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Nod-Like Receptor (NLR) is the largest family of Pathogen Recognition Receptors (PRRs)
that patrols the cytosolic environment. NLR engagement drives caspase-1 activation that
cleaves pro-IL-1B which then gets secreted. Released IL-1B recruits immune cells to the
site of infection/injury. Caspase-1 also cleaves Gasdermin-D (GSDM-D) that forms pores
within the plasma membrane driving inflammatory cell death called pyroptosis. NLRP3 is
the most extensively studied NLR. The NLRP3 gene is encoded by 9 exons, where exon 1
codes for pyrin domain, exon 3 codes for NACHT domain, and Leucine Rich Repeat (LRR)
domain is coded by exon 4-9. Exon 2 codes for a highly disorganized loop that connects
the rest of the protein to the pyrin domain and may be involved in NLRP3 regulation. The
NLRP3 inflammasome is activated by many structurally divergent agonists of microbial,
environmental, and host origin. Activated NLRP3 interacts with an adaptor protein, ASC,
that bridges it to pro-Caspase-1 forming a multi-protein complex called inflammasome.
Dysregulation of NLRP3 inflammasome activity is a hallmark of pathogenesis in several
human diseases, indicating its highly significant clinical relevance. In this review, we
summarize the existing knowledge about the mechanism of activation of NLRP3 and its
regulation during activation by infectious and sterile triggers.

Keywords: NLRP3, Inflammasome,Microbes, Sterile Inflammation, extracellular vesicles, post-translational modification
INTRODUCTION

Nod-Like Receptor (NLR) is the largest family of Pathogen Recognition Receptors (PRRs) that
patrols the cytosolic environment. NLR engagement drives caspase-1 activation that cleaves pro-IL-
1b which then gets secreted (1). Released IL-1b recruits immune cells to the site of infection/injury
(2–8). Caspase-1 also cleaves Gasdermin-D (GSDM-D) that forms pores within the plasma
membrane driving inflammatory cell death called pyroptosis (9–12). NLRP3 is the most
extensively studied NLR (10–17). The NLRP3 gene is encoded by 9 exons, where exon 1 codes
for pyrin domain, exon 3 codes for NACHT domain, and Leucine Rich Repeat (LRR) domain is
coded by exon 4-9. Exon 2 codes for a highly disorganized loop that connects the rest of the protein
to the pyrin domain and may be involved in NLRP3 regulation (18). The NLRP3 inflammasome is
activated by many structurally divergent agonists of microbial, environmental, and host origin (11,
19). Activated NLRP3 interacts with an adaptor protein, ASC, that bridges it to pro-Caspase-1
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forming a multi-protein complex called inflammasome (2–8).
Dysregulation of NLRP3 inflammasome activity is a hallmark of
pathogenesis in several human diseases (20–24), indicating its
highly significant clinical relevance. In this review, we summarize
the existing knowledge about the mechanism of activation of
NLRP3 and its regulation during activation by infectious and
sterile triggers (Figure 1).
ACTIVATION OF NLRP3 INFLAMMASOME:
TWO SIGNAL MODEL

NLRP3 inflammasome formation follows a two-signal process
(25). The engagement of TLR or cytokine receptors resulting in
activation of NF-kB is called the priming (signal 1). NF-kB
activation induces the transcription of NLRP3, ASC, pro-
caspase-1 and pro-IL-1b regulating their cellular levels
allowing NLRP3 activation specifically during pathogen
invasion and endogenous threats. Apart from transcriptional
regulation, NLRP3 is also stabilized by priming-induced post-
translation modifications (PTM) (25, 26).

