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Objectives: To predict the novel vaccine peptide candidates against gacS protein
involved with the citrate utilization in the two-component system of A. baumannii-
associated virulence as an alternative strategy to combat the multi-drug resistant strains
using an immuno-informatic approach.

Methods: The study is designed as an observational in silico study design with the
application of BepiPred, AlgPred, VaxiJen, AntigenPro, SolPro, Expasy ProtParam
server, IEDB database, and MHC cluster analytical tools and servers to predict the
immuno-dominant B-cell and T-cell epitopes from gacS FASTA sequences retrieved
from UNIPROT database. Further peptide interactions with TLR-4 was assessed based
on the number of hydrogen bonds.

Results: Nine peptides (20aa) with the highest score of 1 were selected from the 137
epitopes, and five were predicted as antigenic epitopes (E1–E5). E3 was selected as
the potent antigen (score: 0.939537) and E1 as the best vaccine candidate (score:
0.9803) under AntigenPro and Vaxijen server, respectively. SolPro predicted all epitopes
as soluble peptides. ProtParam predictions showed E3 and E5 as stable proteins
with a shelf life of 3.5 and 1.9 h and possessed negative GRAVY values. PsortB
server predicted a final localization score of 7.88 for the gacS protein sequence as a
cytoplasmic membrane protein. IEDB conservancy analysis showed 100% conserved
sequences within the gacS sequence, and class I conservancy yielded positive values
for all epitopes. Cluster analysis showed strong interactions, and the protein-peptide
interactions with TLR-2 finally detected E5 as the best interacting peptide (H bonds = 14)
followed by E3 (H bonds = 12).

Conclusion: The study suggests five antigenic peptides as promiscuous vaccine
candidates to target the gacS of A. baumannii using immuno-informatic approach
toward the peptide synthesis and in vitro analysis. However, the study recommends
further experimental validation for immunological response and memory through
in vivo studies.
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INTRODUCTION

Acinetobacter baumannii is a gram-negative non-motile
coccobacillus, phenotypically negative for oxidase and positive
for catalase (Murray et al., 2016), that belongs to the family of
Moraxellaceae (Baumann et al., 1968). The genus Acinetobacter
is highly diverse and encompasses nearly 50 species, the majority
being saprophytic and non-pathogenic (Al Atrouni et al.,
2016) and the most potent pathogenic species comprising
A. baumannii, followed by A. calcoaceticus and A. lwoffii
(Dijkshoorn and van der Toorn, 1992). Earlier infections with
Acinetobacter occurred between the 1960s and 1970s, as a
low priority pathogen with low virulence (Rice, 2008), but
in the twentieth century, multivariate analysis of the clinical
isolates has documented A. baumannii as the most virulent
pathogen (Maragakis and Perl, 2008). In addition, the World
Health Organization (WHO) has declared A. baumannii as
a priority pathogen (Chusri et al., 2014) and is also been
incorporated under the ESKAPE group of pathogens (World
Health Organization [WHO], 2014). The main reason behind
these declarations relies on its ability to cause recalcitrant
nosocomial infections such as ventilator associated pneumonia;
skin and traumatic infections; urogenital and catheter-associated
infections; and complicated septicemia (Rice, 2008). Multi-
drug resistance (MDR), extensive drug resistance (XDR), and
total drug resistance (TDR) synergistically severe the systemic
infections in association with other risk factors and comorbidities
(Garnacho et al., 2003). Reports from India, have documented
MDR strains of A. baumannii (Smiline Girija et al., 2017, 2018a,b,
2019a,b) along with resistance profiles mediated by plasmids.
This major sort of transformation from a low-priority pathogen
into a predominant nosocomial pathogen can also be related
to various virulence factors in addition to antibiotic resistance
(Liu et al., 2018).

