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Abstract
Background: Since their discovery, around 150 years, eosin-
ophils research has been a field of changing perspective, and 
new directions are emerging since then. Summary: Initially, 
eosinophils were perceived as terminally differentiated cyto-
toxic effector cells. Clearly, eosinophils are capable of play-
ing functions other than immune responses, which is not 
surprising given their intricate interactions with pathogens 
as well as other circulating leukocytes. Attempts to compre-
hend the eosinophil biology and functions have yielded re-
markable insights into their roles in human health and sick-
ness. The use of FDA-approved eosinophils-targeting bio-
logics has provided exciting opportunities to directly explore 
the contributions of eosinophils in disease etiology in hu-
mans. Key Messages: In this review, we will focus on the eo-
sinophils’ lifecycle and discuss the current state of knowl-
edge from mouse models and retrospective human studies 
demonstrating eosinophils’ roles in the pathogenesis of hu-
man diseases such as asthma, cancer, and kidney disorders. 

Despite three recently approved anti-eosinophil agents, a 
number of key questions and challenges remain far from set-
tled, thereby generating opportunity to further explore this 
enigmatic cell. A comprehensive understanding of eosino-
phils biology and function will surely aid in developing im-
proved therapeutic strategies against eosinophils-associat-
ed disorders. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Eosinophils are an important yet less common type of 
white blood cells, making 1–5% of all circulating leuko-
cytes [1–3]. In normal conditions, eosinophil numbers 
range from 0 to 500/µL of blood in humans, which may 
increase drastically (by nearly 20 folds) under certain dis-
ease conditions. Mostly, a routine blood test can deter-
mine the eosinophilic phenotype in asthmatic patients. 
Evolutionary conservation of eosinophils (or eosinophil-
like cells) in vertebrates suggests the vital and favorable 
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role of these cells in health and well-being [1, 4]. For long, 
eosinophils have been believed to favorably impact the 
innate immunity against parasites and inflammatory dis-
eases; however, eosinophils heterogeneity hints their 
varying role in health and disease conditions. Over the 
past decade, their role in homeostasis and immunoregu-
lation has become increasingly popular [2, 5]. Advent of 
advanced pharmacological tools and the availability of 
eosinophil-deficient mice strains made it possible to chal-
lenge and test the role of eosinophils in immune respons-
es [6, 7]. Precision pharmacology provided approved bio-
logical agents to selectively and effectively target eosino-
phils in humans suffering from eosinophil-related 
diseases [8]. Development of such agents is providing in-
triguing insights to understanding the role of eosinophils 
in health and sickness [2, 9]. Novel eosinophil targeting 
therapies have renewed the interest in understanding eo-
sinophil biology. Although preliminary observations sug-
gest the involvement of eosinophils in several fundamen-
tal process such as glucose homeostasis [10] and antibody 
production [9, 11, 12], the precise role remains unclear. 
In this review, we will focus (briefly discuss) on the life-
cycle of eosinophils and review their functions in human 
diseases, while highlighting the recent advances and gaps 
in our understanding of these roles.

Eosinophilopoiesis (Development of Eosinophils)

Eosinophils, like other circulating lymphocytes, devel-
op from the multipotent hematopoietic stem cells (HSCs) 
in bone marrow. HSCs expressing CD34 give rise to 
unique progenitor cells, among which eosinophil-com-
mitted progenitors (EoPs) are terminally differentiated 
into mature eosinophils in the presence of several growth 
factors (such as cytokines) and transcription factors [11]. 
Among several receptors expressed on the surface of 
EoPs, IL-5Rα (high-affinity alpha subunit of IL-5 recep-
tor) is acquired early in the eosinophilopoiesis, and under 
IL-5 influence, these IL-5Rα+ EoPs exclusively differenti-
ate into mature eosinophils [10] and enter the blood 
stream to reach different organs (spleen, thymus, gastro-
intestinal [GI] tract, and lymph nodes). Eosinophils num-
bers have been reported to have age-linked decline [13]. 
During their transit from bone marrow to the tissue via 
bloodstream, eosinophils interact with endothelial cells 
via integrins and selectins; similarly, they also interact 
with epithelial cells at the mucosal surfaces [14, 15]. 
Moreover, eosinophils also interact with other leukocytes 
and regulate their functions (shown in Fig.  1), ranging 

from their role in the T-cell selection [16], to enhancing 
the macrophages’ ability to phagocytose the apoptotic 
thymic cells [17]. When exposed to inflammatory signals, 
eosinophils enter the lungs or other inflamed tissues, 
where they function as main mediators of effector func-
tion and innate immunity, as well as participate in the 
adaptive immune responses. Eosinophils can circulate in 
blood for ∼8–12 h and can survive for further ∼8–12 days 
in the tissues in the absence of any stimulation [18].