The molecular mechanism behind NLRP3 activation (signal
2) is believed to be the result of various cellular events involving
K+ efflux, ROS generation, and release of cathepsin B due to
phagosome rupture (10, 11, 19). It was believed that agonists are
sensed by LRRs of NLRP3 inducing conformational changes
leading to recruitment of inflammasome components (11),
although, recent studies suggest that LRRs are dispensable for
NLRP3 activation (18, 27). Given the variety of agonists, it is
believed that NLRP3 actually senses an upstream unifying
factor, e.g. cellular stress, commonly induced by all NLRP3
agonists (19, 25, 28). ROS was once believed to be a common
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upstream factor until recently where it was shown that ROS
affects priming and not activation (29, 30). K+ efflux is one of the
most accepted models of NLRP3 inflammasome activation (19,
25). NLRP3 agonists, nigericin and ATP, activates NLRP3
through K+ efflux. Nigericin is a K+/H+ ionophore while ATP-
dependent NLRP3 activation engages P2X purinoceptor 7
receptor (P2X7R), a ligand-gated ion channel capable of K+

efflux (31–33). It was recently discovered that P2X7R couples
with Two-pore domain Weak Inwardly rectifying K+ channel 2
(TWIK2) for K+ efflux, whereas P2X7R is responsible for influx
of Na+ and Ca2+ (34, 35). P2X7R pores are believed to facilitate
PAMPs/DAMPs entry to the cell (19, 36). However, some
agonists of NLRP3 like monosodium urate crystals (MSU)
and particulate asbestos are too large to be translocated
through these pores (19). Moreover, several studies have
shown K+ efflux-independent activation of NLRP3,
demanding reexamination of the K+ efflux model (29, 37, 38).
The lysosomal rupture model considers the size of agonists.
Phagosome destabilization and rupture is caused by inefficient
clearance of particulate agonists. The emanating release of
Cathepsin B is believed to activate NLRP3 either directly or
indirectly (11, 15, 16, 25). While several studies show cathepsin
B inhibitor blocks lysosomal disruption and impair NLRP3
inflammasome (39), IL-1b processing in Cathepsin B deficient
mice is comparable to that of wild-type mice (40, 41). Thus,
cathepsin B inhibitors likely impair NLRP3 inflammasome
activation by off-target effects. Lysosomal rupture also causes
K+ efflux suggesting involvement of multiple pathways in
activating NLRP3 (42–45). As most of NLRP3 agonists
induces reactive oxygen species (ROS) and various ROS
scavengers also impairs inflammasome activation (46, 47)
suggesting that NLRP3 senses cellular stress (10, 11, 13, 15,
19, 25). NLRP3 activation requires interaction with Thioredoxin
A
B

D

C

FIGURE 1 | Two-step mechanism of NLRP3 activation. (A) TLR/IL1-R engagement leads to NF-kB activation driving transcriptional upregulation of inflammasome
components (Signal 1). NLRP3 is then activated upon sensing unknown direct agonists (Signal 2), which can be (B) infectious, (C) sterile and can also be mediated
through (D) exosomes.
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(TX) Interacting Protein (TXNIP) (48, 49), but, these finding
could not be confirmed by others (50). Further, ROS activation
also drives K+ efflux further suggesting that NLRP3 can be
activated by multiple independent pathways. Moreover, the
mitotic kinase, NEK7, facilitates NLRP3 activation and
inflammasome assembly following activation by ATP and
nigericin (30, 51, 52). NEK7 binds to LRR, hinge domain 2
(HD2) and the NACHT domain (53). Oridonin, the major
active ingredient of the traditional Chinese medicinal herb
Rabdosia rubescens, blocks NLRP3-NEK7 interaction by
covalently modifying cysteine (C) 279 (54) on the interaction
surface of NEK7 Moreover, NEK7 interacts with minimally
active NLRP3 truncated mutant (NLRP3 1-686). NEK7 also
interacts with NLRP3 1-665 which cannot be activated by
various agonists (27). Thus, NEK7 interaction is not the
primary requirement for NLRP3 activation, suggesting the
possible involvement of other cellular factors. Lastly, various
NLRP3 agonists cause mitochondrial dysfunction and release of
mitochondrial ROS and mitochondrial DNA that activates
NLRP3 (55–57). However, the direct or indirect nature of this
interaction is yet to be investigated. Thus, it is likely that either a
common upstream factor activates, or multiple pathways lead to
inflammasome activation. It is also likely that a combination of
factors leads to activation of NLRP3. Since, inflammasome
formation follows prion-like polymerization leading to
Supramolecular Organization Centers (SMOCs) it is also
possible that some threshold effect is required to activate
NLRP3 which may be achieved by involving multiple
pathways. Such a mechanism would also account for rapid
NLRP3 activation by multiple agonists.
NLRP3 REGULATION

