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Abstract

Background

Machine learning (ML) algorithms provide effective ways to build prediction models using

longitudinal information given their capacity to incorporate numerous predictor variables

without compromising the accuracy of the risk prediction. Clinical risk prediction models in

chronic hepatitis C virus (CHC) can be challenging due to non-linear nature of disease pro-

gression. We developed and compared two ML algorithms to predict cirrhosis development

in a large CHC-infected cohort using longitudinal data.

Methods and findings

We used national Veterans Health Administration (VHA) data to identify CHC patients in

care between 2000–2016. The primary outcome was cirrhosis development ascertained by

two consecutive aspartate aminotransferase (AST)-to-platelet ratio indexes (APRIs) > 2

after time zero given the infrequency of liver biopsy in clinical practice and that APRI is a val-

idated non-invasive biomarker of fibrosis in CHC. We excluded those with initial APRI > 2 or

pre-existing diagnosis of cirrhosis, hepatocellular carcinoma or hepatic decompensation.

Enrollment was defined as the date of the first APRI. Time zero was defined as 2 years after

enrollment. Cross-sectional (CS) models used predictors at or closest before time zero as a

comparison. Longitudinal models used CS predictors plus longitudinal summary variables

(maximum, minimum, maximum of slope, minimum of slope and total variation) between

enrollment and time zero. Covariates included demographics, labs, and body mass index.

Model performance was evaluated using concordance and area under the receiver
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operating curve (AuROC). A total of 72,683 individuals with CHC were analyzed with the

cohort having a mean age of 52.8, 96.8% male and 53% white. There are 11,616 individuals

(16%) who met the primary outcome over a mean follow-up of 7 years. We found superior

predictive performance for the longitudinal Cox model compared to the CS Cox model (con-

cordance 0.764 vs 0.746), and for the longitudinal boosted-survival-tree model compared to

the linear Cox model (concordance 0.774 vs 0.764). The accuracy of the longitudinal models

at 1,3,5 years after time zero also showed superior performance compared to the CS

model, based on AuROC.

Conclusions

Boosted-survival-tree based models using longitudinal information are statistically superior

to cross-sectional or linear models for predicting development of cirrhosis in CHC, though all

four models were highly accurate. Similar statistical methods could be applied to predict out-

comes in other non-linear chronic disease states.

Introduction

Progression to cirrhosis and its associated complications is of primary concern for patients

with chronic liver disease. Rates of progression to cirrhosis can vary dramatically across indi-

viduals.[1, 2] Lack of accurate risk stratification can result in slow progressors undergoing

excess monitoring and rapid progressors undergoing insufficient monitoring and treatment.

Availability of highly accurate risk prediction models would facilitate proactive identification

of individuals in need of more intensive monitoring and treatment. Risk prediction models

would be particularly useful for application among individuals with chronic hepatitis C

(CHC), a leading cause of cirrhosis worldwide. Despite availability of effective antiviral treat-

ment for CHC, disease elimination remains quite challenging due to limited access to specialty

care and the steep cost of antiviral medications. Furthermore, rates of new hepatitis C virus

(HCV) infection are on the rise due to the ongoing epidemic of injection drug use. CHC

remains undiagnosed in many patients, while others with known HCV lack of access to care or

face treatment barriers such as cost concerns or substance use disorders. The ability to predict

risk of CHC progression would help to identify patients at risk for adverse outcomes and

could potentially help target resources to those at highest risk.[3,4]

Classic prediction models rely primarily on cross-sectional (CS) data and have limited accu-

racy to assess risk of disease progression in non-linear disease states.[5] Machine Learning

(ML) algorithms provide effective methods to incorporate longitudinal data for risk prediction

without over-fitting the model. Our group has previously shown that risk predictions for

adverse outcomes among patients with CHC are more accurate when longitudinal data is

incorporated and when used for pure classification problems with discrete and pre-specified

time intervals.[5–7] We previously evaluated risk of fibrosis progression and clinical outcomes

in CHC used longitudinal data from the Hepatitis C Antiviral Therapy to Prevent Cirrhosis

(HALT-C) trial, which exclusively included patients with advanced liver disease who had failed

prior antiviral treatment. We subsequently validated these models in a small cohort of indivi-

dualswith minimal or no fibrosis and without prior treatment exposure. It remains unknown

whether predictive modeling can accurately predict CHC progression in a large or heteroge-

neous sample outside of clinical trial settings. Further, in our prior studies, there is a possibility
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of not obtaining the best prediction accuracy if we treat the cirrhosis outcome as a dichoto-

mous outcome at a specified interval of time. Thus, in this analysis we sought to address these

questions by applying a time-to-event analysis to provide a more accurate approximation of

the event over a continuous time period.

