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Background. Symptoms and signs (symptoms in brief) are the essential clinical manifestations for individualized diagnosis and
treatment in traditional Chinese medicine (TCM). To gain insights into the molecular mechanism of symptoms, we develop a
computational approach to identify the candidate genes of symptoms.Methods. This paper presents a network-based approach for
the integrated analysis of multiple phenotype-genotype data sources and the prediction of the prioritizing genes for the associated
symptoms.Themethod first calculates the similarities between symptoms and diseases based on the symptom-disease relationships
retrieved from the PubMed bibliographic database.Then the disease-gene associations and protein-protein interactions are utilized
to construct a phenotype-genotype network. The PRINCE algorithm is finally used to rank the potential genes for the associated
symptoms.Results.The proposedmethod gets reliable gene rank list withAUC (area under curve) 0.616 in classification. Some novel
genes like CALCA, ESR1, and MTHFR were predicted to be associated with headache symptoms, which are not recorded in the
benchmark data set, but have been reported in recent published literatures.Conclusions. Our study demonstrated that by integrating
phenotype-genotype relationships into a complex network framework it provides an effective approach to identify candidate genes
of symptoms.

1. Introduction

Traditional Chinese medicine (TCM) is an essential part
of the healthcare system in China. TCM diagnosis and
treatment are formed based on a comprehensive analysis
of the clinical manifestations obtained through four main
procedures: observation, listening, questioning, and pulse
analysis [1]. Patients with different diseases would often
manifest different symptoms and signs, such as anorexia and
pain, which are the evidences to be considered by physicians
for clinical diagnoses in TCM [2].

Although symptoms play important role in modern bio-
medical diagnosis and disease classification, most modern
biomedical research attempts to gain understanding of the
molecular mechanism of disease phenotypes [3], including
investigating the genotypes of disease/disease categories.
Likewise, in the TCM field, attempt has also been made to
investigate the genotypes or molecular mechanisms of the
diagnosis (i.e., TCM syndrome) [4, 5].

A recent research showed that there exist metabolic
biomarkers of clinical manifestations like symptoms and
syndromes in different types of rheumatoid arthritis (RA)
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diseases [6]. However, there is no clear understanding of
the underlying molecular mechanism of symptoms and the
principle of TCM syndrome in TCM field.

Large-scale diagnosis and phenotype-genotype associa-
tion data, including both published literature and manually
curated databases, have been gathered in the last decades [7].
PubMed,which is a public-available biomedical bibliographic
database, provides a significant resource for studying the
associations between diseases and clinical manifestations [8].
The phenotype-genotype association database likeOMIM [9]
contains high-quality data on relationships between diseases
and genes. In addition, large-scale molecular network data
are available [10–12], such as protein-protein interaction
data, metabolic pathway data, and gene regulation data.
Those provide important resources to explore the molecular
correlations of symptoms.

In this paper, we first extracted the symptom-disease rela-
tionships from PubMed bibliographic records. We used the
cosine similarities to evaluate the association between symp-
toms and diseases. We then integrated the symptom-disease
relationships with disease-gene associations and protein-
protein interactions (PPI) to construct a newdatabase record-
ing the associations between symptoms and genes. We finally
used the PRINCE algorithm to rank the potential genes
of symptoms. We evaluate the results of the prediction by
using manually curated symptom-gene data set and PubMed
literature searching. The evaluation shows that the results
suggest medical meaningful insight.

2. Related Work

Using network-based approaches to gain insights into human
disease has found multiple potential biological and clinical
applications [13]. Further understanding of the effects of cel-
lular interconnectedness on disease progression leads to the
identification of disease biomarker genes and the pathways
causing the associated diseases [14], which, in turn, offer
effective targets for new drug development. Many human
genetic diseases are caused by multiple genes. For genes
that are associated with the same or similar phenotypes, the
genes are likely to be functionally related. Such relations
can be exploited to aid in searching for novel disease genes.
Computational approaches have recently been proposed to
predict associations between genes and diseases [15–17].
Vanunu et al. developed a network-based approach, which is
known as PRINCE algorithm, for predicting causal genes and
protein complexes involved in a disease of interest [18]. The
availability of large-scale data of phenotype-genotype associ-
ations like OMIM, CTD [19], and PharmGKB [20] provides
valuable resources for studying disease-gene associations.

