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Periodontitis is an infectious oral disease, which leads to the destruction of periodontal
tissues and tooth loss. Although the treatment of periodontitis has improved recently, the
effective treatment of periodontitis and the periodontitis-affected periodontal tissues is still
a challenge. Therefore, it is urgent to explore new therapeutic strategies for periodontitis.
Natural products show anti-microbial, anti-inflammatory, anti-oxidant and bone protective
effects to periodontitis and most of these natural products are safe and cost-effective.
Among these, the plant-derived exosome-like nanoparticles (PELNs), a type of natural
nanocarriers repleted with lipids, proteins, RNAs, and other active molecules, show the
ability to enter mammalian cells and regulate cellular activities. Reports from the literature
indicate the great potential of PELNs in the regulation of immune functions, inflammation,
microbiome, and tissue regeneration. Moreover, PELNs can also be used as drug carriers
to enhance drug stability and cellular uptake in vivo. Since regulation of immune function,
inflammation, microbiome, and tissue regeneration are the key phenomena usually
targeted during periodontitis treatment, the PELNs hold the promising potential for
periodontitis treatment. This review summarizes the recent advances in PELNs-related
research that are related to the treatment of periodontitis and regeneration of
periodontitis-destructed tissues and the underlying mechanisms. We also discuss the
existing challenges and prospects of the application of PELNs-based therapeutic
approaches for periodontitis treatment.
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INTRODUCTION

Periodontitis is a chronic inflammatory disease of periodontal
tissue with a prevalence rate 50% (1). Periodontitis leads to
chronic pain, gingival swelling, destruction of periodontal
ligaments, and loss of alveolar bone and teeth (1). In 2017,
severe periodontitis was the sixth most prevalent disease affecting
9.8% (about 796 million) global adult population (2, 3).
Periodontitis not only affects oral health but also is linked to
various systemic diseases including cardiovascular disease,
Alzheimer’s disease, type 2 diabetes mellitus, respiratory tract
infection, rheumatoid arthritis, nonalcoholic fatty liver diseases,
and certain cancers (4, 5). Therefore, the effective treatment of
periodontitis is vital for a healthy life. Conventional treatment
approaches to periodontitis including non-surgical, surgical, and
adjunctive pharmacological therapy have limitations, such as
residual bacterial and calculus in the deep periodontal pocket,
limited effect on inflammation regulation, limited periodontal
tissue regeneration, and lack of consideration of the effect of
systemic diseases (6–8).

In recent years, natural products have attracted more and
more attention in the treatment of human diseases (9). It has
been widely demonstrated that natural products possess
anti-microbial, anti-oxidant, and anti-inflammatory properties
and are widely used in the treatment of various diseases
including cancer, malaria, and periodontitis (10, 11). In
addition, observational studies had shown correlation between
the intake of fruits and vegetables with oral health (12).
Moreover, Kharaeva et al. indicated that toothpaste containing
plant-derived ingredients has an additional therapeutic effect in
the treatment and prevention of gingivitis and periodontitis (13).
However, shortcomings of natural products such as uncertain
stability, limited target specificity, and difficulty in purification
limit their clinical applications. Halperin et al. first discovered
evidence of the existence of PELNs in carrot cell cultures in 1967
(14). PELNs (50-500 nm in diameter) contain mRNAs,
microRNAs (miRNAs), bioactive lipids, and proteins (15, 16).
Compared to artificial nanocarriers, PELNs do not exert
cytotoxicity on human cells (15). PELNs lipid bilayer contains
high contents of glycolipids and phospholipids but lacks
cholesterol, which indicates the potential application of PELNs
as a tissue targeting drug carrier (16). Recent reports from
literature had shown the potential of PELNs to treat various
diseases, including inflammatory bowel diseases, lung
inflammation, and periodontitis (17–19). The nanoparticle size,
lipid membrane, specific targeting, and cargo-carrying capacity
of PELNs offer better stability and fewer side effects. Ginger-
derived exosome-like nanoparticles (GELNs) had shown an
anti-bacterial effect on Porphyromonas gingivalis (P. gingivalis)
(19). Although in vitro and animal studies had shown the
therapeutic potential of PELNs to treat periodontitis, their
clinical application has not been reported yet. This review
summarizes the recent research advances in the PELNs related
to immune-regulation and periodontitis treatment. We also
discuss the shortcomings and prospects of PELNs-based
immune-regulation and periodontitis treatment.
Frontiers in Immunology | www.frontiersin.org 2
PELNS

Extracellular vesicles are a subcellular structure of phospholipid
bilayers membrane-enclosed vesicles and contain various cargos,
including miRNA, mRNA, DNA, proteins, etc. Both prokaryotic
and eukaryotic cells release extracellular vesicles. Extracellular
vesicles fall into two broad categories: ectosomes (size: 100 to 500
nm) and exosomes (size: 30 to 150 nm) (20–23). PELNs are a
kind of extracellular vesicles ranging in size from 50 to 500 nm
derived from plants (15). Besides animal vesicles, PELNs have a
complex content of small RNAs, proteins, lipids, and other
metabolites. PELNs from various plants and fruits such as
ginger, blueberry, and coconut have shown anti-inflammatory
properties (24).

Compared to mammalian exosomes, PELNs have unique
advantages including undetected by the immune system,
higher bioavailability, and innocuity (25). PELNs were
observed almost six decades ago but less attention was paid
to this field (26). PELNs exhibit better bioavailability
compared to miRNAs that are free or associated with
proteins (27) . PELNs have proven stabi l i ty in the
gastrointestinal tract, and several studies have demonstrated
that PELNs can be used for therapeutic application by oral or
intranasal administration (28–30). Compared to natural
products, PELNs can target specific organs and have higher
solubility, higher permeation through barriers, quicker
dissolution in blood, and fewer side effects (29). Reports
from the literature indicate that plant-derived exosomes have
potential application in the treatment of periodontitis through
inflammation inhibition or periodontal pathogen inhibition
(19, 28). Due to these properties, PELNs show the application
prospect for the treatment and prevention of various
inflammatory diseases including periodontitis.

