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Abstract

Summary In a population of elderly women, bone cross-
sectional area (CSA), cross-sectional moment of inertia
(CSMI), section modulus (Z), femoral neck axis length
(FNAL), and width measured with hip structure analysis
(HSA) on dual-energy x-ray absorptiometry (DXA) images in
the femoral neck and trochanteric regions are highly correlated
to quantitative computed tomography (QCT) measurements.
Introduction HSA is a method of obtaining measurements
of proximal femur structure using 2D DXA technology.
This study was designed to examine the correlations
between HSA measurements and 3D QCT.

Methods Forty-one women (mean age, 82.8+2.5 years)
were measured using DXA and a 64-slice CT scanner
(1 mm slice thickness, 0.29 mm in plane resolution). HSA
parameters were calculated at the narrow neck (NN) and
trochanteric (IT) regions on the DXA image. These regions
were then translated to anatomically equivalent regions on
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the QCT dataset by co-registering the DXA image and
QCT dataset using four DXA images acquired at different
angles.

Results At the NN and IT regions, high linear correlations
were measured between HSA and QCT for CSA »=0.95
and 0.93, CSMI r=0.94 and 0.93, and Z »=0.93 and 0.89,
respectively. All correlations were highly significant (p<
0.001), but there were differences in slope and offset
between the two techniques, at least in part due to
differences in calibration between the two techniques.
FNAL and width of the bone at the NN and IT regions,
physical measurements independent of the calibration, were
highly correlated (#=0.90-0.95, p<0.001) and had slopes
close to 1.0 (range, 0.978 to 1.003).

Conclusion CSA, CSMI, Z, FNAL, and width measured by
HSA correlate highly to high-resolution QCT.

Keywords Bone strength - Bone structure - DXA - Hip
structure analysis - HSA - QCT

Introduction

Dual-energy X-ray absorptiometry (DXA) is commonly
used in clinical practice to measure areal BMD (grams per
square centimeters) at the proximal femur for the diagnosis
of osteoporosis and has been shown in prospective studies
to predict hip fractures [1]. DXA is a 2D projectional
measurement of a 3D object, which limits the geometric
and structural information that can be derived from a DXA
exam. However, more information can be obtained from a
DXA image than simply BMD [2, 3]. Hip structure analysis
(HSA) is a method to obtain certain structural parameters
from DXA images and has been widely employed in
research studies [4—11].
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Quantitative computed tomography (QCT) is considered
the gold standard for obtaining 3D structural measurements
of the proximal femur, particularly when it employs
relatively high-resolution protocols with voxel sizes below
1 mm’. To date, there has been uncertainty as to whether
DXA-based HSA can truly represent the geometric and
structural natures of the hip in vivo as determined by QCT
[12]. Several issues complicate the comparison of HSA and
QCT measurements in vivo. Because the femur is posi-
tioned differently for the QCT and DXA examinations, the
accurate matching of the 2D region of interest (ROI)
analyzed in HSA to a corresponding 3D ROI in the QCT
dataset requires a 2D-3D registration of the projectional
DXA image to the QCT dataset. Also, there are important
differences between the DXA and QCT measurement
techniques related to how they handle bone marrow fat
and partial volume effects, which may influence correla-
tions between these measurements.

Volumetric DXA (VXA) is a newly developed technique
that utilizes the rotating C-arm of a DXA device to obtain four
DXA images from various angles. Using these images and with
the help of a QCT-based statistical atlas, a volumetric DXA
dataset can be derived [13]. The VXA process required a 2D—
3D registration. Thus, in this study, we used the algorithms
developed [13] for 2D-3D registration of the four DXA
images to QCT to undertake a careful comparison of HSA
and QCT measurements on the same individuals. Taking
advantage of the methods and data available from this earlier
work, in this paper, we report on an in vivo comparison of
HSA on a DXA image to high-resolution QCT in a population
cohort of older women. This cohort represents the most
difficult clinical population to evaluate because of the
presence of low bone mass and hip osteoarthritis.