Recently increasing interest on the study of molecular
mechanism of symptoms was found. The underlying molec-
ular mechanisms of several symptoms, such as depression,
pain, and high blood pressure, have been discussed previ-
ously [21–23]. However, no work has been done to investigate
systematically the mechanism of symptoms in the literature.
Until recently, Zhou et al. used large-scale biomedical litera-
ture database to construct a symptom-based human disease
network and investigate the associations between clinical

manifestations of diseases and the underlying molecular
interactions [24]. Their results showed that symptom-based
similarity of diseases correlates strongly with the number
of shared genetic associations and the extent to which their
associated proteins interact. This indicates that symptoms
would have their underlying molecular mechanisms needed
to be further explored. In this paper, we attempt to develop
a new data mining framework to explore the relationships
between symptoms and genes, which may provide scientific
evidences to traditional Chinese medicine in individualized
diagnosis and treatment because symptoms are the main
clinical manifestations captured by TCM physicians for both
diagnosis and treatment.

3. Methods

3.1. Phenotype-Genotype Data Integration. In order to extract
the associations between symptoms and genes, we first built
symptom-disease associations based on a large number of
medical literatures in PubMed [25] and the Medical Subject
Headings (MeSH). Using the cooccurrence of diseases and
symptoms, we construct two vectors 𝑠 and 𝑑 to calculate
the similarity of symptom and disease, in which 𝑑 denotes a
disease vector represented by its cooccurrence symptoms and
𝑠 denotes a symptom vector represented by its cooccurrence
symptoms as well. Suppose we have a dictionary with 𝑛
symptom items, we would have an 𝑛-features vector for
both disease and symptom. Based on the vectors of diseases
and symptoms, we calculate the similarity of symptom and
disease using cosine correlation:

𝑇 (𝑑, 𝑠) =

𝑑 ⋅ 𝑠

‖𝑑‖
2
× ‖𝑠‖
2
. (1)

In this study, we integrated three public available disease-
gene databases (OMIM, CTD, and PharmGKB) and five
protein-protein interactions databases (HPRD, BioGrid,
IntAct, MINT, and DIP) into database (Figure 1). Based
on these data sets a heterogeneous network is constructed
with nodes representing symptoms, diseases, and proteins,
respectively, and the links representing symptom-disease
relationships, disease-gene associations, and protein-protein
interactions.

3.2. Network Inference for Prioritization of Symptom Can-
didate Genes. The network-based disease gene prediction
approach, PRINCE, is used for predicting the genes with
respect to symptom. The initialization of the parameters
in PRINCE algorithm is the symptom-disease correlations,
disease-gene associations, and protein-protein interactions.
It uses a propagation-based algorithm [26] to infer a scoring
function for estimating the strength of an association. A score
is defined for each gene, which reflects the prior information
of the genes on the related disease. The score is then used
in combination with a PPI network for the identification of
proteins involved in the given symptom, as shown in Figure 2.

3.3. Computing the Prioritization Function. Theprioritization
of genes for a query symptom (𝑠) is performed based on
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Figure 1: The integration of phenotype-genotype data. Symptom-disease associations are extracted based on the fact that the symptom and
disease appeared in same bibliographic record (including title, abstract, andMeSH) of PubMed.Three disease gene association databases (i.e.,
OMIM, CTD, and PharmGKB) and five human PPI databases (i.e., HPRD, BioGrid, IntAct, MINT, and DIP) are integarted in this study.The
relationships among symptoms (denoted s1–s4), diseases (denoted d1–d7), and proteins (denoted p1–p14) are then extracted.

the given symptom-disease associations (denoted by A),
disease-gene associations (B), and a protein-protein interac-
tion network𝐺 = (𝑉, 𝐸), where𝑉 is a set of proteins and𝐸 is a
set of interactions between proteins.The goal of the algorithm
is to prioritize all the proteins in 𝑉 with respect to 𝑠.

Let 𝐹 : 𝑉 → R represent a prioritization function; 𝐹
reflects the relevance of V (V ∈ 𝑉) to 𝑠. 𝑌 : 𝑉 → [0, 1] rep-
resent a prior knowledge function, where 1 is assigned to a
protein that is known to be related to the disease with respect
to 𝑠, and 0 otherwise. In other words, 𝑌 is the vector of genes
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Table 1: The result of phenotype-genotype data integration.