The Veterans Health Administration (VHA) cares for one of the largest cohorts of CHC

patients in the US. VHA maintains a universal, longitudinal record of clinical services for all

patients in its care. The aim of this study was to develop and subsequently validate models for

risk of progression to cirrhosis among Veterans with CHC. In order to construct an accurate

time-to-event risk prediction model, we compared performance of models using CS versus

longitudinal data, and (regularized) linear Cox proportional hazards models versus boosted-

survival-tree based proportional hazards models.

Patients and methods

Data source

The VHA is the largest integrated healthcare system in the US currently serving more than 8.9

million Veterans at 168 VA Medical Centers and 1,053 outpatient clinics throughout the coun-

try[8]. The VHA uses a single, nationwide, comprehensive electronic healthcare information

network (known as the Veterans Information Systems and Technology Architecture or

VistA), which consists of nearly 180 applications of clinical, financial, administrative and infra-

structure needs integrated into a single, common database of all Veterans’ health information.

We obtained electronic data on all patients who initiated antiviral treatment in the VA system

using the VA Corporate Data Warehouse (CDW), a national, continually updated repository

of data from VistA developed specifically to facilitate research[9]. Data extracted included all

patient pharmacy prescriptions, demographics, inpatient and outpatient visits, problem lists,

procedures, vital signs, diagnostic tests, and laboratory tests.

Study population and data collection

Data were obtained from the VHA Corporate Data Warehouse spanning the period from Jan-

uary 1, 2000 through December 31, 2016 for all domains. Among 280,475 patients with at least

one positive HCV ribonucleic acid (RNA) test result during this period, 232,668 had at least 2

APRI scores. A total of 214,274 had no history of HCC or cirrhosis prior to their first recorded

APRI date, or within 1 year of their first APRI date. Among these individuals, 203,188 had ini-

tial first two APRI scores<2. Then, 156,400 individuals had a minimum of 1 year follow-up,

and 86,340 patients received no HCV antiviral treatment. Finally, to leverage longitudinal

information within a two year period, we further restricted to a subset of 72,683 patients that

had valid lab measurements within 2 years of enrollment [Fig 1]. For the purpose of this study,

we elected to design and test our prediction models only on patients without antiviral treat-

ment given that antiviral treatment, particularly the older regimens, can impact laboratory val-

ues and thus may alter the performance of our models. In addition, patients with CHC

without antiviral treatment provide the most representative population to evaluate the risk of

fibrosis progression as this trajectory can be significantly altered among those who achieve sus-

tained virologic response (SVR).

Outcome definition. Given the infrequent use of liver biopsy for fibrosis staging in clini-

cal practice, progression to cirrhosis was defined using non-invasive biomarkers, specifically

the aspartate aminotransferase (AST) to platelet ratio index (APRI). APRI has been shown to

accurately assess fibrosis staging among patients with CHC, particularly with respect to detect-

ing advanced fibrosis and cirrhosis.[10] APRI is defined by the formula APRI = 100 � (AST

(U/L) / 40) / Platelet (1000/uL). The primary outcome of progression to cirrhosis was defined
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as the first occurrence of two consecutive APRIs > 2. The first APRI event within the consecu-

tive pair was used as the index date for the outcome and serves as a surrogate for cirrhosis

onset. Patient follow-up began on the date of the first recorded APRI, and ended on the first

occurrence of any of the following events: (1) last recorded APRI, (2) the first APRI beginning

a period of> 3 years of no APRI observations, signifying insufficient follow-up or drop-out,

or (3) cirrhosis onset. Event types (1) and (2) are censored or non-events, and (3) is the out-

come event.