Although eosinophils are usually found in blood cir-
culation, tissue-resident eosinophils also exist [15]. Un-
der homeostatic conditions, the eosinophils are particu-
larly enriched in the lamina propria of the GI tract (20–
30% of leukocytes) and are also present in the thymus, 
adipose tissue (≤4% of the stromal/vascular fraction), 
lungs (≤1% of leukocytes), and female reproductive sys-
tem [19]. Presence of tissue-resident eosinophils at mu-
cosal sites (GI tract, stomach, and intestine) allows them 
to participate in homeostatic process and perform tissue 
protective functions. Data have also suggested the posi-
tive role of eosinophils in the adaptive immune response 
via secretion of activation and proliferation-induced li-
gand, which is required for plasma cell (PC) survival. Fur-
ther, Lombardi and colleagues have reviewed the eosino-
phils’ role involved in maintaining the tissue integrity and 
are important in tissue remodeling [20]. In contrast to the 
lung-resident eosinophils, the eosinophils in the thymus 
and GI tract are independent of the tissue microbiota 
[21]. GI-resident eosinophils are maintained throughout 
life, compared to short-lived thymus eosinophils (de-
crease ∼2 weeks post-birth) [19]. Influence of tissue mi-
crobiota on resident eosinophils survival and mainte-
nance implies that eosinophils can respond to and inte-
grate “tissue-tropic” specific signals. Emergence of 
different methods to detect tissue-resident eosinophils is 
setting ways for their use as prognostic markers in some 
malignancies [22, 23].

Eosinophils have been shown to play multiple roles in 
the allergic and inflammatory conditions. Studies have 
explored the different roles of eosinophils in homeostasis 
and in disease conditions. In healthy individuals, under 
homeostatic conditions, the development and differen-
tiation of eosinophils is regulated by a unique interplay of 
several important transcription factors, including GATA-
1 [24], friend of GATA, and PU.1 (a member of ets fam-
ily) [25]. Expression of GATA-1 is regulated by an eosin-
ophil-lineage-specific enhancer in GATA-1 gene itself 
[12]. Transgenic deletion of a high-affinity double GATA 
binding site (a unique palindromic sequence) in the HS-2 
enhancer region of GATA-1 gene resulted in the eosino-
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phil deficiency in mouse (ΔdoubleGATA, an eosinophil-
deficient mouse strain); however, other GATA requiring 
hematopoietic lineages remained unaffected [12]. Not 

only these GATA-1 binding sites autoregulate the eosino-
philic expression of GATA-1 in mice, these sites func-
tionally activate the transcription of eosinophil-specific 

Fig. 1. Map of eosinophils-mediated regulation of other leukocytes 
functions. Besides acting as effector cells in immune responses, 
eosinophils can also modulate the functions of several other leu-
kocytes. Eosinophil-derived CCL6 has been shown to negatively 
regulate the homeostasis of hematopoietic stem cells (HSCs). Eo-
sinophils can secrete GM-CSF, IL-8, and IL-10 to attract neutro-
phils, which are activated by the eosinophil-derived major basic 
protein (MBP), and triggers the release of IL-8 and superoxide, 
increasing their cell surface expression of integrin complement re-
ceptor 3 (CR3). Human neutrophils can be directly activated by 
eosinophil-derived ENA-78/CXCL5. Eosinophils can exhibit cell 
surface expression of MHC-2 and co-stimulatory molecules and 
thus can process antigens and stimulate T-cells proliferation as 
well as antigen-specific cytokine production. Eosinophils can 
maintain homeostasis of intestinal immunity by suppressing Th17 
differentiation via IL-1R release. Moreover, eosinophils-mediated 
antigen priming of B cells triggers antigen-specific IgM produc-
tion; in addition, eosinophils play role in the activation, and hom-
ing, and sustain the long-term survival of plasmablasts in bone 
marrow by secreting IL-6 and APRIL (a proliferation-inducing li-
gand) and are also involved in the maintenance of PCs in GI tract. 

In response to allergen sensitization or challenge, eosinophils can 
also regulate the recruitment of Th2 cells, by secreting CCL22 and 
CCL17. Further, CpG DNA-stimulated eosinophils can release 
EDN (eosinophil-derived neurotoxin) and induce DC maturation. 
In addition, intestinal eosinophils release EPO to activate DCs and 
trigger their migration to draining lymph nodes. Eosinophils can 
also influence macrophages in adipose tissues via IL-13 and IL-14 
secretion and maintain metabolic homeostasis by inhibiting in-
flammation. Also, EPO is positively involved in the regulation of 
macrophage phagocytosis. Moreover, eosinophils-derived eosino-
phil peroxidase (EPX), MBP, eosinophil cationic protein (ECP), 
and IL9, which trigger activation of mast cells. Activated mast cells 
then promote eosinophil activation by releasing histamine, pros-
taglandins (PGD2), chemokines (CCL5), and leukotrienes (LTs), 
which are known mediators of airway inflammation. MBP has also 
been shown to trigger airway inflammation, disturb the GI barrier 
function, and elicit basophil/mast-cell degranulation. Likewise, 
NGF (nerve growth factor) from eosinophils helps prolong sur-
vival of mast cells. Finally, eosinophils are able to extend self-sur-
vival by releasing CCL5 and IL5.
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genes [1], including those encoding the major basic pro-
tein-1, eosinophil peroxidase, eosinophil-derived neuro-
toxin, Charcot-Leyden crystal protein/galcetin-10, the 
eotaxin receptor CCR3, and the IL-5Rα chain [1]. Besides 
GATA-1, downregulation of FOG-1, low levels of PU.1, 
and the temporally regulated expression of C/EDP family 
members (C/EBPα and C/EBPε), the latter of which is 
expressed as a series of transcriptional repressor and ac-
tivator isoforms [26], are needed for the eosinophils’ ter-
minal differentiation. Finally, the baseline development 
and differentiation of eosinophils is regulated in part by 
miRNAs and lncRNAs [27–29], as well as epigenetically 
by the higher-order regulatory mechanisms that are now 
being studied in mice models.