Number of symptoms Number of diseases Number of proteins
322 4,219 14,221
Number of symptom-disease associations Number of disease-gene associations Number of protein-protein interactions
125,226 28,336 94,536
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Figure 2: The approach for predicting the genes with respect to
symptom using PRINCE algorithm. For a query symptom S, it has
varying degrees of relationship with other diseases, denoted by d1–
d5 (where the thickness of lines represents degree of correlation
between symptom and diseases). p1–p9 comprise the protein set
of a protein-protein interaction network, where interactions are
denoted by lines with different thickness (confidence). PRINCEuses
an iterative propagation method to assign a score of each protein.
The protein with higher score is considered to be the causal gene
candidate for symptom S.

which are known to be causal gene of diseases with respect to
symptom. To obtain 𝑌, we first analyzed the distribution of
similarity between symptom and disease and found that the
symptom may have high possibility of relating to a disease
when their similarity is above 0.1. Here, we want to choose
the diseases which have high possibility to associate with a
symptom, so that we could get the related genes to build
𝑌. The 10% top ranked disease-symptom relationships with
similarities larger than 0.1 are chosen (in our experiment the
threshold is 0.57). At last, we selected the ten most related
diseases as the diseases corresponding to symptom and its
causal genes to build 𝑌.

By iterative procedures, the information is transferred
between their neighbors, as defined by

𝐹
𝑡
:= 𝛼𝑊


𝐹
𝑡−1
+ (1 − 𝛼) 𝑌, (2)

where 𝐹1 := 𝑌 ⋅𝑊 is a |𝑉|× |𝑉|matrix which is a normalized
form of 𝑊 (described below) and 𝐹 and 𝑌 are viewed here

as vectors of size |𝑉|. The details on the inference of 𝐹 in
PRINCE algorithm could be found [18]. The parameter 𝛼 ∈
(0, 1)weighs the relative importance of these constraints with
respect to one another. Here 𝛼 is set to be 0.9 as suggested
in the PRINCE algorithm that the appropriate values of 𝛼
could be above 0.5 with fast convergence and 0.9 gets the
comparative highest performance [18].

3.4. Evaluation Methods. We use Human Phenotype Ontol-
ogy (HPO) [27] as the benchmark data to evaluate the
results. HPO was manually curated from OMIM records
and constructed with the goal of covering all phenotypic
abnormalities that are commonly encountered in human
monogenic diseases [28]. In this study we use the T184 (Sign
or Symptom) semantic type of UMLS [29] to filter the pheno-
type terms and construct a subset of HPO phenotypes (349
records), after filtering the phenotype-genotype associations
with focusing on symptoms results in 7,262 symptom-gene
records and 1,275 related genes. To deal with the issue of
HPO having different symptom terms from MeSH, we used
UMLS to map HPO symptom terms to MeSH. We finally
obtained 3,418 symptom-gene records with 139 symptoms
and 937 genes, which were used for evaluation. Although
HPO contains high-quality data on phenotype ontology
and genotype-phenotype (mainly on diseases and disorders)
associations, the data is rather incomplete and still lack many
well-known symptom-gene associations. We evaluated the
symptom-gene prediction results by three approaches: (1)
compare our rank list with the genes in HPO and calculated
recall and AUC [30], (2) compare our result with random
case, and (3) evaluate the random chosen results by recent
published literatures.

4. Results

We extracted 125,226 symptom-disease associations with
322 symptoms and 4,219 diseases from PubMed biblio-
graphic records and calculated the cosine similarity between
symptoms and diseases. We constructed 94,536 protein-
protein interactions with 14,221 proteins and integrated
28,336 disease-gene associations (shown in Table 1).

The protein-protein interactions were assigned 1 if they
are correlated. We used these scores to construct the adja-
cency matrix 𝑊. As a result, we obtained totally 4,211,956
symptom-gene associations between 290 symptoms and
14,221 genes with correlation values bigger than zero. The
distribution of correlation between symptoms and genes is
depicted in Figure 3. It is noted that 83% of the correlations
are <0.001, and only about 0.24% are distributed on the
range of bigger than 0.01. We consider that the genes with
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Figure 3: The distribution of correlation between symptom and
genes.
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Figure 4: ROC curve to assess prediction performance.

correlation scores bigger than 0.01 have higher possibility
than most of the genes (i.e., 83% genes). Therefore, these
genes with correlation scores higher than 0.01 are considered
to be the potential genes related to symptoms in this study.