Predictor variables. Predictor variables were selected based on results of our prior work

and biologic plausibility. Given differences in lab reference ranges across different care sites,

some labs were converted to a ratio of the lab value divided by the upper limit of normal

(ULN) for the analysis. Laboratory tests included AST ratio, alanine aminotransferase (ALT)

ratio, alkaline phosphatase (ALK) ratio, AST/ALT, APRI, albumin (ALB), total bilirubin (BIL),

creatinine (CRE), blood urea nitrogen (BUN), glucose (GLU), hemoglobin (HEM), platelet

count (PLT), white blood cell count (WBC), sodium (NA), potassium (K), chloride (CL), total

protein (TOTP), and body mass index (BMI). All laboratory test variables are of longitudinal

format. Demographic variables include patient age at enrollment, gender, and race.

We defined enrollment as entrance into the cohort at the date of the first APRI. Time zero

was defined as 2 years after enrollment, to leverage longitudinal information between enroll-

ment and time zero. We developed two categories of models: CS models and longitudinal

models. CS models use predictors at or closest prior to time-zero, and longitudinal models use

CS model predictors plus additional longitudinal variables [Fig 2].

To capture longitudinal information, we created five summary variables of longitudinal val-

ues between enrollment and time-zero: maximum, minimum, maximum of slope, minimum

of slope, and total variation. The slope was defined as difference between two consecutive

observed values divided by time difference, and total variation was defined as the average of

absolute value of slopes. The average, average of slopes, and average of accelerations of

Fig 1. Study population.

https://doi.org/10.1371/journal.pone.0208141.g001
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laboratory test variables were tested but did not provide further improvement to prediction

results. To avoid multicollinearity among predictors, these longitudinal summary variables

were removed when fitting the model. We filled the missing values for the CS and longitudinal

predictors in the training and testing data separately by median of available values.

Statistical analysis and model development. We choose to leverage the time-to-event

nature of the data and utilize the survival analysis for predicting the onset of cirrhosis. Survival

analysis allows us to predict the risk of developing cirrhosis within any continuous time win-

dow and therefore is more flexible than pure classification within a fixed discrete time interval.

The time-to-event data consists of the triples {(xi,ti,δi)}i, where xi records the covariates that

may affect the risk of the ith patient, and ti records the time to the outcome δi (δi = 1 if the

patient developed cirrhosis and δi =0 if the patient was right-censored). We used both a regu-

larized linear Cox proportional hazards model and a boosted-survival-tree based proportional

hazards model. [11,12] The reason we used the regularized t linear Cox model (rather than the

standard Cox model) is that there are many predictor variables in our setting and many of

them are highly correlated; regularization helps control the complexity and stability of the

model and in general improves the model prediction accuracy and model interpretability. We

also constructed tree based methods for model construction given that these models can han-

dle mixturs of continuous and categorical predictor variables, allow non-linear effects of pre-

dictors and automatically perform variable selection. In the setting of survival analysis,

survival-tree based ensemble methods such as boosted-survival-tree based proportional haz-

ards model and random survival forests are widely used. [13,14] We did not use the random

survival forests here as its computational cost is much higher than the boosted-survival-tree

model given the size of the dataset. For each type of survival model, we fit a CS model using

covariates at time zero and a longitudinal model with additional longitudinal predictors. In

total four models were developed: CS Cox model, longitudinal Cox model, CS boosting model,

and longitudinal boosting model. The negative and positive predictive values (NPV and PPV)

of these models were reported to assess overall model performance.

Linear cox proportional hazards model. Survival models could be characterized by a

hazard function, which is the probability that an outcome would happen at an instant given

the patient has survived to that time. In Cox proportional hazards model, the hazard function

takes the form h(t,x) = h0(t)exp{xTβ}, where h0(t) is a baseline hazard rate changing with time t

and exp{xTβ} describes how covariates at time-zero, x, affect the hazard.[11] Cox model

assumes that the hazard rate changes with unit increase in each covariate through a multiplica-

tive effect. Given the hazard rate, we could obtain the survival function with respect to time,

defined as the probability that a patient would develop the outcome after a specific time.

Parameters in the Cox model are usually estimated through maximizing partial likelihood.