A. baumannii challenges itself to survive in harsh hospital
environmental niches, enduring in a varying atmosphere of
antiseptics, desiccating agents, temperatures, and, finally, the
host biotic habitat from an abiotic habitat (Rajamohan et al.,
2010). It is thus exciting to note that A. baumannii adapts
to unfavorable conditions in a very sensible manner using the
two-component systems (TCS) that regulate their phenotypes
with different underlying mechanisms. With a high degree of
genomic conservations, an overview of TCS shows nearly 20
operon/genes encoding for vital proteins efficiently associated
with the virulence and resistance of A. baumannii (De Silva and
Kumar, 2019). GacSAmong many TCS in A. baumannii, gacS
is mainly related to the utilization of citrate as the sole carbon
source in the citrate metabolism. It is also fascinating to observe
that gacS could function as a hybrid sensor kinase based on
many sequential studies, as there is no probable linking to a
regulator encoding gene, and its organization may vary among
different phenotypes (Dorsey et al., 2002). A clear understanding
of the gacS function was best achieved through gacS mutant-
related studies. The gacS mutant phenotype of A. baumannii
could not significantly inhibit yeast (Peleg et al., 2008), attenuated
the virulence in the mouse model, and insignificantly regulated
the pili synthesis, motility patterns, formation of biofilms, and

resistance patterns (Cerqueira et al., 2014). Additionally, gacS
directly influenced the neutrophil chemotaxis to the site of
infection with its vital role in the phenyl acetic acid pathway
(Bhuiyan et al., 2016).

GacS-associated TCS, therefore, portray a vital role in
A. baumannii adaptive responses and its modulations toward
the antibiotic susceptibility and virulence mechanisms. Targeting
gacS would be a novel approach to combatting A. baumannii
infections that impedes last-resort treatment strategies. Vaccine
strategies employing bacterial outer membrane complex and
biofilm-associated proteins have entered clinical trials, however,
the results are not promising and have resulted in no licensed
vaccines against A. baumannii yet, despite numerous reports
on the subject (Chiang et al., 2015). In this context, aiming
for efficient prophylaxis measures, genomics- and proteomics-
based new vaccine strategies, such as subtractive proteomics and
reverse vaccinology methods, have been successful in identifying
probable vaccine candidates (Christensen et al., 2013). The initial
step in the design of synthetic peptides being the identification
of potential epitopes, the present investigation is thus aimed to
unravel the antigenic and immunogenic peptides from gacS of
A. baumannii, using an immuno-informatics approach.

MATERIALS AND METHODS

Selection of GgacS for Epitope
Prediction
FASTA sequence of gacS from the clinical strain of A. baumannii
(NCBI taxonomy ID 470) was retrieved from the UniProt
database1. The UniProtKB identifier of gacS was Q8RMF4
(Q8RMF4_ACIBA) submitted under the name Bar A with
the molecular function of phosphoryl sensor kinase activity
and the subcellular location as an integral component of
transmembrane protein.

B-Cell Epitope Mapping
Retrieved FASTA sequences of gacS were used as the input in
BCPred server2, AAP Prediction tool that uses paired amino
acid antigenicity scale (Chen et al., 2007), with the BepiPred-
2.0 server, to sequentially predict the epitopes and non-epitope
amino acids from the crystal structures using random forest
algorithm software (Larsen et al., 2006) and an ABCPred server
to predict the B-cell epitopes based on a recurrent neural network
using fixed length patterns (Saha and Raghava, 2006b). The
position of the nine epitope peptides with maximum threshold
value of 1.0 as predicted with the AAP prediction tool (default set
as > 0.5) was further selected for immunogenic analysis.

Predictions on Antigenicity
The predicted protein sequences from gacS were uploaded
in VaxiJen v2.0 server (Doytchinova and Flower, 2007b),
which can detect the protective antigens based on alignment-
independent predictions to categorize the antigens according

1https://www.uniprot.org/
2http://ailab.ist.psu.edu/bcpred/predict.html
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to their physicochemical properties. The output is obtained as
a statement of protective antigens or other antigens according
to a predefined cutoff together with the prediction probability
with the precision varying from 70–80% (Doytchinova and
Flower, 2007a). Additionally, prediction of the antigenic peptide
was achieved by ANTIGENpro server using the reactivity data
(Magnan et al., 2010).

Analysis of the Physicochemical
Properties of the Predicted Proteins
For the predicted peptides from gacS, the computation of various
physical and chemical parameters was done by the ProtParam
server to evaluate the molecular weight, theoretical pI, amino
acid composition, atomic composition, extinction coefficient,
estimated half-life, instability index, aliphatic index, and grand
average of hydropathicity (GRAVY) (Gasteiger et al., 2005).