Methods
Patients

Forty-eight women (mean age, 82.8+2.5 years; height, 157.4
+6.1 cm; weight, 64.2+10.7 kg; and BMI, 25.9+£3.9 kg/mz)
were randomly recruited from the CARE Study. The CARE
Study is a population-based study of ambulant elderly
women, excluding only those with focal bone disease or
osteomalacia [14, 15]. Informed consent was obtained from
each patient, and the study was approved by the Human
Research Ethics Committee of the University of Western
Australia. In four subjects, the proximal femur was not
scanned appropriately because, in some, the proximal femur
was missing on the DXA images or the QCT scan; one
image file was corrupted during data transfer, and in two
cases, the femurs were not successfully segmented from the
QCT dataset, yielding 41 subjects with complete data for this
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analysis. All patients whose results from both the DXA and
CT could be obtained are included in the results presented.

Measurements

QCT of the right hip was measured using a Brilliance 64
CT (Phillips Inc.) with a calibration phantom (Mindways,
Inc.) placed below the patient. The QCT technique factors
were 120 kV, 170 mAs, pitch of 1, 1 mm slice thickness,
reconstruction kernel B, and 15 cm reconstruction FoV,
resulting in a 0.29 mm in plane voxel size.

DXA images of the right hip were taken on the same day
as the QCT with a Discovery A DXA scanner (Hologic,
Inc.) which has a rotating C-arm. After the standard PA
DXA hip image was acquired, additional DXA images
were acquired at angles of —21°, 20°, and 30° relative to the
PA view by rotating the C-arm without patient reposition-
ing. HSA measurements at the narrow neck (NN) and
trochanteric (IT, in HSA terminology) regions [2] were
made on the standard PA DXA hip image using APEX 3.0
software (Hologic, Inc.). The additional DXA images
acquired at the various angles were not used in the HSA
calculation but were only used for co-registering (i.e., align
both translationally and rotationally) the subject’s QCT
dataset with the subject’s PA DXA image to produce
anatomically equivalent ROI placement (Fig. 1).

The Hologic implementations of the HSA algorithms
were licensed from the Johns Hopkins University and were
implemented under the guidance of Prof. Beck. The
Hologic version of HSA and the HSA software provided
by Prof. Beck for various research studies have been shown
to be highly correlated by Khoo et.al. [16] in an
independent study utilizing a fan beam Hologic densitom-
eter equivalent to the one used in this study.

Co-registration

Periosteal and endosteal bone surfaces of the QCT datasets
were segmented using the Medical Image Analysis Frame-
work software package developed at the University of
Erlangen [17]. A tetrahedral mesh model with third-order
Bernstein polynomial density functions was then calculated
from the segmented QCT volume [18, 19]. The meshed
QCT volume was co-registered to the four DXA images
using a general purpose 2D-3D deformable body registra-
tion algorithm [20-23]. A rigid registration allowing
rotations and translations but not deformations was used.
The 2D-3D registration algorithm used a fast GPU-based
algorithm [24] to produce digitally reconstructed fan beam
radiographic projections (DRRs) of the meshed volume at
each angle that a DXA image was obtained. Each of the
four DRRs was compared to the corresponding DXA image
using mutual information. The sum of the mutual informa-
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Fig. 1 Four DXA views are used to constrain the location of the QCT
dataset. The mid-plane slice of the HSA ROIs (NN shown) is mapped
onto the QCT dataset, and parameters are calculated for this slice.

tion of these image pairs served as a cost function. An
optimization routine using simulated annealing (a robust
method that avoids being trapped in local minima [25]) was
used to determine the correct transform for the three
translational and rotational parameters of the QCT meshed
volume to co-register it with the DXA images. The inverse
of this transform was used to place a 1 mm plane at the
center of the HSA NN and IT ROIs (which were defined on
the standard hip PA DXA image), onto the QCT dataset.
This plane is the 2D slice on which the QCT parameters are
calculated. The procedure of co-registration ensured that
anatomically equivalent regions were measured by HSA
and QCT. Because many of the QCT scans did not extend
far enough below the lesser trochanter into the femoral
shaft to allow a comparison to the HSA shaft ROI, the
comparison at the shaft ROI was not attempted.