The discovery of critical functions of GATA transcrip-
tion factors and IL-5 along with other key steps in eosin-
ophilopoiesis played instrumental roles in the develop-
ment of several novel animal models (especially mouse) 
to study eosinophil-related disorders. Among these inno-
vative mouse models are the Δdbl-GATA-1 and PHIL 
eosinophil-deficient mice strains [12], recently developed 
major basic protein-1/EPX double-knockout eosinophil-
deficient mice [30], and the Cre-recombinase eosinophil 
transgenic mice [31]. A relatively recent adding to this list 
is the Xbp1-null mouse, in which the deletion of tran-
scription factor Xbp1 in multi-lineage hematopoietic pro-
genitor cells results in lineage-specific late maturation ar-
rest during the development of eosinophils (which could 
be, at least partly, attributed to the dysregulated synthesis 
and assembly of granule proteins) and a complete lack of 
circulating eosinophils [32]. Because early developmental 
stages of eosinophils are not affected and EoPs appear 
normal in the Xbp1-null mice, this model could provide 
intriguing insights into the importance of eosinophil 
granule-protein packaging toward the terminal differen-
tiation of eosinophil, as well as a lineage-specific thera-
peutic target to treat eosinophilic disorders.

Roles of Eosinophils in Health and Diseases

Soon after Ehrlich coined the name for “eosinophils,” 
a relationship between eosinophilia and helminth infec-
tion was reported [33, 34]. This gave rise to the hypoth-
esis that eosinophils had roles in anti-pathogen respons-
es, especially against helminth. As with the advancement 
in health science, the helminth infection became rare to-
day, yet eosinophils persisted. This rose questions about 
the roles of eosinophils in human health and well-being. 
Later on, besides their purported protective role in para-

sitic infections, several studies suggested the involvement 
of eosinophils in several fundamental homeostatic pro-
cesses [4], including their role in the fat and glucose ho-
meostasis, to their roles in tumor surveillance, wound 
healing, and reproductive biology as well as immunoreg-
ulation and in terminal differentiation of PCs to produce 
antibodies against pathogens [4, 6, 35, 36]. Majority of 
these studies employed either transgenic or inducible eo-
sinophil-deficient mice [37]. Most of these ideas, how-
ever, remain to be confirmed in humans. To this end, the 
critical role of mouse eosinophils in the development of 
IgA-producing PCs [38, 39] has been recently challenged 
[40]. Likewise, the controversial role of eosinophils in 
cancers remains unsettled [41]. Besides their proposed fa-
vorable roles under homeostatic conditions, abnormal 
levels of eosinophils in blood or tissues under unfortunate 
circumstances may result in the pathogenesis of several 
diseases in various organs. Multiple disorders have been 
recognized involving blood eosinophilia (eosinophilic 
count >500/µL of blood) [42], abnormal accumulation of 
eosinophils in lungs, liver, kidney, GI tract, and other 
sites. Fortunately, majority of these disorders are rare; 
however, in relatively common conditions such as asth-
ma, and other type-2 diseases, occurrence of eosinophilia 
is a common finding. Despite evidence of their involve-
ment in these conditions, the precise roles of eosinophils 
as trouble makers or simply a bystander, is far from set-
tled. One such example is the unresolved role of eosino-
phils in airway remodeling during asthma, both in hu-
man and mouse studies [37].

The discovery and advances in the development of eo-
sinophil-deficient animal models, both transgenic and 
pharmacological, made it possible to explore several as-
pects of eosinophil biology and functions in vivo, both in 
health and disease conditions. Now, there are several ap-
proved eosinophil-eliminating therapies available against 
human diseases such as asthma, hypereosinophilic syn-
dromes (HESs), and/or EGPA (eosinophilic granuloma-
tosis with polyangiitis) [43] and the others entering in 
clinical trials. Such drugs target IL-5/IL-5R, CCR3, Si-
glec-8, and CRTH2, as well as other less common path-
ways in eosinophilopoiesis, which is not novel [44–46]. 
Therapeutically targeting eosinophils have exposed the 
complex and heterogenous nature of eosinophil-linked 
diseases. However, with the research ongoing and new 
information becoming available, new dimensions of the 
eosinophil’s roles are being revealed, providing new an-
swers. Peripheral blood eosinophilia (PBE) has also been 
observed in several conditions (Table 1). Since the range 
of eosinophil-linked diseases is rather broad [47], we have 
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selectively reviewed the roles of eosinophils in three hu-
man diseases in the sections below, including asthma 
pathogenesis, tumor surveillance, and kidney diseases in 
particular, as well as provided an updated discussion on 
the therapeutic advances in this area.

