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ABSTRACT
Viruses that infect the lung are a significant cause of
morbidity and mortality in animals and humans world-
wide. Coronaviruses are being associated increasingly
with severe diseases in the lower respiratory tract. Al-
veolar epithelial cells are an important target for coro-
navirus infection in the lung, and infected cells can initi-
ate innate immune responses to viral infection. In this
overview, we describe in vitro models of highly differen-
tiated alveolar epithelial cells that are currently being
used to study the innate immune response to coronavi-
rus infection. We have shown that rat coronavirus in-
fection of rat alveolar type I epithelial cells in vitro in-
duces expression of CXC chemokines, which may re-
cruit and activate neutrophils. Although neutrophils are
recruited early in infection in several coronavirus mod-
els including rat coronavirus. However, their role in viral
clearance and/or immune-mediated tissue damage is
not understood. Primary cultures of differentiated alve-
olar epithelial cells will be useful for identifying the inter-
actions between coronaviruses and alveolar epithelial
cells that influence the innate immune responses to in-
fection in the lung. Understanding the molecular details
of these interactions will be critical for the design of ef-
fective strategies to prevent and treat coronavirus in-
fections in the lung. J. Leukoc. Biol. 86: 1145–1151;
2009.

Introduction
Coronaviruses of humans and animals are increasingly being
recognized as significant pathogens in the lower respiratory
tract. Animals and poultry of agricultural importance, includ-
ing cows, pigs, and chickens, are infected by coronavirus

strains that cause respiratory and enteric diseases of varying
severity. In 2002–2003, SARS-CoV emerged from wildlife to
cause an epidemic with a 10% case fatality ratio. Since then,
two previously unknown HCoV, NL63 and HKU1, were discov-
ered and found to cause respiratory disease worldwide. New
molecular technologies for concurrently screening clinical
specimens for a large number of viruses have allowed investi-
gators to associate these newly identified coronaviruses with a
wide range of respiratory diseases, from mild upper respiratory
tract infections to severe pneumonia. Primary epithelial cell
cultures derived from conducting airways have been studied as
targets for several respiratory viruses including SARS-CoV. It is
also important to understand the role of alveolar epithelial
cells in initiating and regulating local immune responses to
viral infection in the alveoli through the expression of cyto-
kines and chemokines. Until recently, the responses of alveolar
epithelial cells to virus infection were studied in continuous
human or animal cell lines derived from the lung. However,
these cell lines do not maintain the differentiated phenotypes
of alveolar cells and thus, are not optimal models for the
highly specialized cell types of the alveolar epithelium. Cell
culture techniques that maintain the differentiated phenotypes
of primary alveolar epithelial cells permit studies on the virus/
host interactions that influence immune responses to alveolar
infection. Understanding the molecular details of these inter-
actions will be critical for designing effective strategies for the
prevention and treatment of respiratory virus infections.

RESPIRATORY CORONAVIRUS
INFECTIONS

The repiratory and enteric tracts are common targets for coro-
naviruses that infect animals and poultry, including pigs, cows,
dogs, rodents, and chickens. Porcine respiratory coronavirus
infects the epithelial cells of the lung, and disease ranges from
subclinical infection to moderate bronchointerstitial pneumo-
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nia, depending on the virus strain [1, 2]. Bovine coronavirus
causes disease in the enteric tract and the upper and lower
respiratory tracts, which has been associated with shipping fe-
ver [3]. Infectious bronchitis virus causes a highly infectious
respiratory disease in the upper respiratory tract and bronchi
of chickens that is especially severe in chicks [3]. Canine respi-
ratory coronavirus was discovered in 2003 and is prevalent
worldwide in populations of kenneled dogs; however, its
pathogenesis and contribution to kennel cough in dogs are
incompletely understood [4, 5]. The murine coronavirus
MHV-1 causes fatal interstitial pneumonitis in the A/J strain
of inbred mice [6]. RCoV strains cause respiratory diseases
with differing degrees of severity, depending on the viral
strain and the age, strain, and immune status of the animal
[7–9].

