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Abstract: Recent advances in 13C-Metabolic flux analysis (13C-MFA) have increased its 
capability to accurately resolve fluxes using a genome-scale model with narrow confidence 
intervals without pre-judging the activity or inactivity of alternate metabolic pathways. 
However, the necessary precautions, computational challenges, and minimum data 
requirements for successful analysis remain poorly established. This review aims to 
establish the necessary guidelines for performing 13C-MFA at the genome-scale for  
a compartmentalized eukaryotic system such as yeast in terms of model and data 
requirements, while addressing key issues such as statistical analysis and network 
complexity. We describe the various approaches used to simplify the genome-scale model 
in the absence of sufficient experimental flux measurements, the availability and generation 
of reaction atom mapping information, and the experimental flux and metabolite labeling 
distribution measurements to ensure statistical validity of the obtained flux distribution. 
Organism-specific challenges such as the impact of compartmentalization of metabolism, 
variability of biomass composition, and the cell-cycle dependence of metabolism are 
discussed. Identification of errors arising from incorrect gene annotation and suggested 
alternate routes using MFA are also highlighted. 
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1. Introduction 

Metabolism in yeasts is primed for the maintenance of homeostasis while ensuring the ability to 
adapt to changing environmental conditions [1,2]. Unique metabolic characteristics have made yeasts 
key microbial producers in the fermentation industry [3], pharmaceutical industry [4,5], biofuel 
production [6,7], and bioremediation [8–10]. In particular, Saccharomyces cerevisiae has been 
extensively utilized for the production of isoprenoids, polyphenols, and recombinant eukaryotic 
proteins. Central metabolism in yeast is typically quantified using isotope tracer techniques [11], 
whereas peripheral metabolism is analyzed using FBA relying on linear and mixed integer 
programming approaches [12–14]. Available genome-scale metabolic (GSM) models are analyzed 
using metabolite balancing techniques such as FBA and FVA [15,16], and used to guide metabolic 
engineering [17] using strain design frameworks such as OptKnock [18]. GSM-aided metabolic 
engineering has guided the design of strains for improved production of compounds such as ethanol [17], 
succinate [19], vanillin [20], and sesquiterpenes [21]. In addition to this, GSMs for S. cerevisiae have 
been used to identify essential genes and lethal gene pairs [22,23], and as a platform to integrate  
high-throughput omics data [24–26]. On the other hand, isotope tracer techniques such as 13C-metabolic 
flux analysis (13C-MFA) [27] employ stable isotopes of carbon to estimate intracellular fluxes by 
minimizing the variance-weighted sum of square of deviation from experimentally observed labeling 
distribution of intracellular metabolites. The strength of this technique lies in its ability to resolve key 
metabolic branch points such as glycolysis/PPP [28] and fermentation/respiration [29] and reversible 
reactions by exploiting distinct pathway atom transitions. The scale of metabolic models utilized for 
13C-MFA remain skeletal, only encompassing central metabolism due to computational challenges 
arising from structural identifiability of parameters limited by paucity of experimental data.  
Recent efforts have successfully accomplished genome-scale 13C-MFA in E. coli [30], highlighting 
the loss of information associated with the assumptions contained within core MFA models, the role of 
alternate metabolic routes, and a network-wide cofactor balance resolution, not achievable using a core 
model. This is of particular interest in yeast metabolism due to the prominent role of cellular redox 
state in metabolic shifts [31] and periodic metabolic cycles [32]. 