Calculation of parameters on the QCT dataset

Cross-sectional area (CSA) in square centimeters was
defined in accordance with the traditional HSA definition

20°

Shown are the center of mass (COM), the width parameter along the
PA view, and the PA perpendicular vector direction

as the area of the slice filled with bone. In this definition,
the area of each pixel is weighted by the amount of bone in
the pixel.

Cross-sectional moment of inertia (CSMI) in quartic
centimeters is defined around a given axis. In DXA HSA,
CSMI is calculated and averaged over line profiles along the u
direction in Fig. 1. The center line profile of HSA is a
projection of the 2D slice in the PA image. CSMIyga can
therefore only be calculated around an axis perpendicular to
the PA image (v in Fig. 1). However, QCT is not restricted by
the directionality of the PA image, and one is free to choose
the axis around which CSMI is calculated.

Let (u, v, w) define an ortho-normal coordinate system
centered at the center of mass (COM) of the 2D slice, p(u, v)
be the volumetric bone density in milligrams per cubic
centimeter per voxel in the slice, and pnist=1,850 mg/cm?.
If (ucas veur) 1s the location of the COM, and we define the
center of mass coordinate system as:

u=(u—ucy)

,\72 (V — VCM)
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Then:

CSMI, = J J 32<’M> dudv
PNIST

CSMI, = ” u 2<M> dudv

PnisT

CSMIy, = J J @?+v?) (M) dudv = CSM1, + CSMI,
PnisT

The (p(u,v)/ppsr) term defines the bone fraction within
a pixel and accounts for partial volume effects of the finite
voxel size. This definition of the moment of inertia is
consistent with that defined by Martin et al. [26] and other
published literature.

In the above equations, CSMI,, and CSMI, depend on
the particular choice of the Cartesian coordinate system (u,
v axes) of the 2D slice, which is in turn patient position
dependent. CSMI,, although calculated as a sum of the
latter two moment terms, is independent of patient position.
This can be seen by noting that the distance term (> +7?) is
the square of the distance to the normal axis (w) and is not
affected by the choice of the 2D coordinate system within the
slice. Thus, CSMI,,, also called the polar CSMI, is the natural
choice for a 2D slice. Therefore, for the primary comparison to
CSMlsa, we have chosen CSMIgcr to be equal to CSMI,,.

Section modulus (Z) in cubic centimeters is CSMI
divided by the distance of the furthest contributing bone
pixel from the axis around which CSMI is calculated.

Width represents the outer diameter of the bone at the
ROI (Fig. 1). For HSA, this is termed the “sub-periosteal
width” and is the distance calculated between the blur-
corrected edges of the BMC profile [27]. Blur correction
adjusts the DXA image for the apparent increase in size due
to the partial volume effect. For the QCT slice, it is the
distance between the edges of the bone in the QCT slice at
the angle of the DXA PA view. This slice has been
extracted from the QCT volume after segmentation, which
added minor partial volume artifacts due to an additional
interpolation step. As shown in Fig. 1, width is calculated
along u to ensure co-registration with the DXA PA view.