Using theHPObenchmark data, we quantify the accuracy
of the prediction by comparing the predicted gene list of
symptoms with that of the benchmark data. The area under
the ROC curves (AUC) of the proposed method is 0.616
(Figure 4).

In order to evaluate the effectiveness of the gene ranking,
we also compared the result with random prediction case.We
calculate the quantity of genes contained in HPO on the top
of our gene list (𝑃 < 0.05) by comparing with the average
quantity of randomly selected the same number of genes. It
is noted that the number of true positive candidate genes is
10-fold of the random prediction, with the best case being
249-fold of the random prediction. We take symptomMuscle
Cramp as an example to compare our result with random
case. Given 27 genes in HPO, there are 10 genes included
in the top 251 genes (𝑃 < 0.05) of our candidate genes list.
Randomly choosing 251 genes among all the genes (14,221

genes), the possibility of each gene being causing gene is
0.0018986 (27/14,221, we have the hypothesis that the genes
in HPO are all causing genes).The expected number of genes
in HPO is 0.477 (0.0018986∗251); that is, there is on average
0.477 true causing genes in HPO gene list if 251 genes are
randomly selected. So the number of true positive candidate
genes is approximately 20-fold (10/0.477) over the random
prediction.

To demonstrate the effectiveness of this method, we listed
the suggested genes of headache and hemiplegia for instance.
Through the analysis of the distribution of all the scores
of symptom related genes, we found that most scores (95%
in average) are in very low values (i.e., 0.01) with some
exceptions of having much larger scores than these row
values. Table 2 shows the top 46 ranked genes of the 13,966
genes whose correlation scores are greater than 0.01 with
respect to the symptom of headache. We found that TNF and
EDNRA are the causing genes for headache as listed in HPO.
(the Italic font in Table 2, recall is 6.25% of the 32 genes).
Several other genes related to headache in HPO includ-
ing ENG (rank 52th), ACVRL1 (rank 65th), TGFB1 (rank
74th), VHL (rank 269th), COL4A1 (rank 563th), NF2 (rank
1520th), TTR (rank 2270th), MSX2 (rank 2622th), FGFR2
(rank 2636th), PGK1 (rank 2773th), FAM123B (rank 3002th),
SH2B3 (rank 3994th), LRP5 (rank 4286th), NOTCH3 (rank
4386th), SDHB (rank 5618th), and CACNA1A (rank 5855th)
are ranked in the top 50%.

We were aware that the HPO is an incomplete database.
To have a more comprehensive evaluation on the prediction
result, we manually searched the literature in PubMed for the
symptom-gene associations. Among the top 10 genes of our
list, we found that five additional genes CALCA, TGFBR2,
ESR1, KCNK18, and MTHFR (bold font in Table 2) are all
considered to be related to headache in recent published liter-
atures [31–34], although they are not recognized in the HPO
database. As a result, we recognized totally 7 possible causing
genes (CALCA, TGFBR2, TNF, ESR1, EDNRA, KCNK18, and
MTHFR) of headache in the top 10 genes.

The relationship between symptoms and diseases is
complicated. Some symptoms would be more particularly
manifested in several diseases than others. This kind of
clinical association would have its underlying molecular
mechanisms. To explore the interactions of the related genes
of symptoms and diseases in the context of PPI network, we
show a subset of protein-protein interactions with respect
to headache in Figure 5, which is constructed by the genes
connected with 6 diseases related to headache directly. In
Figure 5, genes connected with the same diseases are marked
in the same colors. We found that 15 genes of 32 genes in
HPO (marked in box) in our subnet are the causal genes
of diseases or locate on their shortest path. It is possible
that the causal genes of a disease, which holds the symptom
as particular phenotype, would be the related genes for
symptom (marked in pink box), or the candidate genes for
symptom would possibly locate on the shortest paths of
these genes of the diseases, which have the related symptoms
as general phenotypes (marked in red box). To have more
clear view of the relationships between the candidate genes
of symptoms and the casual genes of the diseases holding
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Table 2: The top 46 rank list of genes predicted with respect to headache.