Saccharomyces cerevisiae is the most extensively studied species of yeast using 13C-MFA [33]. 
This technique has been utilized to characterize metabolic responses associated with catabolite 
repression [34] and oxygen availability [29,31], assess cell-cycle dependence of central  
metabolism [32], quantify the effect of gene knockouts [35], explore overproduction capabilities [36] 
and non-native substrate metabolism [37,38]. In all these cases, the mapping model contains lumped 
reactions from glycolysis, pentose phosphate pathway, TCA cycle, glyoxylate shunt, and ethanol 
production with very limited compartmentalization [39]. 13C-MFA has been employed to assess the 
three routes of glycine biosynthesis revealing enhanced glyoxylate shunt activity during growth on 
non-fermentable carbon sources [40,41]. The role of glucose repression during batch cultivation in 
breaking the TCA cycle and causing it to operate as two separate branches was also highlighted in the 
same study. Another study demonstrated flux re-routing towards ethanol production followed by 
drastic reduction in TCA flux and oxidative phosphorylation at oxygen levels less than 2.8% [31].  
In a study using elutriated cells, changes in the glycolysis/PPP split ratio were observed and was 
attributed to the increased demand of reducing equivalents during certain phases of the cell-cycle [42]. 
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Increased PPP flux following malic enzyme knockout has also been confirmed by altered labeling 
distribution in intracellular metabolites and amino acid fragments [35]. More recent studies have 
employed 13C-MFA to highlight a metabolic cycle existing between upper glycolysis and the pentose 
phosphate pathway in a strain engineered to grow on xylose [37]. Most of the MFA studies in yeast are 
aimed at estimating two key split ratios: glycolysis/PPP and respiration/fermentation. In all of these 
studies, the role of redox homeostasis is inferred based on flux re-distribution while no direct evidence 
from flux maps is available as the inclusion of cofactor balances is typically not included in yeast MFA 
models [43]. This is due to uncertainties due to compartmentalization and the presence of isozymes 
with different cofactor requirements [44,45]. Several studies have confirmed that mitochondrial 
kinases, which are beyond the purview of core MFA models, serve as major NADPH sources [46,47], 
thus warranting a re-examination of such hypotheses in the context of genome-scale models. On the 
other hand, the analysis of peripheral metabolism (soluble pool components, fatty acids, and other 
macromolecules) and production capabilities of secondary metabolites [48] is accomplished via FBA 
applied to a GSM model. 13C-MFA using genome-scale metabolic mapping (GSMM) models allows 
the incorporation of all metabolite balances without the pathway activity assumptions to provide  
an unbiased estimate of the flux solution space, which can be used to make high quality inferences 
about the metabolic state of the cell. 

This review is aimed at outlining a workflow, key requirements, challenges, and considerations for 
successfully performing 13C-MFA at the genome-scale in S. cerevisiae. Three major requirements in 
terms of accuracy of model annotation, reaction atom mapping and sufficiency of metabolite labeling 
data are established. The sources of flux resolution loss arising from compartmentalization of metabolism 
and alternate routes, and additional data necessary to completely resolve such flux are discussed. 
Finally, approaches to address the computational challenges arising from increased network complexity 
and variability of the biomass equation arising from accumulation of macromolecules are proposed. 

2. Requirements for Genome-Scale MFA 

The primary requirements for performing MFA at the genome-scale are the availability of a well 
curated GSM model for S. cerevisiae, atom mapping data for every reaction within the GSM model, 
and intracellular metabolite labeling distribution data to resolve all fluxes within the GSM model. 
Despite various modifications to the consensus yeast model [23,49–53], its accuracy in predicting 
single gene lethality effects remains at only 29% for the most recently published Yeast 7 metabolic 
model [49]. This model was further updated to yield the current GSM model of S. cerevisiae 
containing 3494 reactions and 2223 metabolites [22] by adding 21 reactions, correcting 28 GPRs, and 
removing three incorrectly annotated reactions. This increased the specificity [23] of the S. cerevisiae 
GSM model from 28% to 35%. In contrast, the E. coli GSM model (iAF1260) has a specificity of 79% [23]. 
The lower specificity of the current S. cerevisiae model arises from its poorly characterized sterol and 
soluble pool biosynthetic pathways, and differences in biomass composition of mutants and wild-type [22]. 
However, metabolite flows through the well annotated central metabolism yields growth predictions 
for the current model [49,54] with an accuracy similar to that of the current E. coli model [55,56] 
confirming the applicability of 13C-MFA for reliable flux resolution in central metabolism. Reactions 
from the incompletely annotated pathways (fatty acid and cofactor biosynthetic pathways) alter the 
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labeling distributions of measured metabolites by the production of small molecules such as CO2 and 
formate [30], which are subsequently re-incorporated into central metabolism, thereby causing errors 
in fluxes estimated using 13C-MFA. However, these errors are likely to be minimal due to the fact that 
FVA predicts very small flux through these pathways. Despite their minimal impact on central metabolic 
fluxes, the reliability of the estimated flux through these pathways remains low and thus, inferences 
must be treated with caution. Errors in the form of shifted or expanded flux ranges are likely to arise 
from incorrectly predicted gene lethality, 82% of which are associated with growth-coupled reactions 
contained within peripheral pathways. In order to reliably resolve energy metabolism, reconciliation of 
21 prediction inaccuracies within oxidative phosphorylation is necessary. Only afterwards the corrected 
model can be employed for 13C-MFA after simplification by elimination of inactive reactions. 