Fig 2. Model using longitudinal data.

https://doi.org/10.1371/journal.pone.0208141.g002
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Variable selection for Cox models by elastic net. We performed variable selection for

the CS and longitudinal Cox models using the elastic net approach.[15–17] Elastic net is a reg-

ularization and variable selection method which augments the original likelihood by a penalty

which is a linear combination of the lasso and ridge penalties.[18,19] This method has the

property of enforcing sparsity in the parameter estimation and thus allows variable selection

similar as the lasso approach, while it can also accommodate a grouping effect where strongly

correlated variables tend to be preserved or dropped from the model together. The grouping

effect is very helpful in our models since the first-order predictors such as last value, maximum

and minimum tend to be correlated. We did un-penalized Cox model analysis using the sur-

vival R package and performed Cox model with elastic net approach using the glmnet R pack-

age.[17,20]

Boosted-survival-tree based proportional hazards model. Boosted-survival-tree based

proportional hazards model assumes covariates affect hazard rate through a non-parametric

function in the exponential, i.e., h(t,x) = h0(t)exp{F(x)}.[13] The non-parametric nature of

boosting allows the model to capture non-linear relationships and interactions and is more

flexible. The target function F(x) is estimated by adapting the gradient boosting machine,

where we search for the function that maximizes the partial likelihood in the function space

rather than the parameter space.[21] At each iteration, F(x) is updated on the direction of its

negative gradient, and the gradient function is usually fitted through a regression tree based on

a random subsample of the training dataset. Such updates were performed over many itera-

tions, and the final estimated function is chosen at the iteration when optimal out-of-bag pre-

diction performance is achieved. We built boosting survival models using the gbm R package.

We set the number of iterations as 2000 and restricted the interaction depth of trees as 2 so we

could model up to two-way interactions among predictors.

Model performance: Concordance index and AuROC. We evaluated the overall perfor-

mance of linear Cox models and boosting models using the concordance index. The concordance

index, or C-index, is a global measure of discriminative power of a survival model. It is defined as

the fraction of pairs of patients that the patient who has a longer survival time is also predicted

with lower risk score by the model. The range of concordance is between zero and one, with a

larger value indicating better performance (and 0.5 indicating discrimination by chance).

We also used area under the receiver operating characteristic curve (AuROC) to evaluate

the performance at specific prediction windows, e.g., 1 year, 3 years and 5 years. Area under

the ROC curve measures the probability that the classifier will assign a higher score to a ran-

domly chosen positive outcome object than a randomly chosen negative one. To obtain 1 year

AuROC, we predicted the risk at time 1 year and compared with patients’ true outcome at 1

year. Patients censored before 1 year were removed for such evaluation since their true out-

comes at 1 year were not available. The 3 years AuROC and 5 years AuROC were calculated in

a similar manner. Further, we selected the best cut-off point that is closest to the perfect point

of both sensitivity and specificity equal one on the ROC plot.

Training and testing cohort. Training and testing sets were obtained by randomly split-

ting the data into 70% and 30% subsets. Such random splitting was performed 30 times. For

each split we fit the linear Cox models and the boosting models on the training dataset and

evaluated model performance on the testing dataset. The concordance index, 1 year AuROC, 3

years AuROC and 5 years AuROC were averaged over 30 replications. The 95% confidence

intervals for all performance measures were derived from the 30 splits. The cut-off point selec-

tion and misclassification table were reported based on the split whose longitudinal boosting

model has the closest concordance to the average of 30 splits.

Boosting variable importance. We evaluated the relative importance of each predictor in

CS boosting model and longitudinal boosting model. The relative importance of each
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predictor is evaluated by aggregating the reduction of error in predicting the gradient at the

nodes where the variable is used for splitting, across all trees generated by boosting. Variables

that contribute more to error reduction have higher relative importance. The variable impor-

tance plots were plotted based on fitting boosting models on the entire cohort.

Partial dependence plots for boosting models. We constructed partial dependence plots

for the CS and longitudinal boosting models to illustrate how individual predictors affect the

log hazard, a quantity measuring patients’ risk of progression to cirrhosis. For each predictor

variable, we used the boosting model fitted on the entire dataset to predict the log hazard for

each patient with the predictor set as a given value and averaged over all patients to obtain a

mean log hazard. This procedure was repeated for each present value of the predictor, or for

its 50 quantiles if more than 50 values exist.

Results

Baseline characteristics and incidence of outcomes

The cohort consisted primarily of middle aged (mean 52.8 years) men (96.8%). The sample

was primarily White (52.9%) or African American (40.7%). The mean duration of follow-up

was 7 years. Baseline APRI was 0.62 with 16% of patients meeting the primary outcome over

duration of follow-up [Table 1]. Summary statistics for baseline lab measurements uses the

closest value to the patient enrollment date, but no more than 2 years after. Note that not every

patient had an available lab measurement for every lab within two years of enrollment.

