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Abstract: Personalized diagnosis of chronic disease requires capturing the continual pattern across
the biological sequence. This repeating pattern in medical science is called “Motif”. Motifs are the
short, recurring patterns of biological sequences that are supposed signify some health disorder. They
identify the binding sites for transcription factors that modulate and synchronize the gene expression.
These motifs are important for the analysis and interpretation of various health issues like human
disease, gene function, drug design, patient’s conditions, etc. Searching for these patterns is an
important step in unraveling the mechanisms of gene expression properly diagnose and treat chronic
disease. Thus, motif identification has a vital role in healthcare studies and attracts many researchers.
Numerous approaches have been characterized for the motif discovery process. This article attempts
to review and analyze fifty-four of the most frequently found motif discovery processes/algorithms
from different approaches and summarizes the discussion with their strengths and weaknesses.

Keywords: probabilistic approach; local search approach; evolutionary approach; search tree; suffix
tree; mismatch tree; tries; hashing

1. Introduction

Living organisms are composed of firmly analogous entities where isolation of a single
entity is nonexistent. Organisms are composed of organs, organs of tissues, tissues of cells,
and finally, cells are developed from molecules. Coordination for the amalgamation of
living systems is monitored and achieved through multiple layers of interdependence:
molecules transfer messages from cell to cell and organ to organ. The biological system is
better studied by segment-wise or level wise, starting from the biology of the cell, because
each level into which the biological system is fragmented are interconnected.

Motifs, in computational biology, are short, repeating patterns of biological sequences
that are supposed to carry some biological signification. These motifs are important for the
analysis and interpretation of various biological issues like drug design, human disease,
gene function, etc. Searching for these patterns is essential to unravel the mechanisms of
gene expression. Thus, motif identification possesses one of the vital roles in the studies of
the biological disciplines and attracts many researchers. Numerous approaches have been
characterized by different motif finding problems, and from these, the motif search problem
formulated with substitutions, insertions, and deletions, such as in the planted (l, d) motif
search, is particularly a challenge. The problem of planted (l, d) motif receives t biological
sequences and integers l and d, with 0 ≤ d < l and outputs the length l biological sequences
that occur in every input sequence with maximum d mismatches.

The major objectives of motif search in computational biology are the following:
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1. Management, analysis, and interpretation of huge biological sequences using compu-
tational techniques from computer science and mathematics.

2. Development of innovative approaches and technologies for the diagnosis and un-
derstanding of the genetic diseases, for innovation and design of drugs for their
medication, and for the improvement of healthcare.

This article reviews, analyzes, and compares various algorithms incorporated in the
past decade by the researchers towards the motif search in the biological domain. This
study opens the door for the researchers especially working in the domain of algorithmic-
based solutions for finding motif. This paper is organized into nine sections. The paper
starts by discussing the computational approach to bioinformatics with its related issues in
Sections 2 and 3, respectively. Then, it throws light upon the transcription factor binding
site motif discovery problem in Section 4 and its related stumbling block in the search
process in Section 5. Section 6 classifies the motif finding problem, and Section 7 delineates
the planted (l, d) motif discovery problem briefly. Section 8 is the essence of the paper which
reviews the groundwork done in the domain of the planted (l, d) motif search problem
from every aspect. Finally, the paper concludes in Section 9.

2. Computational Approach to Bioinformatics

The mathematical modelling of computational approaches to bioinformatics uses nu-
merical model predictions, simulation, and analysis. As a result, it produces a voluminous
size of biological data which require a revolutionary technique for analyzing, process-
ing, and archiving [1]. As a consequence, computational molecular biology is treated
as an interdisciplinary domain that builds upon the fields of computer science, biology,
chemistry, physics, mathematics, statistics, and engineering. Our understanding of the
progress of the biological system is based upon its computational approach and technique.
Owing to its requirements and demands, it is requisite to develop methods and models
to understand the complexities of numerous biological networks and biomolecules at the
system level. This approach opens the door to the understanding and examination of the
ever-changing interrelationships among the components, their regulatory patterns, their
impact on each other, and so on. The challenges of computational bioinformatics are to
furnish the approaches to reconstructing the high-throughput divergent data sets into bio-
logical intuitions employing the underlying systems. There exist numerous computational
advances to address biological problems, yet they leave enough room for enhancement.

3. Issues in Bioinformatics Problems

In the domain of bioinformatics, a variety of challenges are present. Among these, the
critical issue lies in the organization and representation of the voluminous biological data
properly through the DNA sequencing method keeping a balance with its continual growth.
One more important issue is to draw out the detail of competent and knowledgeable data
from the huge volume of the repository and thereby facilitate the advance insights into the
life system. However, in bioinformatics, interesting problems and their implementation, such
as motif search, inference of perfect phylogenies, and multiple optimal sequence alignment,
are NP-complete by nature, and also computationally, these are extremely rigorous. Hence,
in bioinformatics, high-performance computing characterizes the demanding challenge for
bioinformatics as well as for the researcher owing to its strong interdisciplinary features from
high-performance computing, theoretical computer science, and biology. These features are
to be blended into an exclusive program where the techniques of concurrent pipelining and
parallel simulation will be used to reduce the computation time.

4. The Transcription Factor Binding Site Motif Discovery Problem

The genetic information of organisms is carried out by the deoxyribonucleic acid chain,
DNA, from the parent cell to its child cell. This genetic information is put into code over
a group of four specific nucleotides, Adenine, Thymine Guanine, and Cytosine, which
can be abbreviated as A, T, G, C, respectively. The short segments present in the long
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DNA sequence are designated as genes whose function is to produce proteins. For living
organisms, proteins are the most important part that plays a vital character in defining
cell structure and cell function. In regards to the impact on gene expression, a molecule
named Transcription Factor (TF) binds a particular section of a gene called Transcription
Factor Binding Site (TFBS). In the process of decoding, the individual Transcription Factor
is capable of binding several TFBS of different genes. These Transcription Factors explicitly
are called the motif.

Motifs in the biological domain are the short and recurring patterns of amino acids or
nucleotides possessing some biological significance. They particularly regulate the functional
and evolutionary relationships. These can start off or shut off the transcription process and are
responsible for regulating gene expression. The motif appears randomly in the gene regulatory
region of either one gene or several genes. It characterizes an important part in the recognition
of genes, getting an insight into their regulation process and leading to several solutions in
computational biology. For instance, motifs are used in PCR primer design, genetic probe
design, potential drug targets and their design, production of diagnostic probes, discovery of
protein families with an unbiased consensus, etc. Additionally, motif search can be used for
discovering regulatory details within biological sequences, discovering binding sites in amino
acids, searching for protein domains, and splicing information [2].

5. Issues with Motif Discovery Problems

In the domain of computational bioinformatics, motif identification is the most crucial
issue. The localization and characterization of motifs are the essential factors in gaining
fundamental knowledge of the structure of a gene and understanding evolutionary as
well as functional relationships, and are proven to be a vital context in the domain of
microenvironment. However, challenging issues make the search process difficult.

The motif search process experiences the following challenges [3]:

1. The search process begins without the knowledge of the location and structure of
the motif.

2. There is no perfect matching between the motif and the real conserved sequence as
the motif is implanted approximately in the biological sequences.

3. The motif length compared to the regulatory regions which hold the motif is very
short, and above that mutation of the true motif, it becomes more complicated.

4. In some cases, motif binding sites and the coding region are found to be far away from
each other, which leads to confusion in deciding the portion of the DNA sequence to
be analyzed.

5. In some cases, the binding sites are present in just the opposite strand from their
operated coding sequence.

6. The problem of motif search is itself the NP-Complete problem and is not solvable in
polynomial-time.

In spite of the challenging aspects of the motif search problem, some of its dimensions
make it worthwhile. In regard to the essence of benefits incurred from the problem of motif
identification, there is scope for considerable research in this domain. Researchers have
enhanced the motif search algorithm and tools very promisingly and progress is cause for
optimim, even though the absence of a specific method which can assemble all relevant
elements is still a matter for consideration. In the past, the motif was determined experi-
mentally through a few motif finding tools such as gel_shift [4], DNA Footprinting [5], and
SELEX [6] which can approximate or determine the weak motif only. However, scrutinizing
the best motif finding tool out of several tools based on their performance comparison has
proven to be a rigorous task, as the design of tools is algorithm-based, and motif models
are manifold and complex. Numerous algorithms have been proposed, implemented and
practiced in the last twenty years, which successfully generated a flood of sequence motifs
by searching for the conserved pattern in functionally related genes. Usually, the choices
made are not particularly stated, resulting in difficulties for the comparison of different
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implementations. Additionally, the implementation that has been employed is generally
not comparable in a conclusive manner which the most promising ones.

Various methodologies defining a range of variation including both the underlying
models together with algorithmic techniques have been proposed. Despite the signifi-
cant effort of the researchers, the search for a potentially weak motif still stands as one
challenging task, on the ground of the exponential time required for its execution or the
large memory requirement. The volume of computationally as well as experimentally
produced motifs and their increasing practicality make the motif search problem one of the
outstanding components of computational biology.

6. Classification of DNA Motif Discovery

Several categories of the motif discovery process have been reported in the literature,
from which primarily the following three variants are taken into account.

1. Simple Motifs Search (SMS);
2. Edited Motif Search (EMS);
3. Planted (l, d)-Motif Search (PMS).

Simple Motifs Search (SMS) [7]: These are the gene structure finding or predicting
algorithms, used to identify the regions of DNA that encode RNA genes as well as the
protein-coding genes and predict the regulatory regions. The simple motif search is the
fundamental trend in sequence analysis operation. The input to the problem is a database
(DB) of t sequences and an integer l, and the aim is to recognize all the length l motifs or
patterns with their number of occurrences in the input sequences, with wild card characters
entry arbitrarily present from 0 to

⌊
l
2

⌋
.