Five HCoV cause respiratory infections with various degrees
of severity. HCoV-229E and HCoV-OC43, which were discov-
ered in the 1960s, are a significant cause of common colds
and can cause severe lower respiratory tract disease in elderly,
infant, and immunocompromised patients [10–13]. In 2003,
SARS-CoV was identified as the causative agent of the epi-
demic of SARS [14, 15]. Subsequently, two additional HCoV,
HCoV-NL63 and HCoV-HKU1, were discovered to cause respi-
ratory disease in patients worldwide [16–19]. HCoV-NL63 is
associated with mild upper respiratory tract infections, laryngo-
tracheitis (croup), and bronchiolitis and pneumonia in chil-
dren [17–19]. HCoV-HKU1 is also associated with upper respi-
ratory tract infections in children and pneumonia in elderly
patients with underlying diseases [10, 20]. Because of these
findings, it is important to understand the mechanisms of
coronaviral pathogenesis in the lung.

Most coronaviruses, with the notable exception of bovine
coronavirus, infect and cause disease in one species or a lim-
ited number of related species [21]. Although there are sev-
eral animal models for SARS-CoV infection [22], there are no
animal models for respiratory diseases caused by the other
four HCoV [23, 24]. Therefore, it is important to study these
coronaviruses in differentiated human alveolar epithelial cells
in vitro. However, it is desirable to study respiratory coronavi-
ruses for which in vitro studies in differentiated alveolar cells
can be correlated with pulmonary infection in vivo. Therefore,
we are studying RCoV infection in its natural host as a model
for pathogenesis of respiratory coronaviruses. The study of
RCoV infection in rats provides an excellent model for under-
standing the innate immune responses of the alveoli to infec-
tion by a respiratory coronavirus of its natural host.

VIRAL INFECTION OF THE ALVEOLAR
EPITHELIUM

The alveolar epithelium consists of two morphologically and
functionally distinct cell types [25]. Ninety-eight percent of the
surface area of the alveolar epithelium is made up of AT1
cells, which are large, flattened, nondividing cells that function
in gas exchange and fluid homeostasis [26, 27]. AT1 cells are
identified in lung tissue by their morphology, specific binding
to Ricinus communis 1 lectin, and expression of T1� and aqua-

porin-5 [26]. AT2 cells are cuboidal, dividing cells and are
progenitors for replacement of damaged AT1 cells [28]. AT2
cells produce surfactant lipids and proteins that keep the alve-
oli open and contribute to innate defense of the lung [29].
AT2 cells are distinguished in situ by binding to Maclura pomifera
lectin, the presence of lamellar bodies, and expression of
SP-A, SP-B, and SP-C [26, 29]. Infection of alveolar epithelial
cells in vivo by respiratory viruses, including respiratory syncy-
tial virus, influenza A virus, and SARS-CoV, can have signifi-
cant effects on respiratory functions in the alveoli. Infection of
AT1 cells can impair gas exchange and removal of fluid from
the lung. In addition, infection of AT2 cells can compromise
repair of the damaged alveolar epithelium and innate defense
of the alveoli.

In autopsy specimens from SARS patients, immunohisto-
chemistry detected SARS-CoV antigens in AT1 or AT2 cells, or
both cell types, as well as in alveolar macrophages and bron-
chial and bronchiolar epithelial cells [30–33]. Differences in
the cell types that contain viral antigen in different patients
may reflect the age of the patient and/or the time after infec-
tion when the patient died. Studies on SARS-CoV infection in
primate, murine, feline, and ferret models have also demon-
strated infection of alveolar epithelial cells. SARS-CoV antigens
were detected in AT1 cells of cynomolgus macaques 4 days
after inoculation with SARS-CoV, at which time, there was dif-
fuse alveolar damage and neutrophil infiltration in the lung
[34]. van den Brand et al. [35] found SARS-CoV antigen pre-
dominantly in AT1 and AT2 cells of cats and AT2 cells of fer-
rets 4 days after inoculation with SARS-CoV, when all animals
had diffuse alveolar damage with infiltrating neutrophils and
macrophages. Although cats had no clinical signs of infection
with SARS-CoV, ferrets inoculated with SARS-CoV were lethar-
gic, and one of four ferrets died 4 days after inoculation. In
aged mouse and mouse-adapted models of SARS, viral anti-
gens were detected in alveolar epithelial cells without distin-
guishing AT1 from AT2 cells [36–38]. In contrast to inocula-
tion of young mice, inoculation of aged mice with SARS-CoV
causes clinical signs of disease, lymphocyte infiltration, and
alveolar damage 3–9 days after inoculation [37]. Despite these
clinical and histopathological signs of disease, aged mice re-
cover from infection. The mouse-adapted SARS-CoV (MA15)
isolated by Roberts et al. [36] causes lethal infection in
BALB/c mice, characterized by viral antigens in bronchial and
alveolar epithelial cells with cellular necrosis and infiltration of
mononuclear cells. A second mouse-adapted SARS isolate (F-
musX-VeroE6) causes clinical signs of disease in BALB/c mice,
with a 30% mortality rate [38]. Inoculation of adult mice with
this virus results in viral antigen in alveolar epithelial cells, dif-
fuse alveolar damage, and infiltration of macrophages, lym-
phocytes, and neutrophils into the alveoli. Porcine respiratory
coronavirus antigen has been identified by immunofluores-
cence in epithelial cells of the alveoli, bronchi, and bronchioli,
as well as alveolar macrophages 2–6 days after inoculation of
infant pigs, resulting in subclinical interstitial pneumonia [1].
RCoV infection of adult rats results in an influx of neutro-
phils, followed by lymphocytes and monocytes, into the respi-
ratory tract [7, 39]. The interactions between respiratory vi-
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ruses and alveolar epithelial cells can mediate the innate im-
mune response to virus infection in the lung. Primary cultures
of differentiated alveolar epithelial cells are a valuable model
for studying these interactions.