Defining the Role of Eosinophils in Asthma

Asthma is a chronic inflammatory disorder of lungs, 
which is characterized by the reversible obstruction of 
airways that become inflamed and constricted in response 
to nonspecific spasmogenic stimuli, resulting in symp-
toms such as shortness of breath coupled with wheezing 
and coughing [2]. While asthma pathogenesis can vary 
among asthmatic patients, abnormal accumulation of eo-
sinophils in lungs is generally observed in such patients 
[48, 49]. In response to inflammatory signals in lungs and 
airways during asthma, eosinophils are recruited to these 
sites by the cytokines released from activated Th2 cells 
and chemokines (mostly of eotaxin family) [2]. Recently, 
our group reported the release of eosinophil-derived che-
mokines mCCL6 and hCCL15/23 as well, which interact 
with CCR1 and promote eosinophilic airway inflamma-
tion [50]. Concordantly, OVA-challenged CCL6−/− mice 
showed significant reduction not only in the airway eo-
sinophils but also in the bone marrow eosinophil precur-
sors. Moreover, BX471 (a CCR1 antagonist) showed sim-
ilar effect in OVA-challenged asthma model. Since 
CCL15/23 (human orthologs of CCL6) is significantly el-

evated in the circulating eosinophils in asthmatic pa-
tients, it implies that CCR1 antagonism could be a thera-
peutic strategy against eosinophilic inflammation in asth-
ma.

Eosinophils role in asthma has been characterized as 
destructive, and a plethora of literature, mostly from the 
studies on mouse models of acute or chronic allergic air-
way disease, supports the pathogenic role of eosinophils 
in some forms of asthma [44, 51]. At first, the eosinophil 
role in allergic respiratory inflammation was considered 
correlative, and then Shen et al. [52] showed a causative 
association of eosinophils with allergen-induced pulmo-
nary pathologies. The varying contributions of cytokines 
among asthmatic patients further complicates the asthma 
pathophysiology. Core features of asthma pathophysiol-
ogy include airway hyperresponsiveness (AHR), mucus 
hypersecretion, and tissue damage, as well as airway re-
modeling. And eosinophils play multiple roles in asthma 
pathophysiology (including mucus production, tissue 
damage, air hyperresponsiveness, and airway remodel-
ing). Higher eosinophil count in the peripheral blood and 
bronchoalveolar lavage fluid of asthmatic individuals 
compared to healthy controls was observed long ago and 
has been validated by a relatively recent prospective co-
hort study involving 130,000 asthmatic patients [53]; 
however, noneosinophilic asthma conditions have also 
been recognized [54]. Analysis revealed higher levels of 
Th2 cytokines in the bronchoalveolar lavage fluid of atop-
ic asthma patients [55], including IL-5, that are linked 
with the eosinophilic inflammation. Generally, the in-
crease in eosinophil count (degree of eosinophilia) is as-
sociated with the severity of disease and exacerbation fre-
quency [53].

Eosinophils secrete several cytokines, such as IL-13, 
which cause AHR, as well as enhance the differentiation 
of goblet cells, thereby promoting mucus hypersecretion. 
Shen and colleagues [56] showed that instead of simply 
blocking IL-5 production in the airways, corticosteroids 
(a first-line therapy against eosinophilia) alleviate aller-
gen-induced airway inflammation by suppressing the 
bone marrow eosinophilopoiesis. Moreover, eosinophil 
lipid bodies produce leukotrienes (lipid mediators), 
which also contribute to AHR and in mucus hypersecre-
tion [57]. Chronic inflammation and smooth muscle hy-
pertrophy during asthma may result in reduced lung 
function which could be difficult to reverse; therefore, it 
is important to eliminate eosinophils from the airways to 
control asthma. To this end, our group revealed the anti-
eosinophil role of ABT-199, which is a common inhibitor 
of Bcl-2 (highly expressed on the outer surface of mito-

Table 1. Other causes of PBE

Category Disease

Respiratory •EGPA, allergic bronchopulmonary aspergillosis
•Sarcoidosis

Hematological 
and neoplastic

•Myeloproliferative HES, lymphocytic-variant HES
•Systemic mastocytosis
•Certain leukemias and lymphomas
•Solid tumors – squamous cell carcinomas, 
adenocarcinomas, large cell lung carcinomas, 
transitional cell carcinoma of the bladder

Infective •Parasitic infection, in particular helminths
•Human immunodeficiency virus

Dermatological •Eczema
•Scabies infestation

Iatrogenic •Certain drug hypersensitivity reactions
•Graft versus host disease
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chondria in inflammatory cells) [58]. For targeted deliv-
ery to the bronchial inflammatory cells’ mitochondria, we 
synthesized a pH-sensitive nano-formulated ABT-199, 
which significantly alleviated the airway inflammation by 
inducing eosinophils’ apoptosis along with alleviating 
other symptoms of AHR [59].