Protein Binding
Since NLRP3 activation mechanism remains elusive, it is
plausible that a common upstream factor activates/regulates
NLRP3. Most of the proteins interacting with NLRP3 binds to
the NACHT-LRR domain suggesting the importance of these
domains in NLRP3 regulation. Heat shock protein (Hsp) 90
chaperone complex binds to NLRP3-LRR domain (58), however,
it is unclear whether the chaperone complex facilitates proper
folding or unfolding of LRRs after stimulation. Further, redox
sensitive TXNIP interacts with NACHT-LRR domain of NLRP3
and knocking down TXNIP also reduces NLRP3 inflammasome
response (49). Interestingly, TXNIP-/- BMDMs showed no effect
on inflammasome response (50). Mitotic kinase, NEK7, binding
is shown critical for NLRP3 inflammasome response (30, 52, 53).
Additionally, E3 ubiquitin ligase tripartite motif-containing
protein 31 (TRIM31) promotes proteasomal degradation of
NLRP3 thus attenuating NLRP3 inflammasome response (59).
NLRP3 inflammasome response is impaired by binding of Pyrin
only proteins (POPs) and CARD only proteins (COPs). POPs
and COPs are reviewed in detail in Le H.T. et al., 2013 (60).
Interestingly, a few interacting partners binds to PYD domain
suggesting a possible involvement of PYD in NLRP3
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inflammasome response. Mitochondrial anti-viral signaling
protein (MAVS) interaction with NLRP3 PYD is critical for
mitochondrial localization and NLRP3 inflammasome response
(61). Further, microtubule-affinity regulating kinase 4 (MARK4)
also interacts with the PYD domain of NLRP3 which is critical
for positioning and translocation of NLRP3 to form the
inflammasome (62). Although several binding partners of
NLRP3 are discovered, the mechanism behind their action is
not yet understood. One of the caveats with these studies are the
use of special agonists and the importance of these protein-
protein interactions is specific to the respective agonists. It is
important to evaluate the role of these proteins under
different conditions.