CORONAVIRUS ISOLATION OFTEN
REQUIRES DIFFERENTIATED HOST
CELLS

Human respiratory coronaviruses could not be isolated from
patients with colds in continuous human cell lines, but in-
stead, virus isolation required serial blind passage in human
diploid fibroblasts or human fetal tracheal organ cultures [40–
44]. HCoV-229E and HCoV-OC43 caused only mild cytopathic
effects in these cells, but these viruses could be used to infect
human volunteers to study the pathogenesis of coronavirus
infection of the upper respiratory tract [41, 45]. HCoV-NL63
is also difficult to isolate from clinical specimens [46] and can
be isolated most readily in primary, differentiated human air-
way epithelial cells [47]. Infectious HCoV-HKU1 has not yet
been propagated in any cell culture, although its entire ge-
nome sequence has been determined [16]. In contrast, SARS-
CoV could be readily isolated from patients in the Vero E6
line of monkey kidney cells or in fetal rhesus kidney cells [14,
48, 49]. The reasons for the fastidious requirements of most
human respiratory coronaviruses for differentiated human re-
spiratory epithelial cells are not yet understood.

CORONAVIRUS INFECTION IN PRIMARY
DIFFERENTIATED RESPIRATORY
EPITHELIAL CELLS

The respiratory tract is lined with epithelial cells that have dif-
ferent functions in the upper respiratory tract (nasal and sinu-
soidal epithelium), conducting airways (tracheal and bronchial
epithelium), and alveoli (alveolar epithelial cells), and all of
these are susceptible to infection with a variety of respiratory
viruses. Winther et al. [50] demonstrated the susceptibility of
primary cultures of ciliated nasal epithelial cells to infection by
HCoV-229E without cytopathic effects. Polarized cultures of
differentiated, ciliated human conducting airway epithelia
have also been used to study infection and the polarity of en-
try and release by HCoV-229E, HCoV-NL63, and SARS-CoV
[47, 51–55]. These studies emphasize the importance of the

differentiation state of ciliated cells for susceptibility to corona-
virus infection [52, 53]. Recent advances in the cultivation of
differentiated alveolar epithelial cells now allow analysis of
these important cell types in virus infection.