Discovery and development of anti-eosinophil thera-
pies in asthma led us to a new era of understanding the 
eosinophils’ role in asthma pathogenesis and exacerba-
tions. At a glance, the eosinophil targeting (anti-eosino-
phil) therapy seems really favorable in treating asthma. 
To this end, Kuang and Bochner [43] have reviewed in 
detail and compared both anti-IL-5 (mepolizumab [60–
63] and reslizumab [64]) and anti-IL-5 receptor alpha 
chain (IL-5RA) (benralizumab [65–68]) phase 3 trials 
that attained FDA approval to treat asthma. In these tri-
als, the most commonly occurring adverse events includ-
ed viral infection of the upper-respiratory tract, naso-
pharyngitis, and the asthma exacerbations, with each 
event covering 7–30% in long-term extension trials [69–
72]. However, the overall, anti-eosinophil therapeutic 
studies on asthma demonstrate that a complete elimina-
tion or reduction in the eosinophil count certainly results 
in improved lung functions and relevant clinical out-
comes in patients with reversible lung dysfunction [43]. 
While some previous studies demonstrating anti-IL-5 
can partially reverse airway remodeling are interesting 
[73], clearly, long-term studies on prolonged eosinophil 
depletion to explore their effect in protecting or main-
taining the lung function are needed [69].

Eosinophils in Cancer Biology

Despite the diverse and complicated etiology of can-
cers, eosinophils are commonly found in human cancer, 
including but not limited to, uterine, cervical, GI, bladder, 
mammary, glioblastoma, pancreatic, and oral cancers [6]. 
Recently, our group provided evidence of the eosinophils’ 
prometastatic activity via CCL6 axis, which was effective-
ly inhibited by targeting CCR1 (receptor of CCL6), thus 
providing a strategy to prevent metastatic diseases [74]. 
Korbecki et al. [75] has reviewed the pro- or anti-cancer-
ous role of chemokine receptors in detail. Although the 
eosinophil differentiation is common occurrence in can-
cers, the precise role of eosinophils in cancer growth and 
progression is complex depending on the tissue type [41, 
76], and our understanding of their contributions to tu-
morigenesis is still evolving.

Eosinophils are recruited at tumor sites by cancer cells 
and the necrosis they induce, along with the other im-
mune cells that secrete eosinophil attractants [77]. It was 
demonstrated that type-2 cytokines, IL-5 in particular, se-
creted by cancer cells [78] attract eosinophils to the tumor 
site. Moreover, eotaxin 1 (CCL11) and GM-CSF also con-
tribute to the recruitment as well as activation of eosino-
phils [79, 80]. Regarding the function of eosinophils in 
tumor growth, researchers have presented conflicting re-
sults. IL-4 cytokine has been reported to play anti-tumor 
function by recruiting eosinophils to the tumor site as well 
as inducing local expression of eotaxin [81, 82]. Recently, 
Hollande et al. [83] demonstrated that eotaxin-1-mediat-
ed eosinophil recruitment contributes to increased tumor 
control. Eotaxin’s role in cancers can be highlighted by 
their expression in the human cancer tissues [84].

Exploring the anti-tumor roles of eosinophils in can-
cers, Lucarini and colleagues demonstrated in mouse 
model of melanoma that eosinophils recruitment is in-
versely related to the tumor growth or even incidence. 
Mechanistically, in addition to the direct cytotoxic effect 
and metastasis inhibition via degranulation [82], they 
promote the recruitment, activation, and maturation of 
other immune cells to enhance tumor rejection [85–88]. 
Scientists have demonstrated that eosinophil-mediated 
recruitment of cytotoxic CD8+ T cells to tumor site was 
essential for controlling tumor in a mouse model of mel-
anoma [87]. A relatively recent study demonstrated that 
anti-tumor role of eosinophils relies on their IFN-γ sig-
naling [89].

Nonetheless, a plethora of studies have shown the pro-
tumor effects of eosinophils. For instance, tumor-pro-
duced TSLP-mediated activation of eosinophils promot-
ed tumor growth in a model of cervical cancer [90]. Con-
cordantly, tumor growth was reduced in an oral 
carcinoma model upon inhibition of eosinophil infiltra-
tion [91, 92]. Mechanistically, eosinophils may recruit 
Tregs [93], release IL-13 to induce immune-suppressive 
phenotype, or induce macrophage polarization [94]. 
Overall, several growth factors are released from eosino-
phils that may directly influence the growth of tumor as 
well as metastasis, tumor-associated angiogenesis, or 
even the remodeling of matrix [76]. It appears that func-
tional plasticity of eosinophils enables them to play op-
posing roles in the tumor pathogenesis [41, 95], and like 
other immune cells, the role eosinophils play in the can-
cers could vary depending on the surrounding environ-
mental stimuli [96, 97].