Edited Motif Search (EMS) [7]: These are the sequence alignment algorithms to align
the biological sequences to figure out the similarity regions concerning the structural or
functional or evolutionary relationship among the sequences. The alignment of amino acid
or nucleotide is made in the same fashion as the rows of the matrix, and to align identical
residues, in successive columns, gaps are inserted. The input to the problem is a database
(DB) of t sequences and three integers l, d, and q. The aim is to identify the length l patterns
occurring at least in the q input sequences.

Planted (l, d) Motif Search (PMS) [7]: These are treated as the most complex class
of problems that search the biological sequence patterns capable of regulating the gene
function. The problem takes t sequences, each of size n, and two integers l and d. The
motive is to extract the binding site (planted variant) of motif M from each of the t sequences
without any information of the planted variants’ locations. A variant of M is defined as
a string of length-l, with at most d mismatch from M. (One variation to the planted (l, d)
problem is the Extended (l, d) Motif Problem (EMP) [8] which finds the planted variant of
motif M in at least k input sequences).

7. Planted (l, d) Motif Search and Its Representation

Mathematically, the planted (l, d) motif search is defined as follows: Given are n length,
t sequences defined over a set of alphabet Σ and integers l and d with 0 ≤ d ≤ l ≤ n. The
problem is to identify all length l substrings x which are present in every input string within
Hamming distance d. Each of these x is referred to as an (l, d) motif.

For instance, there are three input strings S1 = TGTGTCA, S2 = GCGTATC, and
S3 = GTTATGG. If the aim is to find out the motif of length 3 with Hamming distance at
most 1 from every string, then TTA is a motif of interest, because the substrings “TCA”,
“GTA”, and “TTA” of the strings S1, S2, S3, respectively, are the substrings with Hamming
distance of at most one from TTA or are the variant (or instance) of the motif TTA.

There are three general methods of representing motifs: matrix representation, string
representation, and regular grammar representation. In the matrix representation, motifs
are expressed by the matrix model as a position-specific weight matrix (PSWM) or position
weight matrices (PWMs) or position-specific scoring matrix (PSSM). The position weight
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matrix (PWM) representation uses a matrix consisting of nucleotide score, indexed by letter
and position. Here, the observed nucleotide of a specific position in the motif is independent
of the observed nucleotide of other positions ([9–11]). The positional weight matrix (PWM)
can be generated by performing the column-wise normalization to effectively yield the
sum of every column value as one. In the string representation, the motif is represented
as the simple string of characters derived from the alphabet set ∑ = {A, G, C, T}, which
is precisely defined by Pevzner and Sze [12]. In the regular grammar [13] representation
models, it is assumed that a set of the rules can be obeyed by all the binding sites; however,
for sequences of non-binding regions, it is not true. In this model, the extraction process of
the optimal grammar out of a confined regular grammar class is exhaustive and leads to
longer execution time.

A Probabilistic Analysis of Motifs

A probabilistic analysis of motifs can be committed as follows. Assume Sk to be
kth and the input sequence for 0 < k ≤ t and u to be an l-mer. Let the locations l, l + 1,
2l + 1, . . . , n−l+1

l l + 1 be starting positions. Each character can be viewed as an independent
Bernoullian trial with the probability of success and failure as 3/4 and 1/4 , respectively,
because the number of alphabets is 4 for DNA sequences. Then, the probability p for
the occurrence of u in Sk by maximum d mismatches starting from an above-specified

position is
( l

d

)(
1
4

)l−d( 3
4
)d

. We hit the motif if the given l-mer is present at most d letters

mismatch. Then, we can calculate the probability of a hit Phit:

Phit =
d

∑
i=0

(
l
d

)(
1
4

)l−i(3
4

)i

This probability does not take into consideration the overlaps l-mers. However, it gives
an idea of the probability of a given pattern S with at most d mismatches at certain locations
of a random sequence. Since in each sequence of length n there are at most (n − l + 1)
possible l-mers, the probability that at least one of them will have up to d mismatches with
the pattern P is P1 = 1− (1− Phit)

(n−l+1). Then, the probability that mutated pattern P
is present in all t sequences is, Pt = Pt

1. Hence, the predicted numbers of (l, d) motifs are

E(l, d) ≈ 4l
(

1− (1− Phit)
n−l+1

)t

8. PMS Algorithms

Based on the fundamental approach of the PMS algorithm, two categories of motif
search processes are available: one as profile-based approach and another as pattern-based
approach. Profile-based approach determines the initial location of the motif occurrences
in the input biological sequence, whereas the pattern-based approach determines the mo-
tif sequence itself. Owing to the importance of obtaining the required search pattern,
the survey made in this paper is confined to only the pattern-based algorithms. The
pattern-based approach initiates the process of local search with certain random candi-
date sequences ([14–17]). A pattern-based or profile-based approach can either be exact
or approximate. The approximate approaches are generally heuristic in nature, and the
guarantee of getting the optimal solution or correct solution is minimal. The exact algo-
rithms run through a thoroughgoing search to ensure the correct solution. For the most
part, PMS approximation algorithms are faster as well as popular compared to the exact
algorithms; however, they are restricted to the scenario where approximate motif finding
is sufficient. According to different researchers, the classification of planted (l, d) -motif
discovery falls into the following categories: local search-based algorithms, probabilistic
algorithms, genetic algorithm of Machine Learning-based approach, and the exact algo-
rithms. Besides these other approaches that are also available in the literature, this paper
attempts to analyze and review a few of the frequently found motif search algorithms under
these categories. Figure 1 depicts the architectural view of the complete classification of the
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search algorithms according to the type of motif search as well as the search mechanism
incorporated.
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A. Probabilistic Algorithms

Probabilistic algorithms for motif search mostly apply the statistical techniques of EM
(Expectation Maximization) or Gibbs sampling or its extensions ([18–20]).

Expectation Maximization (EM) [20] carried out by E-step succeeded by the M-step.
Initially, the E-step evaluates the expected likelihood of the perceived sequence data based
on current settings of the argument, and then, the M-step updates these to optimize the
expected likelihood function. The local optimization approach EM monotonously upgrades
the expected likelihood; however, its sensitiveness to the initial position does not give
any guarantee of convergence into a global optimum. Due to this drawback, the motif
search algorithms which are based on EM proceed mostly from multiple initialization
points to upgrade the likelihood of entering the global optimum. These heterogeneous
initializations also enhance the chances of getting biologically suitable motifs that might
not resemble the global optimum. Initially, the EM method was proposed for protein
sequences, but later it became also applicable to DNA sequences. Assuming that every
sequence consists of at least one common site, this model does not use any alignment of the
sites. The EM algorithm handles the ambiguity of site position by applying the principle of
missing information which allows recognition of the sites as well as the depiction of the
binding motifs.

Gibbs Sampling [18] is an MCMC approach based on EM, and hence, it is applicable
to the motif search problem with insufficient information. The uniqueness of the Gibbs
sampling search procedure is undirected and global over a parameterized distribution from
which it derives the random samples of hidden variants. The procedure is iterated by re-
estimating the parameters based on the arbitrarily generated samples. But this global search
of Gibbs sampling attracts a notable computational cost as it has to go through several
iterations to converge to a computational likelihood surface. The assumption of a single
occurrence of the motif for every sequence gives the method its name of “site sampler”.
Like EM, in the Gibbs sampler, every step’s result depends on the previous step defining
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the “Markov Chain”, and the process of selecting the next step uses random sampling
instead of being deterministic, defining “Monte Carlo” ([21–24]). The procedure extracts
the length l substring from each of the t input sequences that maximize their “similarity”.

MEME [25] algorithm extends the EM algorithm to search the motif in a pool of
unaligned biological sequences where insufficient prior knowledge about the motif is avail-
able. MEME initially gives input to the EM algorithm as the subsequence of the biopolymer
sequence to accelerate the possibility of getting motifs that are globally optimum. It with-
draws, the assumption of the presence of a single mutated motif per sequence. In order to
discover the various distinct motifs in the same set of sequences, it incorporates a process
of probabilistically eliminating the mutated motifs [19]. The algorithm receives a group
of unaligned biological sequences and the motif length, and for each motif, it produces
the motif model with its associated threshold value. This model is then treated as the
optimal classifier for finding the occurrences of each motif in other datasets and returns an
alignment of motif occurrences. In a single database, this process can be able to discover
the distinctive motifs with their number of occurrences.

CONSENSUS [26] finds the functional relationship through the alignment of a group
of related binomial sequences. For dissimilar types of aligned sequences, the score of
relatedness is measured through a specific measurement strategy. Again, in the case of
unknown alignment, it finds the alignment which optimizes the scoring scheme. The
alignment is achieved by considering four components. First, the algorithm reviews the
information content which is a log-likelihood scoring scheme. Second, it describes two
methods for approximating the respective score of information content by a procedure that
merges the technique of numerical calculations with the process of large-deviation statistics.
Third, it describes the process of determining the number of probable alignments from the
overall amount of sequence data. Fourth, it describes a greedy algorithm that identifies
the alignment of functionally related sequences. Finally, it verifies the correctness of the
calculation of the algorithm with an example.

Motif Sampler or Gibbs Sampler [27] enhances the robustness and performance of
Gibbs sampling to noisy datasets. Noise in the data set is due to the presence of sequences
not containing the motif or due to the large size of the input sequence as compared to the
small size of the motif. The behavior of the algorithm in the presence of an increasing
amount of noisy data has extensively been verified. The algorithm initially estimates the
number of instances of the motif with the help of the probabilistic framework. Then, the
author modifies the Gibbs sampling algorithm by introducing the higher-order background
model (a transition matrix) based on an order m Markov process. All these modifications
have been achieved in the iterative procedure of the Gibbs sampling.