Femoral neck axis length (FNAL) assessment did not
use co-registration between the DXA image and QCT
dataset because minor rotational positioning errors of the
femur during PA DXA image acquisition caused errors in
the placement of the FNAL when propagated to the QCT
dataset. Instead, a plane perpendicular to the narrowest part
of the femoral neck was automatically found on the QCT
dataset. This was achieved by first defining a plane using
spherical coordinates (/, 6, ¢) where / is the distance of the
plane from the origin, and 6 and ¢, represent the normal
vector to that plane in terms of its inclination and azimuth
angles respectively. Optimization on these three coordinates
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was performed using a downbhill simplex algorithm in order
to minimize the area of femoral neck that intersected this
plane. This automated algorithm used the NN region
defined above as the initial starting location of the plane.
Since the algorithm started with the NN region as the initial
guess, and this region is between the femur head and
greater trochanter, convergence to the plane with the
narrowest area was rapid. FNAL was measured perpendic-
ular to this plane through its center of mass from the edge
of the femoral head to where the axis exited the femur
distally. To reduce the effects of osteophytes which were
prevalent and visible in the QCT dataset, the measurement
was repeated eight times along line segments parallel to the
neck axis. The eight measurements were concentrically
spaced around the neck axis. The final FNAL value was
defined as the median of these eight parallel segments and
the central measurement.

Statistics

Parameters calculated from the QCT dataset were consid-
ered the gold standard, and the parameters calculated by
HSA were compared to QCT by linear regression analysis
using GraphPad Prism V 5.03. If the offset (i.e., intercept)
was not statistically different from zero (p<0.05), the
analysis was repeated with the intercept restricted to zero.

In order to test the sensitivity of our results to the
placement of the NN ROI, in addition, the plane through
the narrowest part of the femoral neck of the QCT dataset
was also used as the basis for an alternate definition of the
QCT NN ROI and compared to the HSA NN ROL

Results

High linear correlations (#=0.89—-0.95) were found between
HSA and QCT for CSA, CSMI, and Z at the NN and IT
regions (Figs. 2 and 3). The intercepts of the linear
correlation of the parameters were not statistically signifi-
cant (p<0.05) at the IT region but were statistically
significant at the NN region (Table 1). The slopes of these
parameters were all different from unity.

The correlation of the width of the bone was »=0.95, the
slope was 0.98 for both the NN and IT regions, and the
standard error of the regression line was 1 and 0.8 mm,
respectively. There was no statistically significant offset. To
examine whether the difference of the slopes from unity
was possibly caused by the small partial volume artifact
added during the extraction of the slice used for the width
calculation, we set a bone threshold of 50 mg/cm® for this
slice. With this threshold, the slopes were 0.994 and 0.984
for the NN and IT ROIs, respectively. This suggests that the
difference from unity can at least in part be explained by



Osteoporos Int (2012) 23:543-551

547

Fig. 2 The correlation of HSA CSA CSMI
with QCT for the narrow neck 41 6
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image processing of datasets with finite voxel sizes, i.e., is
a consequence of the limited spatial resolution.

For FNAL, the correlation was found to be »=0.90, and the
standard error of the regression line was 2.2 mm. The offset
of the linear regression was not statistically different from
zero, thus, the line was fitted with the intercept restricted to
zero; under these circumstances, the slope was 1.003+£0.004.
The Bland—Altman plot showed excellent agreement of the
two techniques across the range of FNALs encountered in
the study with 95% confidence intervals of —0.39 to 0.45 cm
(Fig. 4).

To examine whether the high correlations seen in this study
were strongly dependent on the co-registered ROI placement,
we measured the correlation to the HSA NN ROI when the
QCT ROI was placed in the narrowest area of the femoral
neck using the automated narrow neck algorithm described in
the methods section of the FNAL calculation. Correlations
between HSA at the NN and the parameters calculated with
this automated ROI placement on QCT were 0.92, 0.90, and
0.87 for CSA, CSMI, and Z, respectively. The difference in
correlation between the parameters calculated using the two

QCT (cm)

different methods of ROI placement at the NN on the QCT
dataset did not reach statistical significance.

Additionally, to examine whether these high correlations
could be improved by more exact correspondence between
QCT and HSA, we also compared DXA CSMIusa and
Zysa with the corresponding QCT calculations around the
same axis v, i.e., CSMI, and Z,. In all cases, these
parameters had marginally better correlation (» increased
by approximately 0.01) than CSMI,, and Z,,. The exception
being CSMI at the NN ROI, where the increase was slightly
greater and reached statistical significance. The correlation
coefficient for CSMIyga of the NN improved from 0.936
when it was compared to CSMlI,,, to 0.975 (p=0.04 for the
difference between r-values when it was compared to
CSMIy).