Post-Translational Modifications
Various PTM regulate innate immune signaling through different
cellular processes [Reviewed in (63)]. NLRP3 expression is
regulated by both transcriptional and post-translational
modifications (PTM) (26). NLRP3 is phosphorylated by Spleen
tyrosine kinase (Syk) (64–67), Death-associated protein kinase
(DAPK) (68), Transforming growth factor beta-activated kinase 1
(TAK1) (69) and Extracellular Signal-Regulated Kinase 1 (ERK1)
(70) in infection models. It is unclear whether these kinases
specifically phosphorylate NLRP3 or other inflammasome
components. Dephosphorylation of NLRP3 at serine 5 by
Protein phosphatase 2 (PP2A) (71), and tyrosine 859 by protein
tyrosine phosphatase non-receptor type (PTPN22) primes NLRP3
for activation (72, 73). Interestingly, phosphorylation at serine 295
by Protein kinase D (PKD) activates NLRP3, whereas, by Protein
kinase A (PKA) abrogates NLRP3 inflammasome activation (22,
72–74). It is unclear how the same PTM at the same site leads to
two different outcomes. It is likely that a combination of PTMs
rather than a single PTM regulate NLRP3 inflammasome. PYD,
NACHT and LRRs are ubiquitinylated by TRIM31 (59, 75),
Ariadne homolog 2 (ARIH2) (76), and membrane-associated
RING finger protein 7 (MARCH7) (77), respectively promoting
proteasomal degradation of NLRP3. Finally, deubiquitylation of
LRRs by BRCA1/BRCA2-containing complex subunit 3 (BRCC3)
is required for NLRP3 oligomerization and activation (78). In the
resting state, mitochondrial E3 ubiquitin protein ligase 1 (MUL1)
SUMOylates NLRP3 at multiple sites. Following activation,
sentrin-specific protease 6 (SENP6) and 7 (SENP7)
deSUMOylates NLRP3 promoting inflammasome function (79).
However, further studies are required to confirm the role of
SUMOylation in NLRP3 activation. Nitrosylation is associated
with NLRP3 inhibition (80–82). Mao et al. demonstrated that
treatment with nitric oxide donor, SNAP, inhibits inflammasome
function in mouse peritoneal macrophages, THP1 cells and
human peripheral blood mononuclear cells (PBMCs) (81).
During mycobacterial infection of mice, NLRP3 is nitrosylated
by IFN-g induced nitric oxide synthase (iNOS) (82). NO-mediated
inhibition is specific for NLRP3 as the AIM2 and NLRC4
inflammasomes are only moderately affected (80). NO-mediated
inhibition operates through thiol modifications of cysteine
residues. Further, a recent study has shown cysteine dependent
NLRP3 inflammasome response to sterile agonists whereas
response to Fransicella novicida U112 was cysteine independent
May 2022 | Volume 13 | Article 896353
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(18). Cysteine thiol groups are strongly nucleophilic, and the
availability of d-orbital electrons help attain multiple oxidation
states (83–86). Such chemistry provides versatility of forming a
molecular code that can efficiently respond to oxidative stress (87).
Depending on the cell redox state, cysteines can undergo various
reversible and irreversible modifications (83–86). While reversible
modification of cysteine functions as a signaling intermediate,
irreversible intermediates are rarely involved in signaling. NLRP3
has 43 cysteines and is regulated by nitrosylation (82), however,
which cysteines are modified is still unknown. PTMs are very
strong regulator of protein functions. Whether a single PTM
regulate NLRP3 inflammasome or multiple PTMs works in
tandem to regulate NLRP3 is yet to be determined. Further
studies evaluating the PTMs on NLRP3 following stimulation by
different agonists are required to fully understand the role of
PTMs on NLRP3 activation.
NLRP3 AND ITS ASSOCIATION WITH
DISEASES

Bacterial Infection
Several studies have revealed a crucial role of the NLRP3
inflammasome in bacterial infections (1). The Pathogen
associated molecular patterns of Gram-negative bacterial
pathogens like Yersinia spp, Francisella spp and Salmonella
spp are recognized by more than one PRR (2). However,
NLRP3 activation is a common response to all 3 pathogens.
Francisella novicida U112 activates human NLRP3, whereas in
mice, AIM2 is the predominant inflammasome that responds to
Francisella (Fn) infection (3), and a recent study shows this
response is debilitating to the host (4). However, NLRP3
deficient mice display improved survival in Fn infection
indicating the presence of a contrasting non-inflammasome
role of NLRP3 (5). NLRP3 share structural similarity to CIITA
which makes it likely to function as a transcriptional regulator as
well. A non-inflammasome function of NLRP3 is interesting and
requires further investigation. However, it is still perplexing why
a single protein belonging to such a big super-family have
multiple functions. Salmonella enterica serovar Typhimurium
activates the NLRC4 and NLRP3 inflammasomes in
macrophages and both are required for efficient IL1b release
(6). Given the critical role that NLRP3 activation plays in
mounting an effective immune response to bacterial infection,
it is not surprising that bacterial pathogens have developed tools
to subvert inflammasome activation (7). Majority of the evidence
of inflammasome activation in Yersinia infections have been
discovered while identifying virulence factors that disabled the
host immune response. Yersinia effectors YopK, YopB, YopD,
YopM and YopJ have all been implicated to regulate the NLRP3
inflammasome through different mechanisms (8–11). In case of
Fn, the FL_0325 virulence factor and gene ripA were discovered
to suppress NLRP3 and AIM2 activation and mutant strains
lacking these genes generated a stronger innate immune
response than wild type Fn (12–14). It is interesting that how
effectors are targeted towards NLRP3 rather than blocking the
Frontiers in Immunology | www.frontiersin.org 4
end-product of inflammasome activation, i.e., caspase-1. This
suggests that NLRP3 might have functions beyond caspase-1
activation. Among other Gram-negative pathogens known to
activate the NLRP3 inflammasome are Aeromonas hydrophila,
Bordetella pertussis, Vibrio cholerae and Legionella pneumophila
(15–21). V. cholerae and EndotoxinB. pertussis activate more
than one type of inflammasome including NLRP3 via canonical
and non-canonical pathways (22, 23). Several host factors are
also involved in the activation of the NLRP3 inflammasome
during bacterial infections. For example, IRF8 promotes Ifnb
transcription which in turn activates caspase-11 to trigger the
NLRP3 inflammasome in murine macrophages infected with
Citrobacter rodentium (24). In another study, TRIF was
identified as an important bridge between TLR4 and NLRP3 in
enterohemorrhagic Escherichia coli (EHEC) and C. rodentium
infected cells (25). Noncanonical activation of NLRP3 was found
to be caspase-4 dependent in macrophages infected by L.
pneumophila, Y. pseudotuberculosis and S. Typhimurium (26).
Further, in Yersinia infected cells, RIPK-1 and Guanylate binding
proteins are critical regulators of pyroptosis or apoptosis (27, 28).