Model performance

The average concordance over 30 splits for the CS Cox model without variable selection is

0.746, and the average concordance for the longitudinal Cox model without variable selection

is 0.764. The average, standard deviation and 95% confidence intervals of concordance and

AuROC for 1 year, 3 years, 5 years for the two models are provided in Table 2. The longitudi-

nal Cox model outperformed the CS Cox model under all these measures, which are signifi-

cantly different under paired t-tests.

The average concordance over 30 splits for the CS boosting model is 0.758, while the aver-

age concordance for the longitudinal boosting model is 0.774. The results for concordance and

AuROC for 1 year, 3 years, 5 years for the two models are provided in Table 3.

The longitudinal boosting model had better performance than the CS boosting model, and

all four measures were significantly different based on results of paired t-tests. Further, with

both longitudinal predictors and CS predictors, the boosting method performed better than

the corresponding Cox model. This is expected because boosting methods can capture the

nonlinearity in the data.

We also investigated properties such as sensitivity, specificity, NPV and PPV for 1 year, 3

years and 5 years predictions with the best cut-off under one representative training and test-

ing split of the data. From a clinical standpoint, the utility of these predction models are often

most useful for optimizing the NPV and thus cut-offs the maximized NPV were selected.The

split is selected as the one whose longitudinal boosting model has the closest concordance to

the average of 30 splits. The misclassification table for all four models under this split is pro-

vided in Table 4.

Variable selection for Cox models. We performed variable selection for the Cox models

using elastic net penalty on 30 splits of data. For the CS Cox model, on average 14 predictors

were selected out of the original 24 predictors. The average concordance of a non-penalized

model on the selected variables was 0.745, which is very close to the performance of the origi-

nal model. For the longitudinal Cox model, on average 29 predictors are selected out of the
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original 114 predictors. The average concordance of the non-penalized model after selection is

0.765, which is very close to that of the original model. The variable selection frequency in the

30 splits is provided in S1 Table and S2 Table. Variables that are selected in all 30 splits appear

more relevant in the model, while those never or rarely selected seem to be marginal. Overall,

the results suggest that with much fewer variables, we can still achieve comparable performance

in the Cox models, which can be helpful for the adoption of the methods in clinical practice.

Importance and effect of predictors in boosting models. The variable importance plot

for the CS boosting model is provided in Fig 3. The five most important variables for distin-

guishing patients’ cirrhosis progression are as follows: APRI, PLT, AST ratio, ALB, AST/ALT.

The variable importance plot for the longitudinal boosting model is provided in Fig 4. The five

most important predictors are as follows: last APRI, maximum of APRI, minimum of PLT,

minimum of APRI, last PLT.

Table 1. Baseline characteristics.

Variable

(N not-missing (% not-missing))

Cohort N = 72,683

Summary statistics

Primary outcome event

(100%)

11,616 (16%)

Followup years (mean (sd))

(100%)

7.00 (4.01)

Age at enrollment (mean (sd))

(100%)

52.84 (8.74)

Male (%)

(100%)

70,377 (96.8)

Race (%)

(66,613 (91.65%))

WHITE 35,216 (52.9%)

BLACK OR AFRICAN AMERICAN 27,081 (40.7%)

HISPANIC 3,101 (4.7%)

OTHER 1,215 (1.8%)

Albumin g/dl (mean (sd))

(69,982 (96.28%))

3.96 (0.46)

Alkaline phosphatase U/L (mean (sd))

(71,530 (98.41%))

86.11 (38.01)

ALT U/L (mean (sd))

(70,422 (96.89%))

61.64 (58.14)

APRI (mean (sd))

(100%)

0.62 (0.55)

AST U/L (mean (sd))

(100%)

49.94 (32.64)

Bilirubin mg/dl (mean (sd))

(72,115 (99.22%))

0.69 (0.41)

Body-mass-index (mean (sd))

(67,317 (92.62%))

27.17 (5.32)

Creatinine mg/dl (mean (sd))

(71,427 (98.27%))

1.08 (0.87)

INR (mean (sd))

(41,423 (56.99%))