Predictions of Allergenic Properties
A systematic approach to predicting allergenic proteins from
gacS with high accuracy was achieved using AlgPred software
(Saha and Raghava, 2006a). Different approaches – such as
the similarity of known epitopes with any region of protein,
IgE epitope mapping, MEME-MAST allergen motif predictions,
SVM modules based predictions, BLAST allergen representative
peptide (ARPs) search (2890 allergen), and finally a hybrid
option of combined approach (SVMc + IgE epitope + BLAST
ARPs + MAST) – were employed in combination to predict the
allergenic peptides.

Signal Location of the Epitope Peptides
For verification of the gacS peptide signals and their location
on A. baumannii, SignalP 4.1 software was used to assess the
sequence options with or without transmembrane sets based
on two neural networks (Petersen et al., 2011). Further, for the
subcellular location prediction, PSORTb 3.0.2 was used, which
functions in multiple analytical modules, each peptide being
analyzed and evaluated as to how it aids the drug delivery systems
(Yu et al., 2010).

Prediction of Continuous Antibody
Epitopes
As an empirical rule the position of the continuous epitopes
from gacS based on parameters such as hydrophilicity, flexibility,
accessibility, turns, exposed surface polarity, and antigenic
propensity of the predicted antigenic peptides were achieved
with Immune Epitope Database and Analysis (IEDB server).
Predictions were done on propensity scales for each of 20
amino acids and the score for a given residue i, a window
size n was computed with i – (n − 1)/2 neighboring residue
analysis on the propensity scales. The graphs were obtained with
six prediction tools, i.e., BepiPred linear epitope predictions,
BepiPred 2.0 sequential epitope predictions, Karplus-Schulz
flexibility predictions, Chou-Fasman beta turn predictions,
Kolaskar and Tongaonkar antigenicity predictions, Emini surface
accessibility predictions, and Parker hydrophilicity predictions
(Chou and Fasman, 1978; Emini et al., 1985; Karplus and Schulz,
1985; Parker et al., 1986; Kolaskar and Tongaonkar, 1990).

Predictions of T-Cell MHC Class-I and
MHC Class-II Epitopes
The predicted antigenic epitopes from gacS were further
subjected for MHC class I binding using the IEDB-AR server.
IEDB predictions use a default and consensus calculations for
predictions based on ANN, SMM, and CombLib in addition to
NetMHCpan-EL, and the choice of selection was based on the
decreasing order, i.e., Consensus > ANN > SMM > NetMHCpan
EL > CombLib. The predicted antigenic epitope sequences were
analyzed against the frequently occurring alleles set by default to
occur in at least 1% of the human population. Final selections
were made according to percentile ranks and the three different
categorizations of the binding affinity upon the IC50 values.

Predictions on Class-I Immunogenicity
and Conservancy Analysis
Assessing the ability of the selected gacS peptides to evoke
an immune response is considered the crucial step in
immunogenicity prediction, and using the default parameters
of the IEDB server, the epitopes that rendered the positive
values were considered potent immunogens. Further, the
conservancy of the epitopes predicted within the protein
sequences is yet another measure of validating the epitopes. This
was achieved by using an IEDB conservancy analysis server,
and by setting the parameters at the default, the degree of
conservancy was calculated.

Cluster Analysis of the MHC Restricted
Alleles
The functional relationship of the predicted peptides of gacS with
the HLA alleles was inferred using the MHC cluster 2.0 server,
which clusters the MHC alleles with the appropriate chosen
peptides. The relationship can be assessed using the output
graphical tree and static heat map obtained between the clusters.

Interaction Between Proteins and TLR2
Receptor
To explore possible interactions of the predicted epitopes with
the TLR4 receptor, a Galaxy web server was employed to assess
protein-peptide binding. This step is crucial in verifying those
interactions in order to progress to the design of an efficient
vaccine, where the structure and optimization of the design
are possible, based on the energy obtained according to the
interpretation of the interactions. The number of hydrogen bonds
formed between the complexes was recorded and interpreted.