The reduction of this model can be accomplished by imposing fermentation data as mass balance 
constraints and eliminating all blocked reactions using FVA. A fermentation process involving  
S. cerevisiae is quantified in terms of growth rate, biomass and product (acetate and ethanol) yields on 
glucose. Respiratory quotient (CO2 evolved per mole oxygen consumed) is also routinely measured to 
constrain overall oxygen uptake. This restricts NADH re-oxidation and ATP synthesis via oxidative 
phosphorylation, thereby constraining network-wide redox metabolism. Incorporation of transcriptomic 
and proteomic data using frameworks such as binary ON/OFF type regulation [57] or R-GPR  
switches [58] may further reduce the number of active reactions and even improve gene knock-out 
predictions [59]. For example, the transcriptomic responses to the metabolic shift from respiration to 
fermentation have already been identified [60–62]. However, many reaction combinations forming 
thermodynamically infeasible and futile cycles may remain. It is important to note that the predicted 
labeling patterns of intracellular metabolites are insensitive to such reactions, making them structurally 
unidentifiable parameters. The final modification that needs to be made before the model can be 
utilized for 13C-MFA is the direction selection of reversible reactions whose exchange fluxes cannot 
be resolved by 13C-MFA. This can be accomplished using fermentation data-constrained FVA.  
In such cases either the forward or the reverse reaction can be eliminated from the model without 
impacting the optimal flux distribution and its confidence interval. 

Atom mapping information for central metabolism remains conserved across all species and is 
largely readily available. Atom mapping for peripheral metabolism can be obtained from online 
databases such as MetaCyc [63], KEGG [64] and MetRxn [65]. In addition, S. cerevisiae contains 
yeast-specific pathways such as the α-aminoadipate pathway for lysine biosynthesis for which atom 
mapping has been established [66]. Characterization of promiscuity of enzyme activity has added 
novel metabolic reactions such as the riboneogenesis pathway [67] for which atom mapping remains 
poorly established. For such reactions, mapping algorithms based on graph theory are available [68].  
In particular, the recent CLCA algorithm has been shown to be faster and more accurate in generating 
reaction atom maps in compared to previous algorithms due to the constraints imposed by chemical 
and stereo-chemical properties of reactions [69]. Complex chemical entities and incorrect determination 
of alternate reaction maps necessitate that the generated maps must be manually inspected. The atom 
mapping data generated using such algorithms is usually ordered based on SMILES notation [68] or 
graph invariance numbers [70], which is often very different from IUPAC numbering schemes.  
The limited availability of inter-nomenclature conversion tools further complicates the inspection and 
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correction of data, often requiring additional visual support provided in MetaCyc [68] and MetRxn 
databases [65]. 