BioProspector [28] builds upon the Expectation-Maximization (EM) method, address-
ing the problem of motif discovery for heterogeneous data. It combines two major char-
acteristics of a motif’s consequences into one probabilistic score. The first one is the over
representation which builds upon the number of occurrences of the motif in each input,
and the second one is the cross-species conservation of individual motif occurrences over
the input sequences. This approach enhances the algorithm of Expectation-Maximization
to discover the motif for the given regulatory regions of co-regulated genes. It relates
the species to any user-specified phylogenetic tree and evaluates the motif by relating its
orthologous occurrences with a probabilistic model of evolution. The algorithm is also
capable of managing the cases of incomplete heterogeneous data and thus makes it suitable
for applications that handle incomplete orthology information.

MCEMDA [29] (Monte Carlo EM Motif Discovery Algorithm) is a Monte Carlo cate-
gory of the Expectation-Maximization de novo motif search process that uses the technique
of position weight matrix (PWM). It overcomes the drawback of traditional EM’s of being
confined to a local optimum. In local alignment space, it carries out the stochastic sampling,
which makes the popular Expectation-Maximization (EM) algorithm efficient. MCEMDA
begins from one elementary model and successively applies the Monte Carlo simulation
upgrading the parameters till the convergence. To manage the phase shifts and numerous
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modal issues, it introduces a log-likelihood profiling method. A novel GMA algorithm
(Grouping Motif Alignment) forms the cluster or group of the population by locally align-
ing the candidates to select the strong motifs successfully. MCEMDA shows excellent
capacity when compared to multiple sequence alignment methods. Table 1 summarizes the
probabilistic algorithms.

Table 1. Summary of Motif Discovery Algorithms based on Probabilistic Approach.

S/N Algorithm(s) Commonness Conclusion

1 Expectation Maximization
(EM) and BioProspector

Both algorithms are based on local
optimization approach or can find the

motif which is confined to a
local optimum

BioProspector is better due to its
applicableness to

heterogeneous sequences

2 Gibbs Sampling and Motif
Sampler

Both use Markov Chain Monte Carlo
approach and are time consuming

Motif Sampler is more robust and
applicable to noisy datasets

3 MEME and CONSENSUS
Both the algorithms align a group of
related binomial sequences to extract

the common sequence motif

MEME consumes more space than
CONSENSUS. CONSENSUS is

Applicable to unknown alignment.

4 MCEMDA
This algorithm uses position weight

matrix (PWM) and is the best in
probabilistic approach

Globally optimum

B. Local Search Based Algorithms

The algorithms that incorporate the local search approach might not be able to achieve
the required planted motif always.

TEIRESIAS [13] is a combinatorial, local search algorithm, which is competent to
output each pattern present in the minimum (user-defined) number of sequences. In the
process of searching, it avoids the consideration of the entire search space successfully and
hence is proved to be the efficient one. The algorithm uses regular grammar to represent
motifs and report maximal patterns. It builds upon the approach that if an (l, w) pattern P
is occurring in a minimum of k sequences, then its (l, w) sub-patterns also appear in at most
k sequences, resulting from the largest patterns out of smaller sub-patterns. Through two
phases, TEIRESIAS algorithm works scanning phase and convolution phase. The scanning
phase applies the pruned exhaustive search to obtain all possible (l, w) patterns available
in a minimum of k sequences having specifically l non-wildcards. In the convolution phase,
these fundamental patterns are extended by gluing together. The quasi-linear running
time of the algorithm with respect to the volume of generated output makes the algorithm
output-sensitive in nature.

WINNOWER [12] is a graph-based algorithm, which finds the motif by searching a
clique of the graph. It initially builds a set C of all feasible l-mers from each input sequence.
Then, it constructs a graph where the node corresponds to the l-mer of set C, and edge
corresponds to the connector of two l-mers from different strings if they are within 2d
Hamming distance. In other words, for every motif, a corresponding clique of size t is
available in the graph. This narrows the motif search problem into a clique finding problem
of size t. This algorithm implicitly builds one t partite graph where each partition contains l-
mers or nodes generated from t different sequences. Winnower treats all edges of the graph
uniformly without making any distinction between the edges of high and low similarity,
which requires considerable computational resources and is thus relatively slow.

SP-STAR [12], proposed by Pevzner and Sze, is a memory efficient, faster algorithm than
WINNOWER. SP-STAR uses a sum-of-pairs scoring method D(W, S) = ∑1<i<j<t d

(
Wi, Wj

)
to

effectively make the distinction of signal patterns and random patterns and thus is separating
signals from noise in a better way. This is a heuristic-based approach to find a pattern W that
corresponds to minW∈S D(W, S), using the same parameter as WINNOWER uses in its graph
construction. SP-STAR score the l-mers along with the edges of G, accurately to eliminate
more edges than Winnower does in its iteration.
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cWINNOWER [30], proposed by Liang S, is the enhancement over WINNOWER [12].
Liang S improves performance by adding some consensus constraint on graph designing
with an expectation of deleting the spurious edges in the initial stages. The consensus
constraint contains stringent constraints to claim whether the edge under analysis should
be a part of the t-clique or not. This algorithm identifies the fuzzy motifs of DNA sequences
that are generous in protein-binding signals. Here, signal refers to a short (length l)
nucleotide pattern with maximum d mutations from the motif. The algorithm searches
those signals or motifs whose numerous mutated copies are found in the DNA sequences
with sufficient abundance. The use of consensus constraint enables the detection of many
weak signals.

In the Random Projection [14] algorithm proposed by Buhler and Tompa, the global
search procedure is used to reach a better seed of the input which WINNOWER [17] failed
to solve. It considers motif M as the l-mer and a set C as the group of l-mers from all
given sequences. For some suitable value of k (where k < l − d and also k is not too small
to operate with), it projects the l-mers of set C across the k randomly chosen positions,
resulting in mapping from l-dimensional space into the k-dimensional subspaces. Then, it
treats every k-mer as one integer and hashes them into the corresponding hashed group
out of a total 4k hashed group. If k < l − d, but it is not too small, then one hashed group
can contain several l-mers. The highly enriched hashed group enables the recovering of
motifs. It set the hashed group threshold to s for the elimination of the hashed group
having l-mers less than s. By this process, the k-mers of the motif M and the hashed group
become the same. For t sequences of length n each, the total expected l-mers are t(n − l + 1),
and the possible number of k-mers is 4k. Thus, the expected l-mers per hashed group is
t(n − l + 1)/4k, and the threshold value s is double its magnitude. Iteratively, the random
hashing function h() is applied r times (for some appropriate r value), to ensure the hashed
groups of size more than s are obtained at least once. Then, it collects all those l-mers for
further processing to conclude with the final answer as motif M.

MULTIPROFILER [26] is a concept used by authors Uri Keich and Pavel A. PevZner,
for searching the exact motifs in the DNA sequences. Multiprofiler generalizes the profile-
based approach and enables to the identification of the exact consensus sequences that
missed in the detection process of the standard profiles. This algorithm exceeds other major
algorithms of motif search in many synthetic models.

Algorithm Pattern Branching [17] is built upon the local search techniques. For every
l-mer of t input sequences, this procedure searches the neighbor l-mers and scores them
properly. There are overall t(n − l + 1) l-mers available in t sequences, and against each

l-mer, the total possible neighbors are
(

l
d

)
3d, resulting in a sum of t(n − l + 1)

(
l
d

)
3d

neighbors which is very large. As a solution, for a selected l-mers, the algorithm computes
the best neighbor in an iterative fashion and outputs them as the motif.

Profile Branching [17] is a profile-based version of the pattern branching algorithm.
It searches the motif in the motif profile space, instead of searching in the motif pattern
space. It extends the pattern branching in several ways. It initially converts every sample
string Si to a profile X(Si), and to score those profiles, it generalizes the scoring process. It
also revises the branching method used in pattern branching such that it can be relevant
to profiles and apply it iteratively k times (for suitable k value), on each l-mer of input
sequences. Then, it executes the Expectation-Maximization algorithm to converge at a
top-scoring profile. However, the pattern-based approach outperforms the profile-based
approach by being five times faster on some challenging instances but fails to find the motif
with numerous degenerate positions.

MotifCut [31] uses the graph-theoretic approach to address the problem of motif
search. It initially constructs a graph considering the nodes as the substring edges as the
connector of similar substrings. Then, it finds the maximum density sub-graph (MDS) in
polynomial time. MotifCut exhibits two steps. First, it converts the given sequences to
a group of K-mers, where the overlap and duplicate k-mers are considered as a distinct
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one and build a set of vertices. Second, it connects every pair of vertices through the
edge, assigning one weight value. The weight value signifies the number of mismatches
of the vertices. Then, it finds a higher degree of pairwise similarity between the vertices
to construct the sub-graph representing the set of motifs. An important characteristic of
MotifCut is that the approach is decidedly different from the frequently used PWM models,
giving rise to significantly different motif generation. Table 2 summarizes motif discovery
algorithms based on local search approach.

Table 2. Summary of Motif Discovery Algorithms based on Local Search Approach.