RESULTS

Determination of B-Cell Epitopes
The FASTA sequence of gacS of A. baumannii (UniProt
ID: Q8RMF4) upon peptide mapping by BCPred, AACPred,
BepiPred, and ABC Pred yielded 137 epitopes (Default
threshold > 0.5) (Supplementary Tables 1–3). The nine peptides
that had the highest score of 1 by AAC pred were selected for
further analysis of antigenicity and immunogenicity (Table 1).
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TABLE 1 | AAP predictions of the possible epitopes showing maximum threshold
values based on amino-acid paired antigenicity scale (Threshold value > 0.5).

Position Epitope sequence Score

868 LYGATRYVGTPKLQQVTGDF 1

254 HTEQTEEDLRRTLDTLEVQN 1

149 TAGKPPVWLLIEMDNQPLEL 1

495 HGQIGFEDNQERAPTEKGST 1

455 SGTDRKKLFESFSQGDASVT 1

721 QMPVMSGIDTTRAIRSLEST 1

582 KDNTWLIVDHSGDTEALLKE 1

68 KDLYTLVELQPDEYDHAQHI 1

616 QMTLEPNMLTEYRARPLYQP 1

115 YRDNRYWPNFTQNNNFFGPI 0.996

545 HPATASVLRYYLENYQVPHI 0.811

1 MSNFNKTLSKRLRLNHAYGQ 0.302

764 LLKVGMNDYVTKPIQMEQII 0.269

384 KHIAMAFYYADNIPQQVIGD 0.203

Vaccine Properties
Antigenic Potentials
AntigenPro software analyzed the nine peptides selected and
showed five peptides to be potential antigens. The peptide
sequence E3-HGQIGFEDNQERAPTEKGST showed the
highest score, 0.939537 (Table 2). The VaxiJen server 4.0 at a
threshold > 0.4 showed all the five peptides (E1–E5) as potential
vaccine candidates with E1-HTEQTEEDLRRTLDTLEVQN
showing the highest score, 0.9803. SolPro analysis of the
solubility property of the peptides showed all the epitopes as
soluble peptides with E5 and E1 observed with the highest scores
at a threshold set at ≥ 0.5.

Allergenic Properties
The hybrid option of the combined approach employed showed
non-allergenic peptides for the IgE binding sites. MAST
algorithms also showed non-allergenic peptides. E2 and E5
were finally considered as non-allergenic peptides by the hybrid
approach (Table 3). Based on the antigenic and allergenic
potentials, antigenic peptides E1–E5 were predicted based on
biochemical properties (Figure 1).

Physicochemical Analysis of the
Peptides
ProtParam predictions of the five epitope peptides (E1–E5)
showed two stable proteins with a shelf life of 3.5 and 1.9 h
(in vitro). All the peptides had a MW of around 2KD with
negative GRAVY values and were interpreted as hydrophilic
proteins presenting strong interactions with water molecules
(Table 4). With a high aliphatic index value of 117, E2 was found
to be unstable but was observed to have a greater shelf life of 7.2 h.
ProtParam also analyzed the isoelectric points based on the total
liquid charge of the amino acid/protein as 0, on par with constant
equilibrium points. It varied from 4 to 6 for E1–E5 and the stable
epitopes had IP values of 4.83 (E3) and 5.84 (E5), as interpreted
with a pH of 6.48.

Signal Peptide Analysis
A neural network for transmembrane proteins was provided by
the SignalP 4.1 tool for peptides E1–E5. The predicted epitopes
did not show any transmembrane signals at a D-cutoff value
of 0.51 under a signal-TM neural network. The PSORTb server
predicted a final localization score of 7.88 for the gacS protein
sequence as a cytoplasmic membrane protein as its localization
yielding a preliminary clue toward the drug delivery systems
(Figure 2 and Supplementary Table 4).