Discussion

The high correlations of the 2D HSA measurements of CSA,
CSMI, and Z with the 3D QCT gold standard measurements
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Fig. 3 The correlation of HSA CSA CSMI
with QCT for the trochanter 81 30
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provide support for the validity of interpreting these
parameters as being highly correlated to these physical
parameters. This is an important point as the HSA algorithm
and DXA manufacturer equipment used in this study have
already been utilized in many published clinical studies.

Because the calibration standards for bone mass differ
between the two modalities measurements and because they
handle bone marrow fat and partial volume effects
differently, it is not surprising that the slopes for CSA,
essentially a measurement of the BMC in an ROI, differed
from unity. This mass measurement difference also affected
CSMI and Z. However, as noted in the Methods section,
there is a further difference for CSMI and Z because the
DXA HSA measurements are limited to calculating these
values in the DXA planar projection (CSMIyga and Zyga,
which are around the v axis in Fig. 1), whereas the QCT
measurements utilize the 3D data and were calculated
around the w (polar) axis. These differences limit the
comparison to correlations; thus, individual measurements
cannot be substituted one for the other without adjustments
which may be population or technician dependent.
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It is important to note that both the width and FNAL results
indicated a high degree of agreement in absolute terms
between DXA and QCT despite the use of a fan beam DXA
device. Geometrical measurements on fan beam DXA devices
are impaired by magnification effects if the bone being
measured is not at the height above the table estimated by
the scanner software. Based on in vitro studies, some have
speculated that fan beam DXA may cause significant errors in
geometrical measurements [28-30]. These concerns are not
supported by the data in this study of elderly women with
BMI 25.9+3.9 kg/m” where there was no evidence for
magnification in the population as a whole, as demonstrated
by slopes that were nearly unity. Nor did fan beam
magnification have an appreciable effect on individual
subject results, as the SEEs ranged from only 0.7 to
2.2 mm. While this study does not rule out the possibility
that there is a measurable magnification effect in vivo in men
or severely obese women, it sets limits on the size of the
magnification effect in a typical clinical population.

Another possible source of error contributing to the
standard error of the estimate (SEE) of FNAL was patient
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Table 1 Results of the linear correlation of HSA vs. QCT at the NN

and IT regions

NN IT
Cross-sectional area (cm?)
r 0.95 0.93
Offset 0.32 (0.11) N.S.
Slope 2.02 (0.10) 2.00 (0.02)
SEE 0.13 0.31
Cross-sectional moment of inertia (cm4)
r 0.94 0.93
Offset 0.30 (0.12) N.S.
Slope 1.19 (0.06) 1.48 (0.03)
SEE 0.22 1.40
Section modulus (cm?)
r 0.93 0.89
Offset 0.19 (0.07) N.S.
Slope 1.32 (0.08) 1.53 (0.03)
SEE 0.10 0.50
Width (cm)
r 0.95 0.95
Offset N.S. N.S.
Slope 0.979 (0.004) 0.978 (0.003)
SEE 0.08 0.10
Femoral neck axis length (cm)
r 0.90 -
Offset N.S. -
Slope 1.003 (0.004) -

SEE 0.22

Numbers in parentheses are standard errors. N.S. indicates that the
offset (i.e., intercept) was not significantly different from zero, in
which case, the slope is reported with the offset fixed to zero. The
linear coefficient » and standard error of the estimate SEE are reported
with the offset not fixed to zero. For all correlation coefficients, p<
0.001

Fig. 4 Comparison of FNAL FNAL

positioning. The FNAL results were calculated indepen-
dently on the DXA image and QCT dataset without co-
registration; thus, if the femur neck during the DXA exam
was not positioned parallel to the table in some subjects, it
would appear shorter by varying amounts and would cause
an increase in the SEE of the correlation. However, since
the length of the FNAL is shortened only by the cosine of
the angle the femur is mispositioned by, for small angles,
this effect is negligible. Additionally, the DXA technicians
in this study were highly trained and accustomed to the
careful attention to detail required in research studies.