Recent understanding comes from the tumor biopsies, 
used to analyze the correlation between prognosis and 
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eosinophils’ count in the tumor microenvironment [41, 
77]. For instance, given the advantage of these approach-
es in solid tumors, eosinophilia-linked prognosis can be 
of pro- (e.g., melanoma, breast cancer), anti- (e.g., lung 
cancer, Hodgkin’s lymphoma), or of unclear significance 
(e.g., brain cancer) [1, 95]. The downside of this strategy 
lies in its lack of insight it provides into the precise role of 
eosinophils in tumorigenesis, considering the eosinophil-
ia could merely be result of type 2 inflammation. Further-
more, methodologies to quantitate tissue eosinophilia 
and relevant transcriptomic signatures await the discov-
ery and validation.

Studies conducted on mepolizumab treatment in hy-
pereosinophilia (HE) [67, 74] followed the longest treat-
ment and follow-up [98, 99]. The first study reported 7 
malignancies, among which 2 were T-cell lymphoma and 
angioimmunoblastic T-cell lymphoma [98]. However, 
the study did not contain the control arm, so in compar-
ison to general population, the risk of malignancies was 
increased. The second study was retrospective involving 
HES patients treated with high dose of mepolizumab, 
compared with patients who did not receive mepolizum-
ab treatment for at least 5 years [99]. Results from this 
study revealed that number of malignancies did not differ 
significantly between the groups. However, it is worth 
mentioning that 1 patient developed angioimmunoblas-
tic T-cell leukemia, carrying the similar surface marker 
that was found on the circulating T-cell clones driving the 
HES over these years. Another patient was diagnosed 
with several colonic polyps and later diagnosed with an 
attenuated form of familial adenomatous polyposis that 
leads to a weaker colorectal cancer phenotype.

Future studies might be directed to explore the eosino-
phils’ role in malignancies, while considering the indi-
vidual risks and different cancer types. As suggested by 
Kuang and Bochner [43], one strategy could be “to take a 
malignancy with well-understood natural history, e.g., 
colon cancer, and assess whether an increase or decrease 
is observed in the frequency or types of polyps or lesions 
while screening colonoscopies.” Currently, a rather broad 
range of cancers reported in individuals undergoing anti-
eosinophil therapy is rather broad and may represent 
lymphoproliferative illnesses that could present with eo-
sinophilia and hence be misdiagnosed as HE [100] or the 
elevated risk of hematologic malignancy associated with 
lymphoid HES, such as discovered by our group’s previ-
ous study that the eosinophil-derived CCL6 impairs ho-
meostasis of HSCs [101, 102]. Both findings appear en-
couraging, at least for now, in terms of eosinophils deple-
tion not displaying any consistent or concerning signal 

for an elevated risk of acquiring malignancies. And it is 
important to note that neither eosinophil-deficient mice 
nor eosinophil-deficient humans appear to be at elevated 
risk of cancer development [1].

Eosinophils in Kidney Disorders

In the past decade, research has led us to believe that 
eosinophils are more than just an end point in pathogen 
clearance after an infection [103] or a maladaptive re-
sponse to allergic reactions such as asthma. Despite the 
renal involvement being rare in the HES disorders [104], 
eosinophilia has been commonly reported in many renal 
diseases [105–107]. However, the data linking idiopathic 
HE to renal disorders are rare [108]. A retrospective study 
conducted by Disckin and colleagues on 1,339 patients, 
who were referred to nephrology service after hospitaliza-
tion, showed multiple associations with eosinophilia 
[109]. In a relatively recent case-control study by Tariq et 
al. [110], they demonstrated that peripheral eosinophilia 
is an independent predictor of tissue eosinophilia and 
subsequent progression to end-stage kidney disease. Giv-
en that ∼20–70% of cholesterol crystal embolism patients 
present eosinophilia [111–116], Mochida et al. [117] 
demonstrated in a single-centered cohort study that eo-
sinophilia served as a prognostic factor for renal death 
among cholesterol crystal embolism patients. Besides, 
Gauckler and colleagues [118] also reviewed acute or 
chronic kidney diseases and other special condition as-
sociated with eosinophilia. Studies have shown associa-
tion of PBE with several other renal pathologies in some 
cases. For instance, PBE rarely occurs in the diabetic ne-
phropathy, and might be linked to a drug-induced hyper-
sensitivity reaction [119, 120], or might result from an 
accompanying interstitial nephritis [121]. Moreover, a 
prospective study compared the leukocyte counts among 
US veterans and showed slightly elevated eosinophil 
count in peripheral blood of chronic kidney disease pa-
tients [122]. Among diabetics (type-2 diabetes), eosino-
philia was linked to albuminuria [123]. Further, uremic 
patients had bone marrow eosinophilia without increased 
PBE but higher level of circulating eosinophil cationic 
protein. This abnormal homeostasis pointed toward a 
uremia-induced accelerated turnover of peripheral eosin-
ophils [124, 125].

