was captured in vitro with human 
PBMCs and mouse splenocytes, where AZ617 demonstrated a 
specificity towards human TNFα and IL-6 induction (Fig. 1A). 
Although human IL-6 levels were not significantly elevated over 
mouse IL-6 in vivo due to variability in the response, there was 
a trend towards greater human IL-6 induction, mimicking what 
was observed in vitro (Fig. 1A). Additionally, LPS demonstrated 
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greater induction of mouse cytokines in vivo compared to human 
cytokines, supporting the need for a human-specific TLR4 agonist 

to robustly induce human cytokines.

Figure 1. AZ617 is a human-specific, TLR4-dependent agonist that activates NFκB. A. Stimulation of human PBMCs, but not mouse splenocytes, 
with AZ617 for 24 hours effected a concentration-dependent release of NFκB-related cytokines IFNγ, IL-1β, TNFα, and IL-6. Representative graphs 
generated from 4 independent experiments. B. AZ617 activity was reduced when human PBMCs were pre-treated with an anti-human TLR4 blocking 
reagent for one hour prior to stimulation. Representative graphs derived from 2 independent experiments. Unpaired t-test **p<0.01, ***p<0.001. Error 
bars represent standard error of the mean (SEM).

                                      

Figure 2. AZ617 activity was pharmacologically inhibited by dexamethasone and IRAK4 inhibitor PF-06650833. Human PBMCs were pre-incu-
bated with compounds for 30 minutes prior to stimulation with 50 ng/mL AZ617 for 24 hours. Values are presented as a percent of DMSO control TNFα 
release. Representative graph was generated from 4 independent experiments. Table shows geometric mean ± standard error of the mean (SEM).
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Figure 3. In vivo treatment with AZ617 resulted in a dose-dependent increase of human TNFα and IL-6 in huNOG-EXL mice. AZ617 and con-
trols were administered IP, and blood was sampled at 1, 3, and 6 h post challenge via the retro-orbital sinus. A. Human TNFα was observable by 3 h 
post-challenge at both the 300 and 500 µg doses of AZ617 (left). Mouse TNFα levels were approximately 15-fold and 10-fold lower, respectively, at the 
300 µg and 500 µg doses at 3 h (right). B. Human IL-6 was observable by 3 h post challenge at both the 300 and 500 µg doses (left). Mouse IL-6 was 
approximately 10-fold and 3-fold lower, respectively, at the 300 µg and 500 µg doses at 3 h. Error bars represent standard error of the mean (SEM). 
Data were from one independent experiment, n=5-6 mice/group.

Longitudinal ex vivo assessment of myeloid func-
tional response

To assess the functional ability of human myeloid cells over 
time in the huNOG-EXL model, and to look at variability in 
functional response related to CD34+ cell donor, three small 
huNOG-EXL mouse cohorts generated from 3 separate CD34+ 
HSC donors were tracked over time for ex vivo cytokine pro-
duction in response to LPS. Human CD14+ monocytes were 
present in each donor cohort at each time point and appeared to 
stabilize around 21-22 WPE. However there existed a marked 
variability in monocyte frequencies between donors (Fig. 5A). 
After ex vivo stimulation with LPS, there was an increase in 
human IL-6 and TNFα, respectively, beginning at 21-22 WPE 
(Fig. 5B-C) and consistent with the time at which the CD14+ 
population stabilized. 

Similarly, there was a considerable variability in the cyto-
kine response that is likely related to donor differences. Taken 
together, these data suggest that cohorts should be pre-screened 
for myeloid cell engraftment and that optimal engraftment occurs 
later than 21 WPE.

DISCUSSION

In the current study, we sought to develop a novel pre-clinical 
humanized mouse model that enables the profiling of therapeutics 
targeting proteins in the TLR4 pathway. huNOG-EXL mice con-
tain primarily, but not exclusively, human myeloid and lymphoid 
lineage cells along with some residual murine immune cells. By 
challenging them with the human-specific TLR4 ligand AZ617, 
we aimed to generate a more specific and robust human cytokine 
response by minimizing contribution from murine TLR4 signaling. 
The resulting signaling cascade and effector functions of TLR 
pathway activation can then be inferred to be due to activation 
of cells of human, but not mouse origin, and drug treatments can 
then be studied in the target cells of interest.

In line with recent reports, our studies found that AZ617 is a 
human-specific TLR4-dependent agonist (Fig. 1) [21]. The activity 
of AZ617 was pharmacologically inhibited by dexamethasone, 
a broad immunosuppressive agent targeting the glucocorticoid 
receptor, as well as by PF-06650833, a specific inhibitor of 
IRAK4, currently in development for the treatment of rheumatoid 
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arthritis and other autoimmune indications/conditions (Fig. 2) 
[23]. These data suggest that AZ617 is a relevant human-specific 

agonist for profiling modulators of the TLR4 pathway.  