Number Symbol Correlation Number Symbol Correlation
1 CALCA 0.12828040612489 26 PROC 0.01319213392192
2 F2 0.12201692087326 27 TGFBR1 0.01314425880888
3 TGFBR2 0.12033672267710 28 F2RL3 0.01305473906526
4 TNF 0.11489921901213 29 MRPL28 0.01303120114399
5 ESR1 0.11394663869964 30 RP1-90J20.6 0.01292643824309
6 KCNK18 0.11171558541349 31 NDUFB10 0.01268903908242
7 HTR2A 0.10968115391880 32 GRK6 0.01178478736965
8 EDNRA 0.10800919199361 33 BBS4 0.01167226005919
9 TREX1 0.10295846965404 34 THBD 0.01165325302184
10 MTHFR 0.10278770151638 35 RAMP3 0.01155667772559
11 CALCRL 0.02849332330671 36 HSP90B3P 0.01154759481953
12 RAMP2 0.02819497378019 37 ATP2B4 0.01147183196121
13 RAMP1 0.02816780187933 38 GGCX 0.01145977743914
14 EDN3 0.02015371056218 39 BBS1 0.01135926399377
15 NAA38 0.01897112176120 40 NME3 0.01105404047118
16 GNA11 0.01715273254725 41 F9 0.01092877796805
17 PROZ 0.01677771421601 42 AKR7A2 0.01081719314504
18 NRD1 0.01533854606373 43 TCTEX1D4 0.01078978137476
19 EDN1 0.01522967177446 44 GP5 0.01063032851227
20 NT5DC3 0.01477167543805 45 SERPINA5 0.01041954082501
21 PDIK1L 0.01477167543805 46 PROS1 0.01034320224653
22 PON2 0.01413140552619
23 SLC31A2 0.01392606686194
24 RP11-9H12.2 0.01392606686194
25 ATP2B2 0.01342703847737

Figure 5: The subset of protein-protein interaction with respect to headache.
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Figure 6: The direct relationship among genes connected with diseases relevant to headache symptom and genes in HPO.

the corresponding symptoms as particularmanifestations, we
also constructed a network to show the direct relationships
among the causing genes of diseases related to headache and
the genes in HPO (Figure 6, genes in HPO are marked in
red and genes connected with different diseases are marked
with different colors). The genes, CALCA, TGFBR2, TNF,
ESR1, EDNRA, MTHFR, and so forth, of our top 10 rank list
(mentioned above) aremarkedwith underline.We found that
the candidate genes with high scores of headache symptom
are the causal genes of the diseases, which regard headache
as distinct symptom, such as migraine. It is possible that
the causing genes of diseases with respect to the distinct
symptoms would also be related to their corresponding
symptoms.

Table 3 lists the 83 top ranked genes with respect to
hemiplegia with correlation greater than 0.01. In the causing

genes of hemiplegia in HPO, four genes, namely, COL4A1,
CACNA1A, ATP1A2, and SCN1A, are all found in the top
83 candidate genes (recall is 66.7%) except for the gene
DOCK8 which is ranked 6667th in whole list of 14,221 genes.
However, we found no related publications on indicating the
relationships between the 8 genes (except for the 2 genes
included in HPO) of the top 10 genes and hemiplegia after
manually searching the PubMed literatures.

5. Discussion

As a kind of established clinical manifestations in TCM
clinical, symptoms provide key information for the classi-
fication of the state of human disease and personalized
herb treatment. Symptoms are essentially objective although
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Table 3: The rank of candidate genes with respect to hemiplegia.