1.06 (0.30)

Platelet count 1000/uL (mean (sd))

(100%)

233.02 (74.88)

Sodium mmol/L (mean (sd))

(72,271 (99.43%))

138.85 (3.24)

https://doi.org/10.1371/journal.pone.0208141.t001
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The effects of individual predictors to the log hazard in the boosting models can be illus-

trated in partial dependence plots. The plots for selected important variables are provided in

multiple panels of Fig 5 for the CS boosting model, and in Fig 6 for the longitudinal boosting

model. We present the partial dependence plots of the top six important predictors (in terms

of variable importance) for each model. If variables from a single lab appears more than once

in the top predictors (e.g. PLT_MIN, PLT_LAST), we choose the one that has a clearer pattern

in the partial dependence plot. We also include APRI_DIFFMAX, which has relatively large

importance and also illustrates the effect of using slopes. It is important to realize that clini-

cally, many laboratory values do not follow a linear relationship with the development of fibro-

sis or cirrhosis, (for example, albumin may be normal when you develop cirrhosis or vice-

versa), and thus the individual results are often less informative than trends of longitudinal

data.

Discussion

HCV remains a significant public health problem despite the availability of highly effective

antiviral treatment. Many health systems, such as the VHA, have been highly successful in

treating patients with CHC in the direct-acting antiviral (DAA) treatment era. However, in the

population as a whole, challenges persist that prevent disease eradication due to deficiencies in

screening, access to care, and new or repeat infections related to the ongoing opioid epidemic

and the high cost of anti-viral treatment.[22] Reflecting these barriers, it is estimated that only

a minority of patients, estimated to be as low as 3%, on Medicaid have completed antiviral

treatment.[23] Rates of acute HCV infection have also increased 2 fold in the past decade and

is expected to increase in younger adults given the increase use of substance abuse in the popu-

lation.[24] As such, risk prediction models that can assess for likelihood of disease progression

remain relevant to many untreated and newly diagnosed patients. More importantly, applica-

tion of these types of statistical modeling designs, particularly ML based algorithms, can poten-

tially be applied to other chronic diseases with variable rates of progression.

Table 2. Performance of Cox models.

Cox Model� Concordance

(N = 21,805)

AuROC 1 year

(N = 18,849)

AuROC 3 years

(N = 14,602)

AuROC 5 years

(N = 11,310)

Cross-

sectional Model

0.746 (0.003)

CI: 0.745–0.747

0.801 (0.008)

CI: 0.799–0.804

0.784 (0.005)

CI: 0.783–0.786

0.774 (0.003)

CI: 0.772–0.776

Longitudinal Model 0.764 (0.003)

CI: 0.763–0.766

0.820 (0.007)

CI: 0.818–0.823

0.803 (0.005)

CI: 0.802–0.805

0.794 (0.003)

CI: 0.793–0.796

P-value 2�e-29 1�e-22 6�e-25 1�e-28

� mean (standard deviation), 95% confidence interval

https://doi.org/10.1371/journal.pone.0208141.t002

Table 3. Performance of boosting models.

Boosting Model� Concordance

(N = 21,805)

AuROC 1 year

(N = 18,849)

AuROC 3 years

(N = 14,602)

AuROC 5 years

(N = 11,310)

Cross-

sectional Model

0.758 (0.003)

CI: 0.757–0.759

0.811 (0.008)

CI: 0.809–0.814

0.797 (0.005)

CI: 0.795–0.799

0.787 (0.005)

CI: 0.785–0.789

Longitudinal Model 0.774 (0.003)

CI: 0.773–0.775

0.830 (0.007)

CI: 0.827–0.832

0.814 (0.005)

CI: 0.812–0.815

0.805 (0.004)

CI: 0.804–0.807

P-value 8�e-28 4�e-24 3�e-23 1�e-26

� mean (standard deviation), 95% confidence interval

https://doi.org/10.1371/journal.pone.0208141.t003
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In this study we were able to design, validate and compare several ML prediction models

using a large cohort of patients. We demonstrate that it is feasible to create highly accurate

models for risk of progression to cirrhosis at varying time intervals of interest. We show that

while models based on longitudinal information are more accurate in their risk prediction,

models built using only CS data are also accurate and thus represent a pragmatic approach for

risk stratification in clinical settings. Through this analysis we also demonstrate the strengths

of ML algorithms for non-linear, dynamic disease states. In addition, we applied ML methods

Table 4. Misclassification Table.