Examples of NLRP3 inflammasome response to virulence
factors of Gram-positive bacterial pathogens include hemolysins
secreted by Staphlyococcus aureus (Sa) which activates NLRP3
and induces IL-1b secretion (88, 89). However, another group
showed that staphylococcal hemolysins are dispensable for
NLRP3 activation (88, 89). Sa-associated PAMPs also
cooperate with hemolysin to activate NLRP3 (90). Similarly,
streptolysin O released from Streptococcus pyogenes is important
for NLRP3 activation (91, 92). NLRP3-dependent IL-1b is also
crucial for protection against Chlamydia pneumoniae infection
(93). It is interesting to see how NLRP3 activation by gram-
positive bacteria broadly use K+ efflux, whereas for Gram-
negat ive bacter ia the mechanism is more var ied .
Mycobacterium tuberculosis (Mtb) inhibits the inflammasome
response activation by nitrosylating NLRP3 (82). ESX-I secretion
system of both Mtb and Mycobacterium marinum activates
NLRP3 activation (94–96). Some bacteria, like Listeria
monocytogenes induce multiple inflammasomes, including
NLRP3, Aim-2 and NLRC4, and trigger inflammasome
formation by mixed NLRs (97–102). These observations
highlight the importance of NLRP3 in detection of various
bacteria and the importance of the inflammasome response
during bacterial infections.

Fungal Infection
Many fungal species have been shown to activate the NLRP3
inflammasome that include C. albicans, A. fumigatus, Malassezia
spp., Paracoccidioides brasiliensis, Cryptococcus neoformans and
Microsporum canis (103). NLRP3 deficient mice are susceptible
to C. albicans infection (104). Further, hypheal forms of fungi are
more potent inducers of NLRP3 inflammasome than yeast which
activates NLRP3 with candidalysin (105, 106). C. albicans and A.
fumigatus also activates the interferon (IFN)-inducible protein
ZBP1-PANoptosome, resulting in NLRP3 inflammasome
activation and PANoptosis (107). In A. fumigatus, the
activation of NLRP3 inflammasome is dependent on ROS
production and K+ efflux (108). Syk kinase activity
May 2022 | Volume 13 | Article 896353
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downstream of Card9 activation by the fungal sensor Dectin1, is
required for NLRP3 activation (64, 109), however, the precise
mechanism of NLRP3 activation by fungal PAMPs is unclear,
contributing to the bottleneck in development of new drug
targets to treat fungal infections. NLRP3 activation through
fungal activation require further studies to elaborate the
mechanism of activation.