S/N Algorithm(s) Commonness Conclusion

1 WINNOWER, cWINNOWER,
MotifCut All are graph-based algorithms cWINNOWER is relatively fast and

able to identifies the fuzzy motifs

2
MULTIPROFILER, Pattern

Branching and
Profile Branching

Based on profile-based local
search Techniques

Efficiency in finding the motif with
numerous degenerate positions

increases from MULTIPROFILER to
Profile Branching

3 SP-STAR and
Random Projection

Uses Sum-of-pairs scoring method
which is the lobal search procedure

Memory efficient, faster algorithm and
can reach the better seed

4 TEIRESIAS
Uses regular grammar to output each

pattern that is present in the minimum
number of sequences

Quasi-linear running time and
output sensitive

C. Machine Learning Based Algorithms

In the literature, a collection of machine learning-based motif search approaches is
available. Among these, the approach of genetic algorithm has a distinctive strength on
the grounds of its frequent and popular usage [2]. The local search technique of standard
machine learning does not reach the globally optimal solution. In spite of belonging
to the family of the machine learning approach, the genetic algorithm flourishes due to
its advantage in carrying out the global search to reach an acceptable global solution in
genuinely less time.

FMGA [32] approach takes the benefit of the genetic algorithm strategy to output the
better exact motif in less computation time compared to Gibbs Sampler [27] and MEME [25].
Initially, it computes and allocates a fitness score using a defined match function for each
length l substring. Then, for every sequence, it sums up the individual fitness score to
compute the value of Total Fitness Score (TFS). This step continues iteratively until the
solution converges to an optimal state. In the process of convergence to the optimal
solution, the next-generation candidate motifs are collected in two ways: one from the set of
candidates with high TFS values and another through the selection process of the weighted
wheel method. On the selected candidate motifs, it applies the process of the mutation
using the position weight matrix to produce the parental patterns. Subsequently, to extract
the new generation’s optimal child, it applies the crossover process on the parental patterns
with uncertain code penalties. The essence of randomly generating patterns of FMGA
justifies the solution for not reaching to the local minimum.

GAMOT [33] is one of the competent genetic algorithms to generate the optimal
solution in minimum time for short as well as long motifs in a massive motif project. For
the purpose of achieving the linear time and space complexity, GAMOT employs one
additional motif finding step prior to the initiation of the evolutionary process of creating
an extremely fit population. This contemporary motif finding step is the pivotal attribute
of GAMOT that employs the total distance of the respective consensus as the scoring
function. Taking the advantage of the scoring function, it deduces the highly occurring
nucleotide from respective motif locations from the 4l feasible patterns. However, the
similarity between the encountered consensus and the actual motif is very high, and owing
to this reality, GAMOT minimizes the search space from 4l to (n − l)t consensus. As
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the initial step, GAMOT extracts the strings with good fitness and considers those to be
the initial population. Then it applies iteratively the following steps to converge to the
best and satisfactory individuals. It selects two distinct consensuses from the successive
population through the process of linear ranking approach and creates next candidate
consensus strings by employing a two-point crossover. In each iteration, it replaces the
weak individuals with newly created individuals.

GAME [34] software uses the feature of the genetic algorithm framework for the
extraction of the optimal motif. Unlike FMGA, GAME software takes advantage of the
standard operators of the genetic algorithm used for motif search problem in addition to
two extra operators SHIFT and ADJUST. The process of generation of the initial population
happens through the random selection of the candidates which in turn minimizes the
time and space of initial population generation. The simulation made by the software
works with greater flexibility to focus only on the domain of the solution space among
the entire population. The GAME software proves its dominance over BioProspector and
BioProjector [28] and MEME [25] on various real data operations. The enhanced form of
GAME performs better on manifold motif types.

GEMFA [35] is an EM-based genetic algorithm that integrates the heuristic search strat-
egy of the genetic algorithm with the EM motif discovery method. This hybrid algorithm
intelligently conducts the EM algorithm to easily escape from the locally minimal solution.
One section of the GEMFA algorithm operates as a function optimizer by carrying out the
multiple local arrangements as per the individual’s maximum likelihood and reducing
the MDL (minimum distance length) value in every iteration of the genetic approach. The
search process begins by taking a population into account through the multiple local align-
ments of encrypted chromosomes. Then, it moderately evokes the new population through
the conventional process of reproduction by applying the steps of crossover, mutation, and
selection until the optimal or best population is reached.

MOGAMOD [36] is one multi-objective genetic algorithm designed to locate the best
motif existing in the given biological sequence. The backbone of MOGAMOD is the
multi-objective algorithm NSGA-II [37] which is popular for its maximal performance.
This multi-objective approach comprises a class of non-dominant initial population or
solution. From these sets of the initial population, the algorithm extracts the best motif
by revolutionizing the search process as a composition of three diverging optimization
problems as maximization of similarity, enhancing the length of the motif and encouraging
it to become the candidate motif. The performance of this algorithm is eventually improved
by giving flexibility to the selection of a similarity measure in discovering the motif. The
essence of the flexibility that exists in the selection process of the similarity index improves
the performance of the MOGAMOD motif discovery algorithm.

GARPS [38] motif search process amalgamates the stochastic projection policy of
random projection with the global search ability of genetic algorithms. The GARPS initially
exerts the random projection policy on the input sequences by assimilating the position
weight function and one original hash function h(s) formulated from the position weight
function. This process generates the initial population of the worthy candidate with a
dense signal for the iteration of the genetic algorithm. The random projection configures
the k-mers from the respective l-mers by picking the consensus from randomly chosen k
positions and designing a hash function h(s) from this. Based on the outcomes of the hash
function h(s), the l-mers of individual sequences are hashed into the respective buckets.
Then, from the enriched buckets of candidate motifs, the initial population is obtained.
From the computed initial population, the refined candidate motif is obtained through
the process of genetic algorithm iteration. The experimental result and the global search
strategy of GARPS proves its efficiency and robustness as compared to the projection
algorithm. Basically, GARPS is popular to handle the challenging instances and the weak
motif in the group of the genetic algorithm approaches.

The algorithm AMDILM [39] proposes one revolutionary technique of motif discover-
ing which exceeds the GARPS on the simulated sequences as well as on the real biological
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sequence. The algorithm begins with 64 distinct initial candidates of length three each.
Then, iteratively, it imposes three operators of the genetic algorithm, mutation, addition,
and deletion, in a sequence based on TFS values (Total Fitness Score) to increase the length
of the motif to the desired one. For every candidate, the TFS value can be computed
by finding the minimum distance of 64 candidates out of their corresponding maximum
distances from the initial biological sequences. In every epoch of the iteration, the following
three phases of operation take place employing the genetic algorithm operators until the
length of the candidate motif reaches the length l. In the first phase, the mutation operator
chooses one location from individual candidates and randomly replaces the location with
any of the remaining nucleotides. In the second phase, the addition operator randomly
inserts any nucleotide at the beginning and end of the candidate separately to have the two
new candidates of length L+1 and preserves the candidate with more TFS value. Finally, in
the third phase, the deletion operator removes the added nucleotide to carry forward the
next iteration. To escape from falling into the local optimum, the AMDILM process starts
the iteration from a distinct variety of initial populations.

GENMOTIF [40] (genetic algorithm to discover flexible Motif) is one genetic framework-
based algorithm that uses the time series motif discovery method. It can be adjusted to
any situation comfortably like probing in a span of segment length, associating with several
dimensions, applying consistent scaling, and using multiple compatible grouping standards. It
has two instinctive parameters, which once fixed within the limit never affect the performance
of the algorithm. Due to this, GENMOTIF is named the parameter-friendly algorithm.

MHABBO [41] is one improved multi-objective biogeography-based optimization (BBO)
algorithm that uses a differential evolution (DE) advance to discover a motif from DNA
sequences and has gained excellent results. Its fitness function builds upon the information
distribution within the habitat individuals. In each generation, the algorithm iteratively
changes the migration probability and mutation probability based on the relationship among
the average function cost and the fitness function cost. This algorithm redefines the fitness
function based upon the information distribution and the Pareto dominance relation. The
differential evolution (DE) concept combines the algorithm with the modified mutation
procedure. It improves the migration operators that build upon the number of iterations to
satisfy the requirement of motif discovery. Furthermore, immigration rates and emigration
rates based on a cosine curve are modified to generate promising candidate solutions. The
MHABBO algorithm performs better in terms of the quality of the final solutions.

KEGRU [42] model predicts the motif binding sites through Recurrent Neural Network
(RNN) based on a convolutional neural network. It integrates a Bidirectional Gated Recur-
rent Unit network with K-mer embedding activity. In three phases, the model incorporates
the process. First, it divides the DNA sequence into some specific strides and lengths
and then names those as K-mers. Secondly, it uses the word representation algorithm
“word2vec” by pre-training every K-mer to a corresponding word. Finally, it constructs
a deep-learning-based GRU model for feature classification and feature learning. With
experimental evidence, it validates the demand for being an inexpensive and timely motif
extraction model.

DESSO [43] is a DL-based motif finding framework that performs in a better way than
the existing tools beyond the state-of-the-art. It predicts cis-regulatory motif and TFBSs
identification through binomial distribution and deep neural network. The performance
of DESSO expands due to the integration of DNA shape feature detection. In addition to
the prediction, DESSO can identify and analyze the structural binding sites through the
integration of a deep-learning framework with DNA binding complexity. The experimental
results demonstrate the insistence of identifying the mysterious or unknown motifs and
their shape factors which were unidentified earlier.

The Hierarchical LSTM and attention network [44] method extracts the interdepen-
dency between various DNA, RNA, and protein sites. Instead of emphasizing motif
discovery/prediction, it focuses on the region of the DNA or RNA binding sites through
the application of the attention mechanism. On the ground of this, it is able to achieve the
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optimal combination of K-mer stride window, K-mer length, and its sentence length, and
additionally, through hyper-parm experiment, it also reaches the optimization function.
Table 3 summarizes motif discovery algorithms based on the machine learning approach.

Table 3. Summary of Motif Discovery Algorithms based on Machine Learning Approach.