CULTIVATION AND CORONAVIRUS
INFECTION OF PRIMARY
DIFFERENTIATED ALVEOLAR EPITHELIAL
CELLS

As continuous cell lines derived from alveolar epithelium do
not maintain their differentiated characteristics, primary cul-
tures must be used to study differentiated AT1 and AT2 cells
in vitro. Primary AT1 cells are difficult to isolate to a high
yield and purity and propagate [26]. However, AT2 cells can
be readily isolated from lung tissue, and under special culture
conditions, they maintain their AT2 phenotype. Under differ-
ent culture conditions, AT2 cells transdifferentiate into an
AT1 cell phenotype (Fig. 1). This process of transdifferentia-
tion occurs during repair of the alveolar epithelium in vivo
and can be replicated in vitro [56–61]. Primary rat AT2 cells
maintain their differentiated phenotype when they are cul-
tured on collagen/matrigel in medium containing 5% rat se-
rum and KGF [62, 63]. The AT2 phenotype is characterized
by a cuboidal shape, lipogenesis (evident by the presence of
lamellar bodies) and expression of surfactant proteins. When
rat AT2 cells are cultured for 3–5 days in 10% FBS without
KGF, they lose properties of AT2 cells and transdifferentiate
into an AT1 cell phenotype (tAT1 cell, also called AT1-like cell)
[56, 58, 59]. These cells are flattened, express markers character-
istic of AT1 cells in vivo (T1�, aquaporin-5, and caveolin-1), and
react with AT1 cell-specific antibodies and lectins [26, 59, 64–
68]. As the markers used to distinguish AT1 cells in situ are
present in tAT1 cells in vitro, tAT1 cells are a practical alternative
to AT1 cell isolation for the study of AT1 cells in vitro. As with
any in vitro model, the biological relevance of such studies must
ultimately be confirmed in vivo.

We showed that the differentiation status of primary alveolar
epithelial cells is critical in determining susceptibility to SARS-
CoV infection [69]. Human alveolar epithelial cells that were
maintained with the AT2 phenotype supported infection by
SARS-CoV, whereas cells from the same donor that were trans-
differentiated in vitro to a tAT1 cell phenotype were resistant
to infection. In contrast to SARS-CoV, HCoV-229E replicates

Collagen/matrigel
5% rat serum + KGF

AT2 Phenotype
Cubiodal
Dividing
Lipogenesis
Express surfactant proteins
Bind Maclura pomifera lectin

Primary AT2 Cell

Tissue culture plastic
10% fetal bovine serum 

AT1 Phenotype
Flattened
Non-dividing
Express T1α, aquaporin 5
Bind Ricinus communis 1 lectin

Figure 1. Schematic representation of cul-
ture conditions for primary differentiated
alveolar epithelial cells. AT2 cells are iso-
lated from rat lung and are cultured to
maintain an AT2 phenotype or transdif-
ferentiate into a tAT1 cell phenotype.
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and causes cytopathic effects in cloned AT2 cells, which resem-
ble an AT1 cell phenotype [70]. Our studies using RCoV in-
fection of primary differentiated rat alveolar epithelial cells
were the first to demonstrate coronavirus infection in tAT1
and AT2 cells in vitro [71, 72].

INNATE IMMUNE RESPONSES OF
ALVEOLAR EPITHELIAL CELLS TO VIRUS
INFECTION

In the lung, the roles of AT2 cells and alveolar macrophages
in initiating and regulating an immune response have been
studied extensively. AT2 cells produce inflammatory mediators
upon exposure to inhaled microbes or particles and regulate
the functions of immune cells, including macrophages, den-
dritic cells, and lymphocytes in the lung [29, 73–75]. In vitro,
human bronchial epithelial cells and AT2 cells produce cyto-
kines and chemokines in response to infection with viruses
including RSV, influenza A virus, and SARS-CoV [76–80]. The
innate immune functions of AT1 cells have only been recog-
nized recently. Expression of chemokines by primary differen-
tiated tAT1 cells in vitro is increased by exposure to IL-1�, IL-
1�, or LPS [64, 65, 81, 82]. In primary cultures of murine
tAT1 cells, influenza A virus induces expression of CCL2 and
CCL5, resulting in transmigration of monocytes [83].

We have shown that rat tAT1 cells in vitro express cytokines
and chemokines upon infection with RCoV [71]. This study
was the first to show that virus infection of primary tAT1 cells
induces a proinflammatory response. RCoV infection of tAT1
cells induces expression of cytokines, including GM-CSF,
IFN-�, and TNF-�, and chemokines, predominantly those of
the CXC family [71]. The primary functions of CXC chemo-
kines are to recruit and activate neutrophils. We hypothesize
that RCoV infection in the lung induces CXC chemokine ex-
pression by AT1 cells, which in turn, recruits neutrophils to
the lung. The role of neutrophils during RCoV infection of
the lung is unknown, but these cells may contribute to viral
clearance and immunopathology. Rat tAT1 cells are a valuable
model in which to study the virus/host interactions that regu-
late this response. Using this model, we showed that like RCoV
infection, UV-inactivated RCoV induces CXC chemokine ex-
pression in rat tAT1 cells [71], so virus replication is not re-
quired to induce the chemokine response in rat tAT1 cells.
Dual immunolabeling of viral antigen and CXC chemokines in