Selection of T-Cell Epitopes and
Immunogenic Peptides as Analyzed With
MHC/HLA Alleles
On the basis of the consensus combinatorial score in the IEDB-
AR server, the T-cell epitopes subjected for MHC class I and class
II binding predictions yielded immunogenic peptides of varying
lengths based on the percentile ranks (≤0.2) eliciting higher
affinity under ANN and SMM based IC50 values (IC50 < 200 nm)
(Supplementary Table 5). Binding HLA alleles with T-cell class-
I immuno-dominant peptides was also recorded based on their
interactions with alleles of significant frequency available as a
default in the IEDB server. Further binding affinities between the
peptides and T cells, especially associated with T-cell receptors
(TCRs), was interpreted based on the class-I immunogenicity
prediction scores. With the exception of E4, all the other
epitopes yielded a positive score. IEDB conservancy analysis
showed 100% conserved sequences within the gacS sequence
(Supplementary Table 6).

MHC Restrictions and Cluster Analysis
The T-cell dominant peptides, as predicted by the IEDB server,
analyzed based on the IC50 values, were reassessed for their
interactions with the HLA alleles by MHC cluster analysis.
Dynamic graphical tree and the heat maps were assessed for HLA
interactions with the red color indicating strong interactions
while yellow showed weaker interactions with appropriate
annotations (Figure 3).

Protein-Peptide Interactions
The GalaxyWEB server yielded docked pictures of the immuno-
dominant peptides with the TLR-2 receptor suggesting the
potency of the chosen epitopes in evoking an immune response.
E5 was scored the best interacted peptide, with the highest
number of 14 hydrogen bonds. E3 showed 12 hydrogen
bonds, followed by E1 with 10 hydrogen bonds. Interactions
with E2 and E4 showed only six and three hydrogen bonds
respectively (Figure 4).

DISCUSSION

The present investigation was undertaken as a novel, first-of-
its-kind study based on the reverse vaccinology technique in
designing novel vaccine candidates targeting the gacS-associated
virulence factor in the TCS component of A. baumannii.
Considering prophylaxis as the best alternate strategy for
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TABLE 2 | VaxiJen-, ANTIGENPro-, and SOLPro-based determination of antigenicity and solubility of the predicted epitopes.

Peptide Epitope designations Peptide sequence VaxiJen Antigen PRO SolPro

Threshold value (≥0.4) Threshold value (≥0.5)

1 - LYGATRYVGTPKLQQVTGDF 0.0242 Non-antigen 0.388393 0.985151 Soluble

2 E1 HTEQTEEDLRRTLDTLEVQN 0.9803 Probable antigen 0.351808 0.972181 Soluble

3 E2 TAGKPPVWLLIEMDNQPLEL 0.6448 Probable antigen 0.403709 0.810140 Soluble

4 E3 HGQIGFEDNQERAPTEKGST 0.8975 Probable antigen 0.939537 0.887595 Soluble

5 E4 SGTDRKKLFESFSQGDASVT 0.6830 Probable antigen 0.637660 0.823625 Soluble

6 - QMPVMSGIDTTRAIRSLEST 0.2225 Non-antigen 0.579908 0.863721 Soluble

7 - KDNTWLIVDHSGDTEALLKE 0.1258 Non-antigen 0.543209 0.920990 Soluble

8 - KDLYTLVELQPDEYDHAQHI 0.2341 Non-antigen 0.451481 0.861114 Soluble

9 E5 QMTLEPNMLTEYRARPLYQP 0.8632 Probable antigen 0.382723 0.987619 Soluble

For significance, the phrase “Probable antigen” is indicated in bold.

TABLE 3 | AlgPred predictions of allergenicity of epitopes based on SVM and hybrid approaches.

Peptide Predicted antigens IgE MAST SVM-Aa SVM-dp BLAST–ARP Hybrid

E1 HTEQTEEDLRRTLDTLEVQN NA NA A A NA A/NA

E2 TAGKPPVWLLIEMDNQPLEL NA NA NA NA NA NA

E3 HGQIGFEDNQERAPTEKGST NA NA PA A NA A/NA

E4 SGTDRKKLFESFSQGDASVT NA NA A A NA A/NA

E5 QMTLEPNMLTEYRARPLYQP NA NA NA NA NA NA

NA, Non-allergen; A, Allergen; PA, Potential allergen.