Figure 4. Inhibiting IRAK4 significantly reduced human TNFα following in vivo challenge with AZ617. Mice were pre-dosed with vehicle control or 
PF-06650833 30 minutes before IP administration of LPS or AZ617. Blood was collected for cytokine measurement via the retro-orbital sinus. A. AZ617 
induced higher human TNFα compared to mouse TNFα, and treatment with PF-06650833 significantly reduced circulating human TNFα. B. Levels of 
human and mouse IL-6 induced by AZ617 were not significantly different, and treatment with PF-06650833 did not impact circulating human IL-6. Sta-
tistical results were as follows: human vs. mouse by two-way ANOVA and Šidák’s multiple comparisons, where *p<0.05 and ****p<0.0001. Human vs. 
human or mouse vs. mouse by two-way ANOVA and Tukey’s multiple comparisons, where ^p<0.05 and ^^^^p<0.0001. Error bars represent standard 
error of the mean (SEM). Data were from one independent experiment, n=3-5/group.

It was determined that AZ617 could strongly induce human 
IL-6 and TNFα in vivo in huNOG-EXL mice by 3 hours after chal-
lenge at 300 and 500 µg doses (Fig. 3). Unexpectedly, mouse IL-6 
and TNFα were secreted to a detectable range as well, although 
to a much lesser extent than the human cytokines, a finding not 
observed in an in vitro co-culture study with C57BL/6 mouse 
splenocytes (Fig. S2). It is possible that, in vivo, the AZ617-in-
duced human cytokines are exerting an indirect effect on residual 
mouse immune cells throughout the body, resulting in subsequent 
immune signaling and secretion of mouse cytokines, which can-
not be successfully captured by simple co-culture experiments 
using only splenocytes. Detection kits were also confirmed to be 

species-specific (Fig. S3). Nonetheless, the AZ617 huNOG-EXL 
model and resulting human cytokine induction proved sufficient 
to characterize drug candidates whose inhibitory potencies on 
mouse cells are inferior to those on human cells.

To validate this hypothesis, IRAK4 inhibitor PF-06650833 
was tested in the model and was shown to significantly lower 
AZ617-induced human TNFα at the optimal 3-hour time point 
(Fig. 4). By 6 hours post challenge, the significance was lost, 
suggesting that 3 hours is the appropriate time point for measuring 
human TNFα in this system (Fig. S4). Human IL-6 at the optimal 
6-hour time point was not significantly inhibited by treatment 
with PF-06650833 due to inter-animal variability in response to 
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AZ617. Additionally, the vehicle-treated huNOG-EXL mice did 
show trace mouse IL-6 levels in response to AZ617, whereas 
mouse TNFα levels were much closer to baseline. Based on our 
data demonstrating a greater window of human TNFα induction 

over mouse as compared to IL-6, and in combination with the 
lack of significant induction of several other human cytokines 
(Fig. S5), we propose that human TNFα is the preferred acute 
readout of this model for profiling human responses.

Figure 5. Myeloid cell responsiveness increased after 19 weeks post-engraftment. Three cohorts of huNOG-EXL mice (n=3), each generated from 
a different CD34+ HSC donor, were bled every 2 weeks by retro-orbital sinus puncture. A. Red blood cells were lysed and a small aliquot of the resulting 
white blood cell pellet was flow cytometrically assessed for frequencies of CD14+ human monocytes. Monocyte populations appeared to stabilize around 
21 WPE. B-C. White blood cell pellets from each mouse (n=1-3, depending on the time point) were treated overnight with 1 ng/ml LPS, and secreted 
cytokine was measured from the supernatants. Both human IL-6 and TNFα were detected, with an observable increase over the first two time points at 
around 21 WPE, consistent with the time at which the CD14+ populations stabilized. Error bars represent standard error of the mean (SEM).

One potential way to address the induction of mouse IL-6 
would be to reduce the AZ617 dose from 500 µg to 300 µg. The 
dose-response data revealed that, with a 300 µg dose of AZ617 
at the 6-hour time point (optimal for measuring IL-6), there was 
a 25-fold induction of human vs. mouse IL-6 (compared to a 
5-fold window with the 500 µg dose). Furthermore, for TNFα, 
300 µg resulted in a 15-fold induction of human vs. mouse 
cytokine (compared to a 10-fold window with the 500 µg dose) 
at the optimal 3-hour time point. It is possible that reducing the 
AZ617 dose could deliver robust agonism of human TLR4 whilst 
reducing murine TLR4 signaling. However, more experiments 
are warranted to test this hypothesis. 

Donor-to-donor variability, engraftment differences, and ex-
pression levels of relevant TLR pathway proteins are inherent 
limitations of huNOG-EXL mice which must be considered. In 
longitudinal studies, LPS, a stronger inducer of cytokine responses 
in huNOG-EXL mice than AZ617 (Fig. 3), was found to track 
human TLR responses better over time. Studies performed with 
mice around 17 weeks and longer post-engraftment provided more 
robust IL-6 and TNFα levels with less variability than younger 
mice (Fig. 5). Use of mice at later time points after engraftment 
could help reconcile the noise observed in the AZ617 huNOG-
EXL model we have established.

We have demonstrated that AZ617 preferentially induced 

human cytokines both in vitro and in vivo in a humanized im-
mune system mouse model. At the AZ617 and LPS doses tested 
in vivo, human cytokines were induced with similar potency, 
suggesting that AZ617 is a viable agonist of human TLR4 that 
yields comparable results to a non-preferential agonist like LPS. 
Furthermore, LPS far outperformed AZ617 in inducing mouse 
cytokines, supporting the hypothesis that AZ617 is selective 
for the human receptor.  Altogether, we have described a novel, 
acute system useful for profiling drug candidates with inadequate 
cross-species potency properties for which standard mouse models 
would be insufficient. 
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