Time Test Sample Size Event Proportion Model AuROC Best cut-off Specificity Sensitivity PPV NPV

1 year 18896 0.036 CS Cox 0.807 0.041 0.79 0.71 0.11 0.99

CS Boosting 0.817 0.037 0.77 0.73 0.11 0.99

LGT Cox 0.828 0.037 0.75 0.76 0.10 0.99

LGT Boosting 0.838 0.035 0.76 0.77 0.11 0.99

3 years 14605 0.112 CS Cox 0.784 0.095 0.73 0.72 0.25 0.95

CS Boosting 0.799 0.091 0.76 0.71 0.27 0.95

LGT Cox 0.804 0.095 0.75 0.74 0.27 0.96

LGT Boosting 0.815 0.090 0.76 0.73 0.28 0.96

5 years 11334 0.206 CS Cox 0.775 0.151 0.74 0.70 0.41 0.90

CS Boosting 0.790 0.138 0.75 0.70 0.42 0.91

LGT Cox 0.794 0.151 0.75 0.71 0.42 0.91

LGT Boosting 0.805 0.128 0.73 0.74 0.41 0.92

(CS) cross-sectional; (LGT) longitudinal; (PPV) positive predictive value; (NPV) negative predictive value.

https://doi.org/10.1371/journal.pone.0208141.t004

Fig 3. Variable importance plot for cross-sectional boosting model.

https://doi.org/10.1371/journal.pone.0208141.g003
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Fig 4. Variable importance plot for longitudinal boosting model.

https://doi.org/10.1371/journal.pone.0208141.g004

Fig 5. Partial dependence plots for the cross-sectional boosting model.

https://doi.org/10.1371/journal.pone.0208141.g005
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for time-to-event analyses which to date has not been done extensively in large clinical

cohorts.

This study has several important limitations. The primary limitation stems from the fact

that VA cohorts differ from the larger overall cohort of patients with CHC. Our cohort con-

sisted primarily of middle aged males and thus our results are most applicable to that subset of

patients with CHC. However, 2700 women were included in our cohort allowing modeling of

female sex as a predictor and potential inclusion in our models. Our analyses were inten-

tionally restricted to patients who had never received antiviral treatment for HCV because we

recognize that after antiviral therapy, the disease trajectory changes dramatically and will

require different prediction models which we plan to address in a separate study. In addition,

antiviral treatment may affect laboratory values and thus impact their predictive capability.

Patients who have not completed antiviral therapy are also most representative of the natural

disease course in CHC. In the DAA era, large percentages of patients have been successfully

treated and thus assessment of risk of progression post SVR is an area of great interest to us

which we are pursuing. This paper, however, addresses large cohort of patients prior to eradi-

cation of HCV in whom risk assessment is important as there remains real world barriers to

universal treatment and an understanding of risk would help determine those who are most

need of urgent treatment. Regarding potential statistical limitations, Cox models only account

for linear effects of predictors, therefore we also constructed boosted-survival-tree based pro-

portional hazards models which can incorporate non-linear effects of variables as well as the

time-to-event nature of the data. We did not include other comorbid illness such as diabetes

or alcohol use because prior models did not rank these comorbid illnesses high on the variable

importance list. In addition, we wanted to use commonly available data that were easily

extracted from the medical record. Finally, it is also worth highlighting the issue of missing

data in this longitudinal study. Overall the percentage of missing data was quite small (2.4% on

Fig 6. Partial dependence plots for the longitudinal boosting model.

https://doi.org/10.1371/journal.pone.0208141.g006
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average for CS predictors and maximum/minimum longitudinal variables for each lab and

10.9% on average for maximum/minimum of slope and total variation variables for each lab),

and we were able to address this using median imputation methods that were shown to have

good performance characteristics.

In conclusion, ML based risk prediction models are highly accurate in assessing risk of

fibrosis progression in a large cohort of veterans with CHC. Although algorithms based on

longitudinal data had the most robust performance characteristics, CS models were similarly

high performing and thus represent a less complex method to implement into clinical practice.

ML methods applied to time-to-event analyses are an attractive statistical approach when

assessing for risk of outcomes longitudinally in dynamic disease states.
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