Labeling distribution data for MFA is typically obtained using GC-MS [40], LC-MS [36], or  
NMR [71]. The set of measured metabolite fragments predominantly consists of intracellular or 
proteinogenic amino acids. Only 12 amino acids can be analyzed using GC-MS due to contamination 
of data arising from co-elution and multiple overlapping fragments [72]. However, NMR allows for 
the analysis of all amino acids except cysteine, tryptophan, asparagine, and glutamine, which are either 
degraded or converted to other amino acids during sample preparation [73]. LC-MS allows the 
quantification of sugar phosphates from glycolysis and PPP, 3-phosphoglycerate, phosphoenol pyruvate, 
and pyruvate [28] in addition to all the amino acids quantifiable using GC-MS. The labeling 
distribution of carbons in ethanol [35] and the off gas CO2 [74] have also been utilized for 13C-MFA. 
A major challenge with analysis of metabolite labeling data is the existence of cellular compartments, 
which causes the observed labeling pattern to be an average labeling over all intracellular compartment 
pools of that metabolite. A possible way to address this challenge would be to measure  
compartment-specific pool sizes of metabolites. Separation of compartments for pool size 
measurements can be achieved using the recently proposed “lab on a chip” concept [75,76].  
This approach has been demonstrated to be capable of cell lysis and organelle separation using low 
sample volumes. However it is limited by robustness and the inherent trade-off between ease of 
fabrication and organelle separation efficiency. As a result, its applicability has only been demonstrated 
as a “proof of concept”. In addition to this, in vivo NMR spectroscopy can be utilized to obtain 
compartment-specific pool sizes and labeling distributions directly for some metabolites based on 
differences in the microenvironment of various compartments [77]. This technique requires that the 
concentration of the metabolite to be detected must be greater than 2 μmol/g-wet cell weight and that 
the metabolite must have distinct ionization states in different intracellular compartments. These two 
criteria limit the number and nature of metabolites that can be analyzed using this technique. In 
particular, this method works well for amino acids and intermediates of amino acid biosynthesis such 
as homoserine. Additional labeling data obtained by MS measurement of compartment-specific 
peptides can also be utilized [78,79], but it suffers from information loss associated with peptide mass 
de-convolutions [80,81] and the inability to differentiate compartment-specific amino acid pools in rapid 
exchange. Analysis of labeling distribution of other macromolecule precursors such as fatty acids [82] 
and nucleotides [83] can be employed in 13C-MFA. Since a single set of measurements is insufficient 
to resolve all fluxes contained in a metabolic model, the common practice is to integrate multiple 
measurements obtained using various techniques [36] and even data sets obtained using different 
carbon tracers [84] to better resolve of fluxes. Optimal measurement sets identified using an algorithm 
such as OptMeas [85] can be used to guide labeling experiment design. However, it is likely that 
steady-state labeling distributions alone may be insufficient to resolve parallel pathways, in which case 
a non-stationary analysis may be necessary. Contraction of flux ranges obtained using the MFA 
procedure [86] can be achieved by penalizing deviations from experimentally observed extracellular 
flux measurements, which often fully close carbon balances. It may be worthwhile to note that a 
genome-scale model can take advantages of mass balance constraints of non-carbon metabolites as 
well unlike core models. In addition to this, the existence of topological features such as flux coupling 
further decreases the necessary data required for complete resolution of the model. 
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3. Scale-up Considerations and Loss of Resolution 