Viral Infection
NLRP3 is the only member of the NLR family that plays a role
detecting viral RNA andproteins in viral infections. BothDNAand
RNA viruses have been shown to activate the NLRP3
inflammasome with Sendai and Influenza virus being the first
viruses discovered to do so (110). The interferon-inducible
protein, thus activating the NLRP3 inflammasome (111). The
cytosolic dsRNA sensor DHX33 which is a member of DExD/H-
box helicase family, can interact with NLRP3, activating it (112,
113). Vivoporins are virus-encoded proteins with ion channel
activity that cause changes in membrane stability which can be
recognized by NLRP3 and activate the inflammasome (114).
NLRP3 activation by influenza virus is proposed to be driven by
the viral M2 ion channel that transports H+ ions out of trans-Golgi
network but also leads to activation of other ion channels that drive
K+ efflux (115, 116). InRhinovirus, the 2B protein activatesNLRP3
by creating pores and reducing the level of Ca2+ in ER and Golgi
membranes (117). Inhibition of NLRP3 activation during
Respiratory syncytial virus (RSV) infection decreases lung
pathology in vivo (118). Recent study shows the SARS-CoV-2 N
protein induces proinflammatory cytokines by promoting the
assembly of NLRP3 inflammasome via direct interaction with
NLRP3. Using a mouse model of infection, the authors have
demonstrated that activation of NLRP3 by N protein has been
associatedwith lung injury and a cytokine storm, the twohallmarks
of Covid-19 infection (119, 120).

Cryopyrin Associated Periodic Syndrome
CryopyrinAssociated Periodic Syndromes (CAPS) are a spectrumof
chronic inflammatory diseases caused by gain of functionmutations
in the NACHT and LRR domain of NLRP3 (20, 121–123). These
diseases include Familial cold autoinflammatory syndrome (FCAS),
Muckle-Wells Syndrome (MWS) andNeonatal onsetmulti-systemic
inflammatory disease (NOMID)/Chronic infantile neurological
cutaneous articular syndrome (CINCA). Macrophages and
monocytes isolated from CAPS patients spontaneously secrete IL-
1b in the absence of any inflammatory stimuli (124).While recurrent
fever and joint-pains are clinical symptomsofFCASandMWS(125),
NOMID patients present severe neurological and developmental
complications (125, 126).

Chronic Obstructive Pulmonary Disease
COPD presents as a combination of emphysema, chronic
bronchitis, and chronic airway obstruction (127, 128). While
inflammation and IL1b release is central to progression of COPD,
there are mixed reports of whether and which inflammasome
activation causes severe damage to the lungs (129–131). Exposure
to cigarette smoke and other particulate matter is a major cause of
COPD and its role in activating the NLRP3 inflammasome is well
Frontiers in Immunology | www.frontiersin.org 5
documented (132, 133). Further, evidence of NLRP3 activation in
stable and exacerbated COPD was found in sputum and plasma
samples of patients, in an in vitromodel of COPD and in patients
with neutrophilic asthma (134–136). In contrast, one study found
no induction of NLRP3 but an increase in inflammatory cytokines
like IL-6 in the broncho alveolar lavage (BAL) fluid of patients with
stable COPD (137). Another genetic study of polymorphisms in
COPD patients, identified a single nucleotide polymorphism in
NLRP1 which correlated with decreased lung function (138).
Additionally, other studies discovered the activation of the AIM2
inflammasome consistent with IL1b release in BAL, lung tissue and
peripheral blood mononuclear cells isolated from COPD patients
(139, 140). Taken together, there is ample evidenceof IL-1 cytokines
and inflammasome activation in stable and exacerbated COPD but
whether NLRP3 activation drives disease progression and the
mechanism behind it is yet to be elucidated.