S/N Algorithm(s) Commonness Conclusion

1 FMGA, GAME All are based on Position Weight Matrix
and Random Selection

GAME is better than FMGA but more
complex in its implementation.

2 GEMFA, MOGAMOD, and
MHABBO All are genetic based algorithm approach

All have the common stumbling block of
using more search space. MHABBO is

more efficient in this group.

3 KEGRU and DESSO
Both are based on neural network. It can
predict with shape feature detection of

unknown motif in less time and cost

For some fixed K value, the prediction is
more appropriate

4 GAMOT, GARPS, and
AMDILM

Based on Random Projection Strategy
where it uses total distance as

scoring function

AMDILM is more efficient in this group
as it works with consistency and

high accuracy

5 GENMOTIF and Hierarchical
LSTM

These are time series motif discovery
algorithms. Uses more search space.

Flexible enough to accommodate task
characteristics and all type of motif
specification and reach to achieve

optimization Function

D. Exact Algorithms

The beauty of the PMS exact algorithm lies in the guarantee of furnishing all the real
(l, d) motifs present in the given biological data. However, its NP-complete nature makes
its worst-case execution time to be exponential in some parameters. For some specific
type of problem, a scheme called Polynomial Time Approximation Scheme (PTAS) [45] is
present, which can give polynomial-time execution in its worst case. Most of the known
exact algorithm applies the process of search on a certain standard random sequence of
data in the following fashion: Randomly, it creates twenty input sequences of size 600 each
from the set of alphabets ∑ = {A, T, G, C}. Then, it creates a motif M of size l and inserts
all given sequences with maximum d mutation to assure their existence in all the input
sequences. Based on the values of l and d, explicitly, some occurrences of PMS have been
recognized to be challenging. Any planted (l, d) occurrence is termed as the challenging
instance if the number of predicted motifs occurring by random chance is one or more. For
example, the challenging instances of motifs are (9, 2), (11, 3), (13, 4), (15,5), (17, 6), (19, 7),
(21, 8), (23, 9), (25, 10), and (26, 11). In the literature, it is customary to compare the exact
PMS algorithms performance specifically on these challenging instances.

In the way of obtaining a motif, the exact algorithms are categorized into two ap-
proaches: sample-driven and pattern-driven. The exact algorithm can use the concept of
either pattern-driven or sample-driven or in some cases also a combination of both. From
the given t sequences, the sample-driven approach enumerates all achievable (n − l + 1)t
l-mers to compute the common neighborhood and outputs them as the motif. On the other
hand, the pattern-driven approach enumerates all achievable |∑| ll-mers and outputs the
l-mers that occur with a maximum frequency in all input sequences as the motif. The
space complexity of the sample-driven approach is higher compared to the pattern-driven
approach. The algorithm that uses the combination of approaches initially extracts the
l-mers from multiple input sequences using the sample-driven approach and then generates
the common d-neighborhood using the pattern-driven approach. Nonetheless, most of the
biologists prefer the pattern-driven algorithm due to its lower space complexity.

The data structure or common method adopted by the exact algorithms are enumer-
ation of patterns, search tree, suffix tree, tries, mismatch tree, linked list, graph, hash
function, and so many. In the approach of pattern enumeration, from the input sequence,
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the feasible candidate motifs are enumerated and based on the expediency of being a motif,
the search process is employed. The variation in this group of algorithms is based on the
way of candidate motif enumeration. The group of algorithms in this category is PMS0
to PMS3 [46], PMSi and PMSP [47], Improved Pattern-driven [48], Stemming [49], PMS4
to PMS6 [50–52], PairMotif [53], etc. The approach based on the search tree constructs a
depth d search tree of the candidate l-mer by position-wise changing its character in each
iteration. Then, with the hope of getting the motif, it traverses in a depth-first order of
the search tree by processing each node encountered in the traversal path. The group of
algorithms falling under this approach are PMSprune [54], qPMSprune [55], Pampa [56],
PMS3p [57], provable [58], and qPMS7 [55]. From the special tree-based approach (suffix
tree, tries, and mismatch tree), the suffix tree is popularly used. The suffix tree approach
applies some pre-processing on the input data to organize the data in a better way and to
accelerate the process of motif search. It builds a single suffix tree from the input sequences
by extending the motif length from zero to l. For every individual l-mer, a correspond-
ing unique suffix tree can be built which produces a distinct depth order tree traversal
sequence. From these sets of unique traversal sequences, the search process extracts the
commonly found sequences and produces those as the motif. The group of algorithms
from this category are SPELLER [59], SMILE [60], MITRA [61], CENSUS [62], PSMILE [63],
RISO [64], RISOTTO [65], EXMOTIF [66], SLI-REST [67], etc. In this group, other than
the suffix tree, MITRA [61], and CENSUS [62] uses the data structure mismatch tree and
tries, respectively. The voting [68] algorithm uses the idea of the hashing search process.
Some of the recent algorithms incorporate a combination of pattern-driven and sample-
driven approaches to minimize the computational time. PMS8 [69] and qPMS9 [70] are the
algorithms in this category.

PMS0 [46] algorithm receives t input sequences of n size each and constructs three
groups of l-mers, namely, C, C′, C′′ as follows. It teams up all possible t(n − l + 1) l-mers

to group C, all (n − l + 1) l-mers of first sequence to group C′ and all
(

l
d

)
(|∑| − 1)

neighbors of each l-mer of set C′ to C′′. Then, it evaluates the Hamming distance of l-mer u
and l-mer v for u ∈ C and v ∈ C′′ and produces the l-mer v as the motif those are available
with maximum of d Hamming distance from every input sequence. For |∑| = 4 the time

complexity of PMS0 is O(n2tl
(

l
d

)
3d).

PMS1 [46] algorithm takes the advantage of radix sort to do the sorting of a group of
l-mers. It constructs the set Ci by bringing together all l-mers u of input sequence Si for
1≤ i ≤ t and the set Li by bringing together all neighbors v of l-mer u that are available
maximum by d Hamming distances. The number of l-mers present in set Ci and Li is

t(n − l + 1) and O(n
(

l
d

)
|∑|d), respectively. Then, using the process of radix sort, it sorts

the l-mers of Li and hence removes the redundant neighbors. Then, it successively merges
two consecutive sets, Li + 1 = Li ∪ Li + 1 for 1 ≤ i ≤ t, to figure out the common neighbors.

The improved pattern-driven [48] enhances the basic pattern-driven approach by
giving the assurance of returning the optimal motif. Using the fundamental pattern-
driven approach, it enumerates the possible 4l competent motifs with a computation time
irrespective of the size of the given sequence, and hence, the complexity of the search is
reduced by a factor of n. The search time of this algorithm is O(4llt) for t input sequences.
The process of search is accomplished in two steps. In the first step, on 4l competent
motifs, it applies exhaustive search which simultaneously allows the invariant position and
disallows the mismatches among the residues. In the second step, the attainable motifs go
through the refinement process with a defined flexibility value to obtain the required motif.
This algorithm can handle the motif with higher l and d values, compared to the basic one.

PMSi [47] improves the process of common neighborhood generation of PMS1 [41] by
computing the pairwise relationship among the neighbors instead of handling at a time the
whole mass of competent neighbors. For every single ith sequence (for 1 ≤ i ≤ t), it figures
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out the common neighbors of all the l-mers to a distinct group, namely, Li. Then, for every
pair of sequences S2i−1 and S2i, it intersects its corresponding Li’s in a pairwise manner
as Li = L2i−1 ∩ L2i for i = 1 to t/2. At the end of the process, it intersects the entire
lists of Li

′ s and generates the final motif set M. The pairwise approach of the common
neighbor finding of PMSi substantially reduces the steps (computation time) and mass of
the candidate motif (space requirement) of the original algorithm PMS1 [46].

PMSP [47] deploys the idea of the building neighborhood of every l-mers of the sequence
S1, verifying the feasibility of being the (l, d) motif for each of these neighbors. To achieve this,
it iteratively finds the set of neighborhoods let Z for every l-mer x ∈ S1, and for each l-mer y ∈
Z, it checks whether there exist l-mers in all the t sequences that are within Hamming distance
d from it. Again in [54], the search process is reduced by the key observation that instead of
checking the distance of y from every l-mers of all the sequences, it will be more appropriate
to check only those l-mers that are at maximum 2d distance from x. PMSP uses O(tn2) space
and takes O(tn2 1

wN(l,d)) time, for a number of neighbors of any l-mer x as N(l, d). Although
its worst-case time complexity is higher than the previous algorithms, it can solve challenging
instances (15, 5) and (17, 6) in a reasonable time.

PMSprune [54] goes one step ahead of PMSP by including some original strategy.
Analogous to the PMSP approach, PMSprune generates the neighbors for each l-mer x of
the first sequence and then checks their feasibility of being a valid motif. However, the
neighbor generation approach of PMSprune incorporates the efficient pruning technique
due to which remarkable reduction in the search space happens. Initially, in a branch and
bound method, it brings out the neighbors of l-mer x by constructing a tree T(x) of d height.
Then, through the depth-first order traversal, it traverses the tree T(x), and for every l-mer
y∈T(x), it computes the maximum of minimum distances dH(y, S) by which y exists in
each of the given sequences ‘S’. It outputs the set of y whose dH(y, S) values are maximum
d and prunes the nodes of the tree whose own dH(y, S) value as well as the descendants
dH(y, S) values are higher than d. This state of the art of the pruning process makes this
algorithm distinct from others and also exceptionally reduces space complexity.