Hemodialysis-associated eosinophilia (HAE) usually 
occurs among patients on hemodialysis. Components of 
the dialysis circuit often cause allergic reactions which re-
sult in HAE [126]. In the 1970s, dialyzer reactions oc-
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curred quite frequently, with reported PBE prevalence in 
up to 39 percent of all patients on maintenance dialysis 
[127]. A commonly used sterilizing agent at that time, 
ethylene oxide, was linked with allergic reactions and 
HAE [128–130]. Later, the prevalence of hemodialysis-
associated reactions was decreased by gamma irradia-
tions and steam as sterilization techniques, as well as by 
replacing the traditional cuprophane or cellophane mem-
brane with ester-modified cellulose or synthetic polymer-
base membranes [126]. Comparatively, the PBE is usu-
ally mild and episodic in patients on peritoneal dialysis, 
while often being linked to peritoneal fluid eosinophilia 
(PFE) [131]. In comparison to HAE, the occurrence of 
peritoneal dialysis-associated eosinophilia has dimin-
ished over the past decades. Compared to an earlier study 
(reporting PFE prevalence of 60.8%), a more recent pro-
spective study on patients undergoing continuous ambu-
latory peritoneal dialysis reported only a smaller preva-
lence (>10%) of PFE, with no correlation to PBE [132]. 
Usually, following catheter replacement, PBE is detected 
in asymptomatic patients and resolves shortly after; there-
fore, steroid treatment is not suggested. However, in se-
vere cases where it becomes chronic or with permanent 
changes in the function of membrane, the corticosteroid 
therapy has been found beneficial in several cases. More-
over, montelukast (leukotrienes receptor antagonist) has 
shown therapeutic efficacy in one case report and hence 
could be a therapeutic option [133].

Both the tissue eosinophilia and PBE are associated 
with AAR (acute allograft rejection) in the kidney trans-
plant recipients and therefore (tissue eosinophilia in par-
ticular) should be considered as the predictors of poor 
transplant outcomes [134]. Gauckler et al. [118] reviewed 
retrospective studies on patients with AAR. One study 
showed PBE occurrence in 20–36% patients, and a higher 
mean prevalence (1.5–3%) of PBE in AAR was found 
compared to controls (0–0.9%). Severity of the AAR out-
comes was correlated to the PBE percentage in second 
study. However, the absolute eosinophil count was not 
significantly correlated. A more recent study confirmed 
tissue eosinophils with impaired allograft outcome, but 
did not detect PBE, which could be attributed to the high 
daily dose (10 mg) of prednisone among patients under 
study [135]. Former two studies imply that PBE is slight-
ly increased in AAR and associated corticosteroid therapy 
possibly hinders the diagnosis.

Gauckler et al. [118] suggested a three-step strategy in 
the management of patients suffering from unexplained 
PBE and acute kidney injury (refer to Fig. 3 in their re-
view). Briefly, they suggested a primary assessment to ex-

clude any classical eosinophilic disorders, such as aller-
gies, parasitic infections, and hematologic neoplasia 
[118]. Next, a screening for PBE-linked kidney disorders 
along with a comprehensive assessment of renal function 
parameters should be made to narrow down the probable 
kidney disorders. In the absence of any specific urinary 
findings, PBE could be a beneficial diagnostic marker for 
acute interstitial nephritis (AIN). In acute kidney injury 
settings, AIN is discovered in about 5–18% of biopsies, 
with increasing prevalence over the last years [136]. Giv-
en the three-quarter prevalence of drug-induced AIN 
among all the cases, Gauckler et al. recommend a screen-
ing for the recently made changes in the patient’s medica-
tions, particularly focusing on any PPIs, NSAIDs, or an-
tibiotics; however, any drug can induce AIN. Any poten-
tial triggers should be withdrawn promptly and the kidney 
function should be monitored for 3–5 days. Unfortunate 
failure to recover the kidney function during this time 
should be followed by kidney biopsy, and an early steroid 
treatment [137, 138], and a more targeted immunosup-
pressive measure should be taken.

Therapeutic Implication against Eosinophilia and 
Long-Term Safety of Anti-Eosinophil Strategies/
Eosinophil Deficiency

Among the available FDA-approved strategies to tar-
get eosinophils in HES, corticosteroid is the first-line 
strategy; however, its long-term usage has been linked to 
significant toxicity and lack of response in some patients 
[139]. A second-line treatment biologic (interferon-α, hy-
droxyurea, methotrexate, and imatinib) is generally cho-
sen based on the clinical subtype of HES and its linked 
medical problems as well as the cost and preference of 
patient and physician. Owing to the varying response rate 
and associated side effects, discontinuation of second-
line therapy is common. Some of the new and improved 
targeted agents with increased efficacy and lower cytotox-
icity have currently either gained FDA approval (mepoli-
zumab, reslizumab, and benralizumab) or are in clinical 
trials (lirentelimab [AK002], dexpramipexol [AZD1981], 
feviviprant [GW766994], and timapiprant) [1, 43].