FIGURE 1 | B-cell antigenic epitope predictions with the start- and end-positions showing the antigenic peptide sequences (as a yellow color peak) by (A) BepiPred
linear epitope predictions. (B) Chou-Fasman beta turns assessment. (C) Emini surface accessibility predictions. (D) Karplus and Schulz flexibility predictions.
(E) Kolaskar and Tongaonkar antigenicity. (F) Parker hydrophilicity assessments.

A. baumannii, with the advent of bioinformatics, the study was
designed as an observational, in silico experimentation analysis
for the design and evaluation of gacS vaccine candidates for
A. baumannii. Selection of B-cell and T-cell dominant epitopes

is considered a vital step in vaccine development, as they
significantly bind with the immunological receptors and are
considered to be highly crucial to evoking and eliciting both
humoral and cell-mediated immune responses in the host (Yao
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TABLE 4 | Physico-chemical properties of the predicted epitopes, i.e., molecular weight (MW), Isoelectric point (IP), Stability Index (SI), Shelf Life (SL), Aliphatic Index (AI),
and grand-average hydrophathicity (GRAVY).

Peptide Predicted antigens MW IP SI SL AI GRAVY

E1 HTEQTEEDLRRTLDTLEVQN 2427.57 4.35 91.31 (Unstable) 3.5 h 73.00 −1.545

E2 TAGKPPVWLLIEMDNQPLEL 2264.66 4.14 54.74 (Unstable) 7.2 h 117.00 −0.030

E3 HGQIGFEDNQERAPTEKGST 2201.29 4.83 34.82 (Stable) 3.5 h 24.50 −1.600

E4 SGTDRKKLFESFSQGDASVT 2160.33 5.84 12.25 (Stable) 1.9 h 39.00 −0.815

E5 QMTLEPNMLTEYRARPLYQP 2193.52 6.07 82.91 (Unstable) 0.8 h 78.00 −0.170

As of stability index prediction, the predicted epitopes are considered as stable proteins with the set parameters of the tool used.

FIGURE 2 | Signal P-noTM neural predictions based on the D-cutoff value using Signal P 4.0 server (C score, S score, and Y score are depicted as pink, green, and
blue respectively).

et al., 2015). Predictions of promiscuous gacS vaccine peptides
were thus successfully achieved in the present study by the
immuno-informatics approach utilizing the available genomic
and proteomic reservoirs under a single computational platform
comprising various databases and tools.

A significant approach targeting gacS was made to suggest
the considerable relevance in the predictions that can lead to
the immunotherapies against the TCS of A. baumannii. GgacS
TCS with a role in the citrate metabolism of A. baumannii and
acting as a sensor kinase regulate other vital bacterial component
biosynthesis pathways. GacS was thus selected as an antigenic
component amid many TCS operons in the present immuno-
informatics vaccine peptide construction analysis. Selection of
specific proteins from the UniProt database being the initial step
in gacS peptide sequence retrieval, it was astonishing to note a
single protein with the name gacS was submitted under the name
of BarA with a unique ID of Q8RMF4 from A. baumannii ID 470
with 935aa residues, and FASTA sequences of that protein were
thus retrieved for further epitope predictions.

With the goal of predicting promising B-cell epitopes of gacS,
online servers such as BCPred server, AAP Prediction tool,
BepiPred-2.0 server and ABCPred server were applied. Out of
133 epitopes predicted, in comparison with the tools, 9 epitopes
as predicted by the AAP prediction tool were further selected for
analysis afterward. This is because the AAP tool predicts B-cell
epitopes based on the amino-acid paired (AAP) antigenicity scale
in comparison with the sliding window approach of predicted
algorithms in other servers and tools, and it is also documented
as the superior tool for B-cell epitope predictions (Chen et al.,
2007). However, other tools were also employed to assess the
epitope overlapping in predictions and also to compare the
threshold values scored upon predictions. ABCPred server also
predicted a near value of 0.9 in many epitopes with ranking
of the epitopes from gacS sequence (Supplementary Table 1),
with BCPred records of four epitopes with a threshold value
of 0.9 (Supplementary Table 3). BepiPred predictions can be
considered in cases where there is a necessity for the minimum
and maximum threshold values.
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FIGURE 3 | Cluster analysis representing the functional relationships between the predicted peptides with (A) MHC class I and (B) MHC class II molecules
represented by graphical tree and heat map formats with all the available alleles (red zone indicates strong interactions, and yellow zone indicates weak interactions).