Stemming [49] uses a novel process of neighborhood generation which reduces the
computational search space by a factor of the size of the alphabet |∑|. The search process
initiates with the neighborhood generation of the candidates followed by the intersection
of the neighborhoods to form a set C with maximum m mismatches among themselves.
This set C at the outset is considered to be the superset carrying a mix of motifs and some
non-motifs. The set C can be characterized by the wildcards or stems where these wildcards
or stems are expressed through motif length (l), Hamming distance (d) and maximum value
of mismatch (m) only. As the stems are independent of the alphabet size, the computational
search complexity is cut down to only the size of the candidate set C.

PMS4 [50] is a speedup method which can accelerate any PMS search process that
is based on the following two-step practices: step one does the extraction of a group of
candidate motifs from all given sequences, and then, step two verifies the candidate motifs
against the characteristics of motif to obtain the true motif. The PMS4 speeds up any
algorithm when it is fused with the algorithm. First, it does the extraction using the method
of corresponding algorithm in k preferred sequences and labels it as the set C (this set C
undoubtedly possesses all the actual (l, d) motifs with the non-motif candidates). Then, it
verifies the validity of individual candidates of the set C for being the authentic (l, d) motif
in time O(tnl). The selection of the value of k is the key feature causing the speedup, and
its value differs from one fusion to another.

PMS5 [51] is the fusion of the PMS1 [46] and PMSprune [54] algorithms. It expands the
idea of PMS1 by introducing the state of the art of neighbor generation of the PMSprune [54]
algorithm. It receives a set of t input sequences and iteratively searches for (l, d) motifs
from a triplet of sequence S1, S2i, S2i+1 for 1 ≤ i ≤ t−1

2 . From the triplet sequence, it
forms a group of 3 l-mers as (x, y, z) where x ∈l S1, y ∈l S2i, z ∈l S2i+1, and using the
concept of PMSprune, it works out the subroutine Bd(x, y, z) to explore the common
neighborhoods of this l-mer group. The beauty of subroutine Bd(x, y, z) lies in the blending
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of the process of tree construction of PMSprune with the pre-processing step of Integer
Linear Programming (ILP). The pre-processing step of ILP makes the process of extraction
of common neighborhood faster compared to its competitor algorithms. However, the use
of ILP intensifies the space requirement due to the use of a lookup table.

PMS6 [52] is the refinement of the algorithm PMS5. It skillfully reduces the searching
time and space requirement by introducing improved pre-processing steps and one hashing
technique for the lookup table, respectively. The distinctiveness of PMS6 compared to
PMS5 lies in the way of thinking about the l-mer x of sequence S1 in the process of motif
extraction. Here, the searching process is accomplished in two steps. In step one, it forms a
triplet of l-mers (x, y, z) as of PMS5 and five equivalence classes C(n1, . . . , n5) according to
the type of alliance of the nucleotides corresponding to the l-mer locations. Then, it places
the triplet instance into its corresponding class according to the calculated value of n1 to n5.
In step two, the set of motifs among l-mer x ∈ S1, l-mer y ∈ S2i, and l-mer z ∈ S2i+11 for
1 ≤ i ≤ t−1

2 is determined by the principles of equivalence classes.
PairMotif [53] algorithm efficiently decreases the search space of the motif by introduc-

ing the state of the art of pairing concept. Initially, it pairs the candidate l-mers to different
input sequences that differ with higher relative distances and then performs the extraction
of motifs by iteratively performing the following three phases. In the first phase, it carefully
selects the pair of l-mers which are at 2d Hamming distance by selecting one l-mer from
sequence S1 and another from sequence Sr for 2 ≤ r ≤ t. The value of r is enumerated in a
restrictive way. In the second phase, two filtering techniques are applied to the selected
l-mer pairs to cut down the space of l-mers to be processed in the subsequent stages. This
stage directs the candidate l-mers to the next phase; those are either the motif or tend to
be the motif. Finally, the third phase computes the common neighbors among the filtrate
candidates by applying the verification of being motif. The empirical outcome proofs its
stableness and efficiency to handle a variety of length sequences compared to the existing
algorithm of that period.

The algorithms which use a different data structure, such as the suffix tree, or try to or
mismatch the tree are described as follows.

Speller [59] is the first algorithm to introduce the data structure suffix tree to speed
up the motif search process. From the given input sequence, it builds a suffix tree in a
lexicographic manner that yields unique patterns when is traversed from the root node to
any leaf node. On the suffix tree, it applies some pre-processing to handle the gap among
the candidate motifs. Then the selection of motif from the suffix tree is done in two steps:
step one pulls out the duplicate motif, and step two draws out the common motif. Step
one determines the availability of common patterns with some allowable distances in only
q (quorum constraint) sequences from the group of t sequences. Step two determines the
motif by verifying the feasibility of the generic motifs to become the motifs. The space
complexity of SPELLER is O(nt2/w) with time requirement O(nt2N(l, d)) where w is the
length of a word, and N(l, d) stands for the number of neighbors that any l-mer can have.
The introduction of the suffix tree makes easy to organize and pre-process the input data.

The SMILE [60] algorithm represents all suffixes of the given sequences through the
generalized suffix tree in contrast to the classical suffix tree. A distinctive feature of a
generalized suffix tree is to assign the unique termination symbol for an individual input
sequence and use a bit vector per node to specify the sequence name described by the path
from root to leaf. Utilizing the DFS recursive traversal process, the algorithm traverses the
suffix tree T by considering it to be a classical lexicographic suffix tree, intending to depict
every feasible length l motif. Similar to the SPELLER, it applies the initial search phase on
quorum q of input sequences. The algorithm performs the bitwise OR operation on the bit
vectors of the nodes that are encountered in the path of motif search, i.e., the set of nodes
encountered from the root to that node, and depending on the presence of ones in the bit
vectors, it returns the motif. In every step of depth-first traversal, it prunes the set of nodes
that lack the required features or lie below the threshold value and backtracks to survey
the new valid path.
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Algorithm MITRA [61] exploits the pairwise resemblance of l-mers by a combinational
approach of WINNOWER with the theory of the suffix tree-based approach of SMILE. It
constructs a depth l mismatch tree where the degree of each internal node is |∑|, described
by the unique value from ∑. The search space of the motif is split into subspaces at
each level, starting from root to that node corresponding to its unique prefix code. These
subspaces are described by the path label and keep track of the l-mers that is found to be
present by maximum d mismatches. In the process of the traversal, the algorithm spells out
the availability of the patterns P with d Hamming distances in at least the quorum input
sequences or the corresponding input subspaces. In the search process, if any subspaces
are predicted to be weak, then those subspaces starting from the root are pruned and
backtracked to the next path, and if successful, the subspaces are further explored to
be processed down. As the pruning technique MITRA only allows the valid subspaces
concerning to the motif, the depth l mismatch tree at the end reports the valid motif only.

CENSUS [62] parallel algorithm gives a solution to the space component of the gen-
eralized suffix tree by eliminating the node wise bit vector storage concept. It constructs
a t number of tries or a lexicographic tree for t input sequences by briefly encoding the
corresponding l-mers in time O(lnt). Then, in accordance with the reality that multiple
motifs can share a common prefix, this algorithm explores iteratively the potential motif for
only the possible prefixes of the motif to avoid the unnecessary processing. The encoding
process of the tries looks at the count of the availability of motif instead of the size of the
motif. Owing to the one-to-one correspondence between the tries and the input sequence,
CENSUS uses a distributed memory parallelization technique to eliminate any sharing
of information.

PSMILE [63], the parallel SMILE algorithm, efficiently extracts the structured motif
through the use of the fundamental suffix tree. PSMILE parallelizes the technique of SMILE
by the introduction of the P number of same-sized buckets with some allowable errors and
interval of distances in the consecutive buckets. As at the initial stage of the algorithm, the
motif or the content of bucket is untold, the process represents the bucket space through
tries or lexicographic tree. However, for some exceptional instances, the algorithm uses the
suffix tree of given sequences. The optimality of PSMILE is achieved through an additional
balancing technique, i.e., the process of balancing the motif extraction over the existing
processor. In this balance partitioning approach, the search space is equivalently split and
distributed among the individual loosely coupled processing units, and thus, the speed up
is achieved proportional to the number of processing units.

RISO [64] algorithm extends the SMILE algorithm with a twofold process. In the first
step, a suffix tree called the factor tree is built up to a certain level l instead of considering
the complete suffix tree of the entire input sequences. This step specifically reduces the
storage requirement of the SMILE. Then, in the second step, it proposes a data structure
named a bucket link, which caches the situations required to pass from one bucket to
another through the link. The process winds up by thoroughly extracting the subsequent
motifs by partially or temporarily modifying the factor tree. Contrary to SMILE, it saves
time and reduces search space by not using the pruning technique in the second step.

RISOTTO [65] based on the idea of PMS0 upgrades the proficiency of RISO by tying up
the box-link data structure with the suffix tree data structure. For the given sequence S1, it
builds suffix trees describing the d-neighborhood for every l-mer and explores it in a depth-
first way. In the search process, it steps aside the exploration of the new node for which
quorum is satisfied or ultimate length is reached. RISOTTO minimizes the computation
time of RISO by avoiding the conflicting type of candidates through the mechanism of
caching the maximum extensibility factor information. However, the supplementary space
is required for the extensible information storage.

EXMOTIF [66] is the well-known structured motif algorithm which outperforms the
RISO algorithm [64], in approximate matching as well as exact matching. This algorithm
also surpasses the RISOTTO algorithm [65] by presenting the real occurrence of the struc-
tured motif rather than presenting the relative number of occurrences as was suggested
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by RISOTTO. It operates with a variant of the data structure suffix tree consisting of the
inverted index of symbol locations. This contributes to enumerating the structured motif
through positional joins over the index.