Recent clinical trials of mepolizumab led to the FDA 
approval of these agents in eosinophilic asthma and 
EGPA, with specific dosage indications. Shortly after, re-
slizumab and benralizumab were also approved in the 
treatment of eosinophilic asthma [1, 20, 140]. Mechanis-
tically, both (mepolizumab and reslizumab) these agents 
are the monoclonal antibodies and neutralize IL-5, which 
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is a critical cytokine for the eosinophil lifecycle (develop-
ment, activation, and survival). On the other hand, ben-
ralizumab is an “afucosylated monoclonal antibody 
against IL-5RA,” which is expressed on the cell surface of 
eosinophils as well as basophils and mast cells. Once ben-
ralizumab binds to the IL-5RA, it attracts IgG receptors 
on the macrophages and NK cells that can perform anti-
gen-dependent cellular phagocytosis/cytotoxicity, re-
spectively, and eliminate the target cell. In terms of eo-
sinophil depletion efficiency, anti-IL-5 therapy could be 
described as partial or significant depletion strategy com-
pared to anti-IL-5RA therapy which results in near-com-
plete depletion of eosinophils [43, 141].

More recently, our groups’ research presented the 
pathogenic role of CCR1 in eosinophilic asthma and that 
CCR1 antagonist alleviated the eosinophilic inflamma-
tion [50]. Chemokines, predominantly expressed by the 
airway epithelial cells, attract eosinophils to the airways. 
Since the chemokine receptors are G-protein-coupled re-
ceptors, they can block small molecules that can be taken 
orally as tablets, a clear advantage over inhaler-based 
therapies or expensive injectable biologics. Although sev-
eral CCR1 antagonists (including MLN3897, BMS-
817399, CP-481, and CX-354) have been tested and well 
tolerated in the clinical studies, they failed in phase 2 and 
did not progress to clinical development. Clearly, further 
research and improved biologics are required to support 
the CCR1 antagonists in clinical development. Structural 
studies have suggested models to develop biased antago-
nists with expectedly greater efficiency and lesser adverse 
effects. Our groups’ recent research has revealed that “al-
though the native form of CCL15 produces balanced ago-
nism, different N-truncated forms of CCL15 interact with 
CCR1 to produce biased agonism, and shorter forms in-
duce reduced recruitment of β-arrestin and therefore 
greater signaling through Gi” [142]. This implies that 
more effective CCR1 antagonists that can produce biased 
agonisms would have improved efficacy and might be 
possible in coming years.

Safety of anti-eosinophil therapies or eosinophil defi-
ciency is an important area to consider while benefiting 
from these therapeutic options [69, 143]. Prolonged ad-
ministration of anti-eosinophil biologics may have differ-
ent impact on the health. Kuang and Bochner have beau-
tifully reviewed the safety of anti-eosinophil therapies 
and their “immediate and short-term” effects and dis-
cussed their associated risk of infections as well the effect 
of eosinophil deficiency on metabolism, wound healing, 
and pregnancy [43]. Although several mouse models 
have shown the capability of eosinophil-deficient mice to 

survive and reproduce [12, 144], congenital eosinophilic 
deficiency in humans has not been reported. It could be 
attributed to the underreporting due to absence of any 
characteristic clinical phenotype. An analysis at univer-
sity of Pittsburgh, involving 24,300 patients, found no 
case of unexplained eosinophilia. Rare cases of acquired 
deficiency, however, was reported, mostly in the patients 
suffering from Good’s syndrome [145], and did not show 
any characteristic clinical features [146]. Despite the ab-
sence of any problematic safety signals to date, outcomes 
of the long-term eosinophils deficiency remain unidenti-
fied [8]. To this end, along with careful pharmacovigi-
lance, clinical studies should be designed to assess the ef-
fects of eosinophil deficiency on homeostatic pathways. 
Nevertheless, long-term prospective studies on chronic 
depletion of eosinophils will certainly advance our knowl-
edge of eosinophils’ role in health and sickness.

Conclusion and Future Perspective

Since their discovery, the understanding of eosinophil 
biology and their role in health and disease has tremen-
dously evolved. Past decade has seen major developments 
in the eosinophil-targeting therapies, ranging from those 
targeting eosinophils based on their surface-markers to 
growth factors, including those whose mechanism of ac-
tion remains unknown. Of prime interest are the innova-
tive mouse models which lack eosinophils, either congen-
itally or conditionally. These mouse models have im-
proved our understanding of eosinophil functions in 
human diseases, as well as revealed their unexpected roles 
in homeostatic conditions.

Discovery and approval of eosinophil-targeting bio-
logics has not only allowed better management and ther-
apeutic care of patient but also provided insights into dis-
ease pathogeneses and human physiology. In clinic, use 
of three FDA approved anti-eosinophil agents (4) has 
demonstrated efficacy against eosinophil-associated dis-
orders, such as asthma, EGPA, and HES, thereby firmly 
cementing the eosinophils’ pathogenic role in these dis-
eases. Ongoing clinical studies might expand this list in 
future; however, comparison studies are also needed to 
optimize the eosinophil depleting strategies in patients 
suffering from different eosinophil-associated diseases. 
Finally, long-term perspective studies on after eosino-
phils’ depletion with continued monitoring of associated 
safety signals are mandatory and will help advance our 
understanding on eosinophils’ contribution in human 
health and disease.
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