Diabetes
Type I (T1D) andType II (T2D)diabetes differ in themechanismby
which insulin resistance develops (141), but the role of
inflammasomes have been implicated in both. In a study from
Brazil, 2 SNPs in the NLRP3 gene were found in pediatric patients
with T1D (142). In a murine model of T1D, mitochondrial DNA
fromdiabeticmice displayed the ability to induce IL1bwhich could
be inhibited in NLRP3 -/- macrophages (143). Further, NLRP3
deficient mice were unable to develop T1D (144). Although the
exact mechanism of how the NLRP3 inflammasome contributes to
T1D is yet to be discovered, the existing data indicates a crucial role
for the former. As for T2D, studies have been more illuminating.
IL1b release and the activation of NLRP3 are central to T2D (21,
145, 146). Monocyte-derived macrophages from T2D patients
displayed high NLRP3, IL-18 expression, caspase-1 cleavage and
NLRP3 dependent IL1b secretion (147). High extracellular ATP in
T2D results in the activation of the P2X7 receptor that in turn
activates the NLRP3 inflammasome (148). Additionally, activation
of NLRP3 can be controlled by the microtubule affinity regulating
kinase (MARK4) which in turn is regulated by the E-74 like ETS
transcription factor (ELF3). High glucose increased ELF3
expression in HUVECs and triggered the NLRP3 inflammasome
(149). Diabetic markers such as saturated fatty acids and islet
amyloid polypeptide also activate NLRP3 (50, 150). Recent
clinical trials have shown potential in IL-1b blocking therapies
further establishing an important role of IL-1b in progression of
diabetes (151). However, treatment with Canakinumab, an IL1b
inhibitor, did not reduce the risk of diabetes in patients with pre-
diabetes (152).
ROLE OF EXOSOMES IN NLRP3
INFLAMMASOME ACTIVATION

Extracellular vesicles (EVs) are membrane enclosed nano-bodies
(size 30-1000nm) that facilitate cargo transport and signal
transduction regulating physiological and pathological processes
(153). Numerous studies have established that exosomes can
critically influence the progression of inflammatory diseases by
modulating the NLRP3 inflammasome (154–159).
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Inflammasome-associated EV facilitate inflammatory
responses in neighboring and distantly located recipient cells
(159, 160). Particulate NLRP3 activators, like calcium oxalate,
monosodium urate and b-glucan can activate EV-mediated
cargo release in human macrophages (154). EV cargo contains
Caspase-1, Syk kinase and Cathepsin indicative of NLRP3
inflammasome associated EV release upon lysosomal damage
(161). NLRP3 inflammasome derived exosomes promotes
inflammation by transducing signal to neighboring cells (162).
NLRP3 activation causes exosome release, carrying IL-1b and IL-
18, from microglial cell membrane promoting neuro-
inflammation in Parkinson’s disease (162). Latest reports show
that exosomes isolated from a severe COVID-19 patient’s plasma
can exert its effect on human endothelial cells and liver
endothelial cells increasing the expression of NLRP3, IL-1b
and caspase-1 mRNA (160). Interestingly, EVs can also have
inhibitory effect on NLRP3 activation. Mesenchymal stem cells
derived exosomes from umbilical cords can attenuate caspase-1
production, resulting in lower levels of IL-1b and IL-18 thus
inhibiting NLRP3 activation (163). Stem cell-derived exosomes
can repair ischemic muscle injury by inhibiting the Rb1-
mediated NLRP3 inflammasome pathway highlighting anti-
inflammatory potential of exosomes (164).
Frontiers in Immunology | www.frontiersin.org 6
CONCLUSION

In summary, NLRP3 activation by sterile and infectious agents
display significant differences in mechanism. Moreover, the
activation mechanism between gram-positive and gram-
negative bacteria also differs greatly. Further, bacteria induced
NLRP3 activation mechanism is different from NLRP3 activation
by fungi and viruses. Such a difference in activation mechanism
account for versatility of NLRP3 to react to different threats. Such
differences may also be important in channel downstream
signaling for launching adaptive immune response to the
threat. In the two-decades of inflammasome research, scientists
have discovered various mechanism of NLRP3 activation. While
these discoveries have significantly advanced the inflammasome
biology field, they have opened several new questions that will
require further attention.
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