This expertise in patient positioning may also partially
explain the important result that exactly matching the ROIs
in 3D space with co-registration was not required for high
correlations between DXA HSA and QCT for the NN
region. We did not foresee this surprising result, as one
might intuitively expect that oblique planes caused by
improper positioning could result in considerable variation,
as well as variations caused by limiting the determination of
the narrowest point to a single 2D projection of a complex
3D object. The fact that the high correlations were seen,
albeit with careful positioning, encourages the use of the
HSA NN region in clinical studies where co-registration is
not possible as a reasonable surrogate for measuring the
“true narrow neck” with QCT. This result may also be due
to the femoral neck region not having a well-defined
weakest location. Physiological remodeling may cause the
femoral neck to have a relatively large region which has
approximately the same resistance to bending and com-
pression, which would make the exact placement of the NN
region less critical.

Previously, Prevrahl et al. [12] have undertaken a DXA
QCT study comparing narrow neck region CSMI and
reported an * of 0.5, much less that the /> of 0.81 with
non-registered ROIs and 7% of 0.88 for co-registered ROIs
reported here. The lower correlation found in the Prevahl

Bland-Altman of FNAL
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study may have been due to a combination of different
hardware and algorithms used. Prevahl et al. used a Prodigy
(GE/Lunar), and the QCT was performed on a GE9800-Q
(GE Healthcare, Inc.) with an Image Analysis QCT
phantom and with lower spatial resolution (1 mmx
I mmx=3 mm voxel). A global threshold was used for the
segmentation of the CT data. The algorithm utilized by
Prevahl et al. were those contained in the GE/Lunar AHA®
software for the DXA and for the QCT, those developed by
Lang et al. [31, 32]. Also, careful co-registration was not
used. Importantly, the high correlations reported in this
study cannot be generalized to other structural measurement
software and hardware implementations without further
validation.

In this study, we chose to only calculate on the QCT
dataset that subset of HSA parameters for which highly
accurate QCT results can be obtained. Even the relatively
high-resolution QCT used in this in vivo study cannot
measure cortical thickness below 1-1.5 mm accurately [33].
Thus, we did not calculate on the QCT dataset parameters
such as cortical thickness and buckling ratio where partial
volume artifacts, in particular in elderly patients with
decreased cortical thicknesses, would have had large
effects. As the true cortical thickness and the true cortical
BMC are not known, it is also extremely difficult to correct
these artifacts in a theoretically rigorous manner. The
comparison in vivo of cortical parameters between QCT
and HSA lacks a true “gold standard” because one is
comparing two methodologies, both of which have limited
accuracy. Trying to disentangle truth from assumptions for
these parameters was beyond the scope of this paper.

Neither did we calculate the neck shaft angle on the
QCT dataset. Neck shaft angle is not defined in three
dimensions as the femoral neck axis and the line through
the middle of the femoral shaft usually do not intersect in
three dimensions. Additionally, as noted in the Methods
section, a number of the QCTs in the study started at the
distal edge of the lesser trochanter which prevented the
accurate determination of the femoral shaft axis for those
subjects.

In conclusion, there is high correlation between HSA
and high-resolution QCT for CSA, CSMI, and Z in a cohort
of elderly Caucasian women. Additionally, good absolute
agreement between HSA and QCT was seen for FNAL and
also width at the NN and IT ROIs. Assuming that the
structural analyses in the plane of the DXA image relate to
the overall structural strength of the hip, the ability of HSA
to calculate these structural parameters from DXA images
potentially allows the study of many interesting research
questions, as well as patient assessments, without the
inconvenience and much higher X-ray doses associated
with QCT.
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