rat tAT1 cells showed that CXC chemokines are expressed pre-
dominantly from uninfected cells in the culture [71]. There-
fore, expression of CXC chemokines during RCoV infection of
tAT1 cells may be mediated by a paracrine mechanism. We
found that RCoV-infected rat tAT1 cells treated with IL-1Ra
had markedly decreased expression of CXC chemokines rela-
tive to cells without IL-1Ra [71]. Treatment with soluble TNFR
protein did not affect chemokine expression by RCoV-infected
tAT1 cells. Thus, signaling through the IL-1R likely mediates
CXC chemokine expression by rat tAT1 cells during RCoV in-
fection (Fig. 2). As IL-1� and IL-1� signal through the IL-1R,
either or both of these cytokines may contribute to CXC che-
mokine expression during RCoV infection of tAT1 cells. Man-
zer et al. [65, 82] showed that rIL-1� and rIL-1� induce ex-
pression of CXC chemokines by rat tAT1 cells in vitro. Rat
tAT1 cells are a valuable model for investigating the early
events in innate immune responses to respiratory coronavirus
infections.

NEUTROPHILS IN RESPIRATORY VIRUS
INFECTIONS

Neutrophils infiltrate tissues early after viral infection and,
through the expression of proinflammatory cytokines and che-
mokines, can direct the subsequent recruitment of monocytes
and lymphocytes. For example, in infants with RSV bronchioli-
tis, neutrophils accounted for 93% and 76% of inflammatory
cells in the upper and lower airways, respectively [84, 85];
however, the specific functions of neutrophils during RSV in-
fection are unclear [86]. Neutrophils infiltrate the respiratory
tract by 18 h after inoculation of mice with influenza A virus,
and increased numbers of neutrophils have been associated
with highly pathogenic influenza virus infections in mice [87,
88]. Depletion of neutrophils from mice exacerbated infection
with a highly pathogenic recombinant influenza virus strain
containing the hemagglutinin and neuraminidase genes of the
1918 influenza virus [87]. Thus, neutrophils can play a role in
protection from virulent influenza virus infection. In infection
with less virulent strains of influenza A virus, neutrophils can
have a protective effect [89, 90] or no effect [91] on viral rep-
lication and pathogenesis. Thus, with different virus strains,
neutrophils can have different functions in the innate immune
response to respiratory infections.

IL-1
IL-1

IL-1

CXC

CXC

CXC

CXC

RCoV

IL-1 receptor

CXC

llec detcefninUllec detcefnI

Figure 2. Model of RCoV-induced expres-
sion of CXC chemokines in primary rat
tAT1 cells. RCoV infection induces ex-
pression of IL-1� and/or IL-1�, which
signal through the IL-1R on uninfected
cells to induce expression of CXC chemo-
kines, likely recruiting neutrophils to the
site of infection.
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Neutrophils also infiltrate tissues infected by coronaviruses,
including SARS-CoV, RCoV, and MHV. A high neutrophil
count in the blood of SARS patients at the time of hospital
admission was associated with a poor prognosis [92, 93]. A
mouse-adapted isolate of SARS-CoV (F-musX-VeroE6) causes
lethal infection in adult, but not young, mice [38]. The dis-
ease severity in adult mice correlates with increased pulmonary
inflammation consisting predominantly of neutrophils, which
are also the predominant cell type detected in the nasal exu-
dates from chickens infected with infectious bronchitis virus
and are believed to contribute to disease pathology [94].
These findings suggest that neutrophils can contribute to im-
mune-mediated pathology in some coronavirus infections. In-
fection of rats with RCoV results in infiltration of neutrophils
to the respiratory tract early after inoculation, followed by the
recruitment of macrophages and lymphocytes [7, 8, 39, 95].
Infection of mice with a neurotropic murine coronavirus,
MHV-JHM, results in infiltration of neutrophils into the brain
by 1 day after inoculation, which then promotes the recruit-
ment of other types of inflammatory cells into the brain, likely
through loss of the blood brain barrier [96]. Despite the pres-
ence of neutrophils in coronavirus-infected tissues, their role
in the clearance and/or immunopathology of coronavirus in-
fections is largely unknown. Future studies on the responses of
neutrophils to RCoV-infected tAT1 cells in vitro may elucidate
the role of neutrophils in the pathogenesis of respiratory coro-
navirus infections.
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