Inability to completely resolve all fluxes included within the GSM model for S. cerevisiae occurs 
due to lack of probing techniques capable of obtaining compartment-specific labeling distribution of 
metabolites. Instead, existing procedures generate a pool-size-weighted average labeling distribution, 
which must be analyzed using corrections shown in Figure 1. This results in a degeneracy in 
compartment-specific labeling distributions, which is reflected in expanded flux ranges in the vicinity 
of that metabolite. Additional corrections to be considered during MFA of a eukaryote such as yeast 
include dilution by unlabeled CO2 from aeration and pre-existing metabolite pools. Furthermore, 
catabolism of storage compounds also adds unlabeled carbons, which may alter the estimated flux 
distributions if not properly accounted for. The longer doubling time of yeast results in slower biomass 
labeling, which in turn delays the attainment of isotopic steady-state. From the experimental 
perspective, the above described factors contribute to resolution loss, thereby affecting MFA flux 
inference. However, recent efforts have confirmed that loss of resolution can also arise from structural 
identifiability issues existing within the metabolic network [30]. In S. cerevisiae, loss of resolution can 
result from the existence of the methylglyoxal pathway and the γ-aminobutyrate pathway as alternate 
routes to lower glycolysis and TCA cycle, respectively, resulting in loss of resolution between these 
two pathways. A previous study has already attributed local flux range expansion to the presence of 
such alternate pathways in E. coli. In addition to this, intracellular compartmentalization of metabolism 
introduces metabolic cycles such as the malate shuttle [87], which are typically unresolvable using 
metabolite balancing techniques alone. The identification of additional metabolic loops arising from 
compartmentalization and their corresponding resolution criteria requires an in-depth analysis of the 
generated GSM mapping model of S. cerevisiae. 

 

Figure 1. Corrections for metabolite pool dilution from various sources. Rapid exchange 
of intracellular and extracellular CO2 introduces unlabeled carbons into the metabolic 
network. Although its impact decreases with time, it still plays a significant role during 
mid-exponential phase [88]. Dilution of compartmental amino acid pools arises from  
pre-existing pools. The final measured labeling distribution is the average labeling across 
all compartmental pools. 
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Another potential source of error is cell-cycle dependence of metabolic fluxes. It has already been 
demonstrated using synchronous cells that the glycolysis/PPP split ratio changes over a 24-h period [32], 
causing MFA to estimate an average flux distribution over one full cell cycle [89]. Metabolic responses 
to cell cycle phases can only be resolved by experiments with synchronous cells as sufficient tools are 
not available to analyze unsynchronized cells [80]. However, the flux distribution averaged over one 
cell doubling period can be reliably estimated by analyzing labeling distributions from a sufficiently 
large number of unsynchronized cells (~ 107 cells). It must be noted that the reliability of the flux 
estimation procedure depends strongly on the attainment of isotopic steady-state and therefore, at least 
six doublings [45] must be allowed to minimize errors associated with isotopic non-stationary 
sampling. Presently, the only way to resolve cell-cycle dependence of metabolism is via 
synchronization of cells using available techniques [90], although, the use of cell cycle phase-specific 
peptides has been proposed [80]. 

4. Computational Challenges Associated with Model Scale-up 

MFA at the genome-scale is performed by first decomposing the genome-scale atom mapping 
model into subnetworks using an appropriate decomposition algorithm such as the EMU algorithm and 
then estimating fluxes so as to minimize the deviation of predicted metabolite labeling patterns from 
experimental data. The fluxes are estimated by solving a non-linear least squares problem, which is 
then subjected to a goodness-of-fit analysis followed by confidence interval determination [30,86].  
The immediate challenge associated with scale-up to a GSM model is the increase in the number of 
fluxes that need to be estimated resulting in a significant increase in computation time and memory. 
The current metabolic model of S. cerevisiae contain 3494 reactions and 2223 balanced metabolites [22], 
of which 856 are incapable of carrying flux during aerobic growth in minimal media containing 
glucose as the sole carbon source. Elimination of thermodynamically infeasible cycles further reduces 
the number of active reactions to 2227. A similar reduction has been observed with the E. coli model 
in which case the number of active reactions was reduced to 697 from 2383 using a flux variability 
analysis based on growth conditions [30]. In contrast, the corresponding core models for S. cerevisiae 
and E. coli contain 32 [39] and 75 [91] reactions, respectively. The poor scalability of the existing 
methods results in a need for fast and memory efficient algorithms for flux and range estimation using 
a GSM model. The MFA procedure estimates fluxes by solving a non-linear least-squares problem 
which minimizes the deviation of predicted metabolite labeling patterns from experimentally observed 
data [86] using local minimization algorithms. Free fluxes [92] are reported as the solution to the NLP, 
which are related to the fluxes in the metabolic model by means of the null space matrix of the  
S-matrix [93]. Presently, there are no algorithms available to accelerate the flux estimation process 
using a GSM model, although, network topological features such as flux coupling (either to biomass 
production or an extracellular flux measurement) [18] have been exploited to accelerate the determination 
of confidence intervals for all reactions contained within the GSM model. The prediction of metabolite 
labeling patterns for a given flux distribution is facilitated by decomposition of the model based on 
available experimental data using a variety of algorithms [91,92,94], of which, the EMU method 
identifies the largest sub-network necessary to simulate a tracer experiment. Interestingly, the EMU 
model only accounts for a fraction of all reactions contained within the GSM model, as a result of 
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which, the number of free fluxes in the GSM model obtained based on the null space of the S-matrix is 
over-estimated, resulting in a larger non-linear problem with structural identifiability issues [95] and 
lack of statistical significance. These challenges can be addressed by identifying free fluxes 
corresponding to the EMU model, and not the entire metabolic model. For example, in E. coli, this 
transformation reduces the number of free fluxes from 250 to 99, thereby ensuring statistical 
significance of the obtained flux distribution [30]. The direct analysis of the EMU model has been 
proposed [30], however, the computational tools for this purpose are not yet available.  
Another suggested approach is the reduction of the GSM model for MFA to the size of a typical core 
model without any loss of information via assumptions with the aim of greatly reducing computational 
time. Available algorithms such as pFBA can be employed for simplification of complex pathways to 
facilitate model reduction [96]. Reduction in computational time is expected to greatly improve the 
utility of genome-scale MFA and make it a practical tool in the analysis of co-cultures [97] and 
isotopic non-stationary systems [98]. 