SLI-REST [67] (Suffix Link on Internal nodes, a Reverse Engineering Suffix Tree) applies
the reverse engineering method on the suffix tree and links. It takes a tree of all input
sequences, performs some modification to it, and searches for a word whose suffix tree is
isomorphic to the input tree. It constructs the suffix tree in linear time by incorporating
multiple suffix links or edges to all the internal nodes and investigates the suffix tree using
the reverse engineering process through one novel approach. Before employing this novel
approach, the author first presents the required constraint for a candidate tree and then
defines a bicolored directed graph with proper labelling on its edges for every internal node
which is the direct parent of the leaf nodes. Lastly, in the graph, the algorithm explores the
particular feasible Eulerian routes, for which the traversed edge labels meet the required
conditions and outputs a word achieving the given suffix tree and links.

PAMPA [56], a branch and bound algorithm, enhances the PMSprune [54] by efficiently
managing the search space of the motif. The theoretical time and space requirements are
the same as PMSprune, but in the practical aspect, it scales down to half for the challenging
patterns. It describes Bd(x), the d-neighborhood of an l-mer x, by introducing the extended
l-mers with “wildcards” to represent any symbol from the set of alphabets. Thus, the
concept of “distance” dH(., S) of the PMSprune is refined in PAMPA for extended l-mers in
a precise way and is used in the evaluation of dH(., S) for the d-neighborhood Bd(x).

PMS3P [57] efficiently integrates the idea of PMS3 with the feature of PMSprune to
handle the challenging motif instances. Making use of splitting concept of PMS3, it splits
the l-mers of sequence one into two-part u and v of size l1 and l2, respectively. Then
utilizing the tree construction and pruning concept of PMSprune it constructs tree T(u) of
height h for l1-mer u and tree T(v) of height d-h for l2-mer v. Then, individually, it explores
both the trees T(u) and T(v) in a DFS way by applying the pruning technique. In the process
of pruning of trees T(u) and T(v), it extracts the neighbors which are at Hamming distance
h and d-h, respectively, from all input sequences, and saves them in groups Q′ and Q”,
respectively. Then, the corresponding groups Q′ and Q” of every ith input sequence are
merged to attain a list Ai in Appendix A, and finally, all Ai lists are intersected to return
the final planted motif. Though the computation time exceeds the previous algorithm like
PMSP and PMSprune, the proficiency to handle the challenging instances is very high.

The provable [58] algorithm employs the extended closest string (ECS) problem in
place of the simple closest string problem in a recursive manner to extract the planted motif.
Taking advantage of the two closest string algorithms, it extracts the center string from
the group of input strings with some acceptable substitution. The author has proved its
correctness by experimenting with some challenging instances on the real data set. The
beauty of the algorithm lies in its extension version named center substring algorithm,
which is powerful enough to explore all types of solutions to the problem. For every given
sequence, the extended algorithm can find all possible center substrings and can transform
into the fast exact algorithm of planted motif search with some modification.

qPMSprune [55] is the first efficient exact algorithm to solve the planted quorum
(l, d, q) motif for the challenging instances with larger l and d values. A planted quorum
(l, d, q) motif problem searches the length l planted motifs which occur in a minimum of
the q input sequences, with at most d Hamming distance. Among the t input sequences,
the qPMSprune finds one particular sequence Si, where 1 ≤ i ≤ (t − q + 1) and an l-mer u
of Si such that one of its neighbors is M and M is an (l, d, q − 1) planted quorum motif of
the given input sequences excluding Si. The algorithm processes every l-mer of Bd(u) to
identify the (l, d, q − 1) motifs exploiting the pruning method of PMSprune [54].

qPMS7 [55] is a robust algorithm in the group of quorum planted motif discovery
algorithms. It realizes and extends the idea of qPMSprune as follows: for the existence of
two sequences Si and Sj for 1≤ i 6= j≤ t if l-mer u and l-mer v of sequences Si and Sj, respec-
tively, M can be (l, d, q − 2) planted quorum motif contingent upon M ∈ {Bd(u) ∩ Bd(v)}.
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Hence as an extension, it scrutinizes over such (i, j) sequence pairs by constructing one
cyclic graph Gd(u, v) of l-mer u and l-mer v. Then, it explores the Gd(u, v) graph in a
depth-first way to recognize all components of Bd(u) ∩ Bd(v), and those can be (l, d, q − 2)
planted motifs.

Voting [68] algorithm is a two-step algorithm: one is simple voting, and the other is
an improved projected voting algorithm. The observation of a simple voting procedure
states that for motif M and its d-neighborhoods N(M, d), if mi is a neighbor of M, then
definitely M is a member in the group of N(mi, d). Due to this observation, it gives a
thought to the search of motif that any l-mer u present in N(M, d) should award one vote
to other sequences l-mer, and the l-mer which receives a vote from all input sequences
should be declared as the motif. The hash table manages and records the received votes
of each l-mer, and through the tracking process, it outputs the l-mer having votes from
every sequence as the motif. However, the computation time and storage requirement of
the simple voting algorithm increase proportionate to the growth of l and d values. To
overcome this demerit, the author extends the simple voting to the improved projected
voting algorithm by minimizing the set of l-mers through the process of random projection.
Then the author improves further by only considering the selected positions that are
competent to the previously attempted positions.

PMS8 [69] incorporates the novel idea of neighbor generation to introduce the exact
and efficient solution to the planted (l, d) motif search. It reveals the necessary and sufficient
relation among three l-mers to get hold of common neighborhoods. The algorithm executes
two steps: first, it applies the sample-driven approach to generate all sets of l-mers, and
then, it applies the pattern-driven approach to extract the patterns present in all sequences.
In the sample-driven step, it builds a matrix R of size t(n − l + 1) consisting of all l-mers of
all sequences such that the ith row of matrix R corresponds to all l-mers of ith sequences.
Then, it randomly chooses one l-mer u from the first row, pushes it to the stack and pulls
out all l-mers v from the matrix R which are at Hamming distance higher than 2d from u.
It repeats this process for each row with one twist, i.e., it removes the l-mer v not present
in the group of common neighbors. The transition from the sample-driven step to the
pattern-driven step happens when the size of the stack attains the threshold value. In
the pattern-driven step, it generates the common neighborhood of l-mers of the stack and
inspects the existence of any planted (l, d) motif in that group.

qPMS9 [70] is the most efficient and recent quorum parallel planted motif search
algorithm that can improve efficiently the computation time of PMS8 [69]. In several ways,
it extends PMS8, first, by introducing the state of art of string reordering mechanism which
conspicuously improves the performance by employing the novel pruning method on
the motif search space. Additionally, it assists the qPMS challenging instances that were
missed in PMS8. The instances (28, 12) and (30, 13) are first solved by this technique with a
reasonable time in a single-core machine. Table 4 summarizes motif discovery algorithms
based on exact motif finding approach.
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Table 4. Summary of Motif Discovery Algorithms based on Exact Approach.

S/N Algorithm(s) Commonness Conclusion

Based on Enumeration of Patterns

1 PMS0, PMS1, PMSi, PMSP
Algorithms of Rajsekaran and his

groups which are based on building
neighborhoods of a group of l-mers

Implementation is easy to compare
with other methods but takes more

search space

2 Improved Pattern-driven,
Pair-Motif and Stemming

Novel process of neighborhood
generation through the pairing concept.

Pair-Motif is the best algorithm in
this group.

Efficiently decreases the search space of
the previous group.

Stable and efficient to handle a variety
length sequences

3 PMS5 and PMS6
Advance version of the first group of

algorithms which includes hashing and
ILP techniques

Use of ILP intensifies the space but
gives accurate result

4 PMS4 Speedup Method which can actuate
any motif search algorithm

Not self-sufficient. Needs a supportive
algorithm to run

Based on Search Tree Approach

5 PMSprune, qPMSprune,
PMS3p and qPMS7

Incorporate the efficient pruning
technique into the search tree of input

(quorum) sequence

Efficiently handle the challenging
instances with remarkable reduction in
the search space. qPMS7 is the robust

algorithm in this group

6 PAMPA A branch and bound algorithm Efficiently managing the search space
of the motif

7 Provable Employs the extended closest string Solve the challenging instances on the
real data set

8 PMS8 and qPMS9
Based on state of the art of string
reordering mechanism and novel

pruning method

PMS8 is efficient for smaller sequence.
qPMS9 is most efficient and recent

quorum parallel

Based of Different Tree Data Structure and Hashing Search Process

9
SPELLER, SMILE, PSMILE,
RISO, RISOTTO, SLI-REST

and EXMOTIF

All are based on a suffix tree
data structure

Save time and reduce search space. In
this group, EXMOTIF is the finest to

carry out approximate as well as exact
matching

10 MITRA Uses a mismatch tree and the pruning
technique for minimizing the space

Combinatorial approach of Winnower
and Smile

11 CENSUS
Uses tries to give a solution to the space

component of the generalized
suffix tree

Eliminates any sharing of information

12 VOTING Uses easy tracking process of votes
through hashing search process

Computation time and storage
requirement are higher

9. Conclusions

This article concisely discusses some of the planted (l, d) motif search processes with
their comparison studies. The observation states that the success rate of computational mo-
tif search is higher in simple organisms such as yeast as compared to the higher organisms
with more complex genomes. The progress towards achieving the approximate as well
as the exact motif is very encouraging in the present era. Several methods representing a
large variation concerning both the underlying model as well as algorithmic approaches
have been proposed. However, the requirement to have one exclusive method which can
consider all relevant aspects is the main concern. Keeping this in mind, different researchers
proposed and implemented various motif search algorithms and models over a decade.
After all, in different circumstances, the complex and diverse features of a motif are exposed
as a stumbling block in the comparison of different motif discovery approaches and create
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obstacles in the course of best motif identification. It is observed from the research papers
that even though the exact algorithm takes exponential time in its worst case, it does not
necessarily mean that it will never solve the practical instances within a reasonable amount
of time. In some cases, the approximate algorithm is acceptable, but the exact algorithms
are found to be preferable to the biologists due to their capacity to report all the (l, d) motifs.
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Appendix A

Table A1. List of Motif Discovery Algorithms based on Probabilistic Approach.