FIGURE 4 | Protein-peptide interaction pictures of the predicted epitopes with TLR-2.
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Evaluation of antigenicity was also promising in the present
study, as the ANTIGENPro and AlgPred tools yielded five potent
antigens E1, E2, E3, E4, and E5. Prediction was based on an
independent alignment applying protein data microarrays based
on the sequence of five pathogens set as default in the server.
The antigenicity of the vaccine peptides was evaluated in VaxiJen
server based on the z score of various physical and biochemical
properties set at a threshold value of 0.4. VaxiJen predicted
antigenic peptides based only on the physical and chemical
properties of the peptides without the alignment of sequences.

The physicochemical properties of the deduced proteins based
on various parameters suggest the promising effects of the
predicted antigenic peptides, with two stable peptides E3 and
E4. Meanwhile the aliphatic index of the other peptides had
shown high thermostability albeit possessing an unstable stability
index. The GRAVY values of the peptides with a negative value
was deduced based on the standard formula, i.e., the ratio of
the sum of the hydropathy values of the amino acids to the
number of residues in the sequences. The shelf life recorded
by the ProtParam tool was also promising for the epitopes to
undergo experimental validations in in vitro assessment studies.
The shelf life of the peptides was deduced by the server based on
the N-terminal rule, in three model organisms, i.e., human, yeast,
and E. coli (Varshavsky, 1997). E3 and E4 were also considered
stable peptides and were evaluated as non-allergenic peptides.

Subcellular localization and prioritization of the target gacS
peptides by the PSORTb tool would be yet another crucial step
in the optimization of the peptide candidates, minimizing time,
labor, and resources. Studies document that the location analysis
by suitable tools such as PSORTb, in addition to CELLO, the
Swiss-Prot database, and TMHMM tools, may aid in filtering
druggable targets based on pathway determinations. In addition,
it is also noteworthy to understand that cytoplasmic membrane
proteins are suitable for small-molecule drug development while
membrane peptides could be utilized for vaccine development
(Solanki and Tiwari, 2018). However, the peptides in the present
study were not subjected to pathway determinations, except that
the protein is localized to cytoplasmic membrane, which is yet
another valuable finding in the study.

With the known fact of foreign peptides eliciting both humoral
and cell-mediated responses against the pathogens in the host,
it is fascinating to note that both T cells and B cells elicit
significant response against potent pathogens like A. baumannii.
In this note, the study had deduced promiscuous T-cell binding
epitopes restricted to both MHC class-I and class-II associated
HLA alleles. The IEDB server was highly useful in predicting
the T-cell dominant immuno-peptide as it involves a consensus
apporach in prediction. The output was sorted on the basis of
the lower percentile ranks and was associated with the IC50
values (<200 nm) under different algorithms such as ANN
and SMM scores with ranks. Functional relationships were also
successfully assessed in the present investigation as interpreted
with the graphical tree and heat maps of the peptides with
frequent HLA alleles. In this context, the MHCcluster server was
appropriate for algorithmic annotations, indicating the strong
and weak interactions of the peptides with the alleles as red and
yellow, respectively (Oany, 2017). The protein-peptide complexes

observed in the study were interpreted only in terms of the
number of hydrogen bonds without further binding energy
assessments, also limiting the documentation, with the lacuna of
protein modeling, which could not be achieved due to the least
number of amino-acid sequences. E3 was considered as the best
epitope though E5 yielded a higher number of hydrogen bonds
(n = 14), as the later (E5) was unstable.

CONCLUSION

To conclude, an attempt to predict the few vaccine peptides
targeting the gacS-mediated TCS in A. baumannii was made in
the present study by applying reverse vaccinology technology.
Diligent applications of the computational tools and databases
have increased the probability of finding novel peptide candidates
with minimal trials and errors as compared with conventional
vaccine preparation protocols. To make further progress
from the available gacS vaccine peptide data, it is evidently
necessary to design chimeric vaccine constructs together with
systemic animal studies.
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