Growth-coupling as a means to speed up confidence interval estimation must be used with caution 
in an organism such as S. cerevisiae. While the biomass composition of a prokaryote such as E. coli 
remains relatively constant [99], much variation of macromolecule content associated with changing 
environmental conditions has been reported in S. cerevisiae [100,101]. In particular, a three-fold 
reduction in protein and nucleotide content and a two-fold increase in carbohydrate content in response 
to nitrogen starvation has been demonstrated. Furthermore, it has also been shown that this variability 
in biomass composition also affects the accuracy of prediction of knockouts in the current yeast  
model [22], thus, making it necessary to quantify the biomass composition for every growth condition 
analyzed [102] using available techniques [103]. While such variations directly affect growth-coupled 
reactions, the sensitivity of central metabolism and reactions outside the purview of EMU models to 
such perturbations remains to be seen. 

5. Conclusions 

In this review, we highlighted the various requirements, challenges, and considerations for 
achieving genome-scale flux resolution using 13C-MFA at isotopic and metabolic steady-state.  
While skeletal central metabolic models continue to be the norm, genome-scale MFA holds the 
potential to validate the various hypotheses proposed by previous analyses [29,31,35,37,38]. The 
current genome-scale model of Saccharomyces cerevisiae has a much lower prediction specificity 
compared to E. coli [23,49], which may have an adverse impact on the inference of fluxes through 
poorly annotated pathways. The generation and curation of a genome-scale atom mapping model is 
also necessary for 13C-MFA, for which tools are already available [68,69]. Spectroscopic tools for 
analysis of labeling distributions have already been well established and routinely utilized for  
MFA [28,29,31,104]. This allows for easy integration of complementary labeling data obtained from 
GC-MS, LC-MS and NMR [105] for better flux resolution using MFA. Resolution loss associated with 
using a more complex model remains to be quantified. MFA using a GSM model could indirectly help 
identify incorrectly annotated reactions and help improve the prediction quality of the current yeast 
metabolic model. Successful genome-scale MFA currently requires more efficient algorithms for flux 
estimation owing to the poor scalability of existing methods. In particular, approaches using minimum 
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number of variables and memory, while improving convergence to the true global minimum have to be 
developed. The design of model simplification algorithms holds the promise of greatly reducing 
computational complexity and time requirements, thereby expanding the scope and application of  
13C-MFA. 
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