S/N Algorithm Operating Principle Strengths Weakness Author and
Reference

1 Expectation
Maximization (EM)

Local optimization
approach

Chances of getting
biologically suitable

motifs are higher

Sensitive to the initial
position and do not

give any guarantee to
converge into a global

optimum

Lawrence et al. [20]

2 Gibbs Sampling MCMC approach
Global over a

parameterized
distribution

Suffers a notable
computational cost Lawrence et al. [18]

3 MEME Alignment of motif

Applicable to
unaligned biological

sequences with
insufficient prior

knowledge

More space required Bailey et al. [25]

4 CONSENSUS
Alignment of a group

of related binomial
sequences

Applicable to
unknown alignment

Uses Greedy
algorithm Hertz et al. [26]

5 Motif Sampler or
Gibbs Sampler

Iterative procedure of
the Gibbs sampling

Robust and applicable
to noisy datasets Time consuming Thijs, G. et al. [27]

6 BioProspector
Expectation-

Maximization (EM)
method

Applicable to
heterogeneous data

Confined to a local
optimum Sinha et al. [28]

7 MCEMDA Position weight matrix
(PWM) Globally optimum - Bi CP. et al. [29]
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Table A2. List of Motif Discovery Algorithms based on Local Search Approach.

S/N Algorithm Operating Principle Strengths Weakness Author and
Reference

1 TEIRESIAS Uses regular grammar
Output each pattern that
present in the minimum

number of sequences

Quasi-linear running
time and output

sensitive
Rigoutsos et al. [13]

2 WINNOWER Graph-based
algorithm

Convert motif search to a
clique finding problem

Requires considerable
computational

resources and is thus
relatively slow

Pevzner et al. [12]

3 SP-STAR Sum-of-pairs scoring
method

Memory efficient,
faster algorithm

Heuristic-based
approach Pevzner et al. [12]

4 cWINNOWER
Uses consensus

constraint on graph
designing

Identifies the fuzzy motifs More space
requirement Liang et al. [30]

5 Random
Projection

Global search
procedure Reach the better seed - Buhler et al. [14]

6 MULTIPROFILER Profile-based approach Better for the
synthetic models - Keich et al. [26]

7 Pattern
Branching

Local search
techniques

Faster
than profile-based approach

Fails to find the motif
with numerous

degenerate positions
Price et al. [17]

8 Profile Branching Extends the pattern
branching

Able to find the motif with
numerous degenerate

positions
Slower Price et al. [17]

9 MotifCut Graph-theoretic
approach

Different from the
frequently used PWM - Fratkin et al. [31]

Table A3. List of Motif Discovery Algorithms based on Evolutionary Approach.

S/N Algorithm Operating Principle Strengths Weakness Author and Reference

1 FMGA
Position Weight Matrix
and weighted wheel

method

Gives solution for not
reaching the local

minimum.

Uses random
generation-based

prediction
Falcon et al. [32]

2 GAME Position Weight Matrix
and Random Selection

Eliminates the reliance
on additional

motif-finding programs
More complex Wei et al. [34]

3 GEMFA EM based genetic
algorithm

Escapes from the locally
minimal solution

Uses more search
space due to

heuristic search
Chengpeng et al. [35]

4 GAMOT Uses total distance as
scoring function

Fast Motif Discovery
with smaller
search space

Not tested on real
data set. Pevzner et al. [33]

5 MOGAMOD Multi objective genetic
approach

Flexibility exists in the
selection process

Can only work with
data set with

sequential character
Kaya et al. [36]
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Table A3. Cont.

S/N Algorithm Operating Principle Strengths Weakness Author and Reference

6 GARPS Random Projection
Strategy

Optimize the
heuristic method.

Process fails for the
skewed nucleotide

distribution
Hongwei Huo et al. [38]

7 AMDILM
Iteratively process the

increased length
motifs

Works with consistency
and high accuracy.

Time consuming in
finding fitness score

iteratively
Yetian Fan et al. [39]

8 GENMOTIF Time series motif
discovery

Flexible enough to
accommodate task

characteristics and all
type of motif
specification

More search space
required Joan Serra et al. [66]

9 MHABBO
Differential evolution
and multi-objective

optimization

Diversity in population
is maintained

Algorithm has not
applied to

multi-objective motif
discovery problem

Siling Feng et. al. [67]

10 KEGRU Recurrent Neural
Network (RNN) Inexpensive and Fast Prediction done for

some fixed ‘K’ values Shen Z et. al. [68]

11 DESSO
Binomial distribution

and deep neural
network

Prediction with shape
feature detection of

unknown motif
Time Complexity Yang J et. al. [69]

12

Hierarchical
LSTM and
attention
network

Hierarchical LSTM
and attention
mechanism

Reach to achieve
optimization Function - Shen Z et. al. [70]

Table A4. List of Exact Motif Discovery Algorithms based Enumeration of Patterns.

S/N Algorithm Operating Principle Strengths Weakness Author and Reference

1 PMS0 Comparison of
neighbor distances

Easy to implement and
understand

More Space
complexity and time

complexity
Rajasekaran et al. [41]

2 PMS1 Radix Sort Easy to implement and
track the neighbors

More Space
complexity and time

complexity
Rajasekaran et al. [41]

3 PMSi
Compute the pairwise

relationship among
the neighbors

Pairwise approach
reduce computational

time and space

Computes the
common neighbors of

all l-mers
Davila et al. [42]

4 PMSP
Based on building

neighborhood of all
l-mers of first sequence

Can solve previously
unsolvable instances Space consuming Davila et al. [42]

5 Improved
Pattern-driven

Fundamental
pattern-driven

approach

Handles the motif with
higher l and d values More time complexity Sze et al. [43]

6 Stemming
Novel process of

neighborhood
generation

Reduces the
computational
search space

Not able to reduce
time of computation Kuksa et al. [44]
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Table A4. Cont.

S/N Algorithm Operating Principle Strengths Weakness Author and Reference

7 PMS4 Speedup method Actuates any motif
search algorithm

Not self-sufficient.
Needs a supportive

algorithm to run
Rajasekaran et al. [45]

8 PMS5

Fusion of PMS1 and
PMSprune.
Use ILP in

preprocessing step

More time complexity Use of ILP intensifies
the space Dinh et al. [46]

9 PMS6
Introduces improved
pre-processing steps

and hashing technique

Skillfully reduces the
searching time and
space requirement

Higher number of
equivalence classes

are used
Bandyopadhyay et al. [47]

10 Pair-Motif
Introduces the state of

the art of pairing
concept

Efficiently decreases the
search space.

Stable and efficient to
handle a variety
length sequences

- Yu, Q. et al. [48]

Table A5. List of Exact Motif Discovery Algorithms based Search Tree Approach.

S/N Algorithm Operating Principle Strengths Weakness Author and
Reference

1 PMSprune
Incorporates the efficient

pruning technique on
the search tree

Remarkable reduction in
the search space

After the tree
construction, pruning

happens not at the time
of tree construction

Davila et al. [49]

2 qPMSprune
Search is applied on

quorum of input
sequences

First efficient exact
quorum algorithm to

solve challenging
instances

- Dinh et al. [50]

3 PAMPA Branch and bound
Algorithm

Efficiently managing the
search space of the motif

Theoretical time and
space requirements are
the same as PMSprune

Davila et al. [51]

4 PMS3p
Efficiently integrates the
idea of PMS3 with the
feature of PMSprune

Proficiency to handle the
challenging instances is

very high

Computation time
exceeds from some of

the previous algorithms
Sharma et al. [52]

5 Provable Employs the extended
closest string

Solve the challenging
instances on the real

data set
- Chen et al. [53]

6 qPMS7 Extends the idea of
qPMSprune

Robust algorithm in the
group of quorum

More space
requirements Dinh et al. [50]
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Table A6. List of Exact Motif Discovery Algorithms based on Suffix tree, Mismatch tree, Tries, and
Hashing Search Process.

S/N Algorithm Operating Principle Strengths Weakness Author and
Reference

1 SPELLER Suffix Tree Speeds up the motif
search process

Extra pre-processing is
required Sagot et al. [54]

2 SMILE Suffix Tree
Uses generalized suffix
tree in contrast to the

classical suffix tree

More space required due
to the use of node-wise

bit vector
Marsan et al. [55]

3 PSMILE Suffix Tree Efficiently extracts the
structured motif

For some exceptional
instances, it does not

work properly.
Carvalho et al. [58]

4 RISO Suffix Tree Saves time and reduces
search space - Carvalho et al. [59]

5 RISOTTO Box-link data structure
with suffix tree

Upgrades the
proficiency of RISO

Supplementary space is
required Pisanti et al. [60]

6 EXMOTIF Suffix Tree

In approximate
matching as well as
exact matching, it
out-performs Riso

- Zhang et al. [61]

7 SLI-REST
Reverse engineering
method on the suffix

tree and links
Fast response Explores the feasible

Eulerian routes Cazaux et al. [62]

8 MITRA Mismatch tree Uses pruning technique
to minimize the space

Combinatorial approach
of Winnower and Smile Eskin et al. [56]

9 CENSUS Tries
Gives a solution to the

space component of the
generalized suffix tree

Eliminates any sharing
of information Evans et al. [57]

10 VOTING Hashing search process Uses easy tracking
process of votes

Computation time and
storage requirement is
higher in simple voting

Chin et al. [63]
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