Number Gene symbol Correlation Number Gene symbol Correlation
1 HMOX1 0.1332389455434 46 CACNB4 0.0132782710879
2 MMP9 0.1287040668111 47 KLK6 0.0131043482021
3 COL4A1 0.1243046971781 48 CXCL6 0.0130491204825
4 SERPIND1 0.1195621966536 49 CXCL1 0.0130308002686
5 PLAT 0.1133487392385 50 TGFBI 0.0129966667251
6 OFD1 0.1121152624575 51 MMP26 0.0128881745922
7 CDKN1A 0.1107796508251 52 BMP3 0.0128183446929
8 STAT3 0.1106360535810 53 UFD1L 0.0126019281191
9 HDAC3 0.1104973436194 54 KISS1 0.0124874609423
10 CACNA1A 0.1072041148709 55 LCN2 0.0123446041858
11 PGK1 0.1041298451985 56 CXCL5 0.0122282204837
12 TREX1 0.1033025393792 57 HAPLN1 0.0121753323548
13 MTHFR 0.1028354996936 58 CTSG 0.0121249443517
14 ATP1A2 0.1023789578124 59 SERPINI1 0.0120388399124
15 SCN1A 0.1019561553063 60 CABP1 0.0120280578478
16 INPP5E 0.1005153381688 61 CD93 0.0120005018879
17 BLVRB 0.0399295586077 62 COL16A1 0.0119332179348
18 CTA-286B10.6 0.0241333799518 63 PRSS2 0.0119006841698
19 POR 0.0229706000329 64 COL1A1 0.0118755109423
20 COL4A2 0.0203674650216 65 IGHG1 0.0117128695292
21 NAA38 0.0192928165139 66 THBS3 0.0115158569766
22 THBS2 0.0186100092167 67 TFPI 0.0115052630961
23 SAA4 0.0176962732383 68 DCN 0.0112824650786
24 F2 0.0172012123620 69 UBC 0.0110403727935
25 CACNB1 0.0165565034731 70 MMP2 0.0109667286026
26 COL4A4 0.0164204509392 71 COL7A1 0.0109021629899
27 FN1 0.0161953766962 72 LAMA1 0.0106705480427
28 TPT1 0.0159187987328 73 YWHAG 0.0106543097610
29 COL4A3 0.0159043555825 74 IGHA1 0.0104865314738
30 SERPINE2 0.0158807849607 75 RP11-157P1.6 0.0103829026309
31 HABP2 0.0155572576434 76 FAM190B 0.0103401713298
32 COL4A6 0.0154901122445 77 PZP 0.0103015667226
33 COL4A5 0.0153811800445 78 BTC 0.0102664672842
34 SAA2 0.0151416061199 79 NID2 0.0102327719152
35 XXyac-YX65C7 A.1 0.0148026704536 80 TF 0.0101538081025
36 PLG 0.0144321310724 81 RP11-417O11.1 0.0101229813573
37 MATN2 0.0144194792723 82 SERPINA5 0.0101166365026
38 OSM 0.0142128473336 83 NID1 0.0100899609704
39 SNTA1 0.0142116180479
40 RECK 0.0140016715074
41 FBLN2 0.0137418115855
42 COCH 0.0137176242361
43 MMP10 0.0135697895912
44 ELANE 0.0134913849548
45 THBS1 0.0133469773733

the observation and description of symptoms incorporate
subjective factors like human sense and language. Therefore,
investigation of the underlying molecular mechanisms of
symptoms is more feasible than TCM syndrome. Through
integrating disease-symptom associations and multiple

phenotype-genotype data sources, this paper proposes a
network inference method to predict the candidate gene
list for symptoms. Like similar work for disease gene pre-
dictions [35, 36], the rank list of symptom-related candidate
genes can promote the discovery of molecular mechanisms
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of symptoms and thereafter draw the picture of connection
between symptoms and genes with respect to diseases.
Evaluation shows the effectiveness of the method in
identifying genes related to symptoms. Like the predicted
genes of headache, more predicted genes could be further
investigated to understand the medical insights, which
would ultimately support the researchers to confirm the
causal genes of symptoms in laboratory study.

It is necessary to mention that this paper is intended
to introduce the proposed integrated network framework
for predicting the symptom candidate genes. Several aspects
related to the method could be improved in future work.
Firstly, a carefully curated and evaluated database needs to
be established for benchmark data set. Currently, although
HPO provides a start point, more effects are needed to obtain
high quality symptom-gene databases. While this database
is curated, it would offer reliable benchmark platform to
evaluations and possible supervision for machine learning
methods. On the other hand, due to the complicated con-
founders involved in symptom-disease relation detection
from biomedical literatures, a comprehensive database on
disease-symptom relationships would be also very helpful.
Secondly, because the similarities between diseases and
symptoms indicate different degree of correlations, the sim-
ilarities between symptoms and diseases could be systemati-
cally utilized to improve the iterative computing procedures
of random walk related network inference methods. Thirdly,
it is highly valuable to investigate the molecular correlations
between symptoms and diseases to detect the molecular
patterns connecting these two phenotype entities. When
some network characteristics underlying the connection
are discovered, it would give guideline framework for the
development of symptom-gene prediction methods.
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