Composition of PELNs
PELNs contain various components including proteins, lipids,
miRNA, and other active components such as vitamin C (31).
Exosomes are derived from animal cells and are typically rich in
cholesterol and sphingomyelin but PELNs are rich in phospholipids,
including phosphatidic acids, phosphatidylethanolamines, and
typical plant lipids (30, 32). Lipids play an important role not only
in maintaining the structural stability of exosomes but also in
intercellular communication (15). Among these lipids,
phosphatidic acids in PELNs can inhibit P. gingivalis growth (19).
Proteins are important components of both PELNs and mammalian
exosomes, but the levels of proteins in PELNs are lower and the
compositions are different (32). In mammalian exosomes, CD9
promotes cell delivery of therapeutic agents through fusing
exosomal membranes to target cell membranes and CD47 could
escape phagocytosis by releasing special signals and enhancing
homogenous endocytosis (33). There are various proteins in
PELNs, such as actin, proteolysis, aquaporin, and chloride
channels proteins, which are mainly categorized into
transmembrane proteins and other plasmalemma-associated
proteins (25, 34). Defense proteins in some PELNs such as
sunflower seeds can modulate microbiota by affecting fungal
June 2022 | Volume 13 | Article 896745
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growth (35). MicroRNAs are a class of small (17-24 nucleotides) and
noncoding RNAs with abilities to inhibit mRNA translation (36, 37).
The latest evidence shows that plant miRNA can be absorbed in the
intestine and secreted into the circulatory system (38). The previous
report had shown that PELNs deliver miRNA to animals, target
mammalian mRNA, and have the potential to mediate a specific
tissue response (24, 39). In addition, miRNA in PELNs can be taken
up by bacteria and alter microbiome composition and host
physiology (28, 38, 40). But the functions and mechanisms of
miRNAs in PELNs are still unknown. It is unclear how plant-
based xenomiRNAs regulate gene expression in humans (41).
Besides, some bioactive components such as vitamin C, citrate,
6-gingerol, and 6-shogaol have been found in PELNs (34, 42).
Only a handful of studies about the biological function of bioactive
components in PELNs had been reported so far. The contents of
PELNs are shown in Figure 1.
PELNs Biogenesis and Isolation
The extracellular vesicle formation and secretion require a multi-
step cellular process that is well documented in animals.
Extracellular vesicles are formed in intracavitary vesicles (ILVs)
and multivesicular bodies (MVB). ILVs released into the
extracellular space after fusion with the plasma membrane are
exosomes (48, 49). However, the process of PELNs release from
cell walls is still unknown. PELNs participate in plant-microbe
interactions by safely transporting functional molecules
including proteins and RNAs (50). The MVB pathway is a key
process of PELNs formation (44). The endosomal sorting
complex required for transport (ESCRT) binds and sequesters
ubiquitinated proteins and sorts these into the ILVs of PELNs
(51). However, the ESCRT genes responsible for PELNs have not
Frontiers in Immunology | www.frontiersin.org 3
yet been elucidated. Even though PELNs are secreted by most
plant cells, the process of extracellular vesicles passing through
the apoplastic space or cell wall is still unclear (52). In addition,
exocyst-positive organelle (EXPO), in plant cells, also can
expulse PELNs into the apoplast through the fusion of the
outer membrane of EXPO with the plasma membrane, but the
biological significance of EXPO-mediated PELNs secretion in
plants is still undetermined (43).

The isolation of PELNs is mainly based on differential
centrifugation. PELNs can be extracted from fruits, roots,
stems, and leaves (24, 30, 53). The conventional method is to
grind the plants into juice and then strain the juice with a
colander. The collected juice goes through differential
centrifugation at 3000× g (for 20-30 min) and 10,000× g (for
1 h) (24, 31). This supernatant is then subjected to centrifugation
at high speed (100,000–150,000 × g) (29). Because the PELNs
yield is usually contaminated by nucleic acids and protein
agglomerates after differential ultracentrifugation, sucrose/
deuterium oxide gradient ultracentrifugation at ~110,000 × g
for 3 h at 4°C is needed for further purification (Figure 2) (25,
54). However, differential centrifugation also has a lot of
disadvantages, e.g., low PELNs yields because a large number
of nanovesicles are lost during centrifugation, retention of
protein aggregates, and disruption of nanovesicles due to high
centrifugal forces (55).

Polyethylene glycol (PEG)-based precipitation method is
another method for PELNs isolation (56). The PEG method is
a cost-effective method of PELNs isolation with comparable
efficiency to differential ultracentrifugation (57). PEG methods
are related to pH. Suresh et al. reported a higher yield of PELNs
when PEG precipitation was carried out in pH 4 and 5 (58).
Differential ultracentrifugation, PEG, density-gradient
A

B

D

C

FIGURE 1 | Contents in PELNs. (A) Biogenesis and secretion: Plant cells can secrete PELNs via multivesicular bodies (MVB) and exocyst positive organelles (EXPO)
(43, 44). (B) Size: PELNs range in size from 50 to 500 nm. (C) Components: Generally, PELNs contain fewer proteins and miRNAs than exosomes. (D) Targets:
PELNs can be internalized in plant cells, mammalian cells, fungi, and bacteria (28, 45–47). Created with BioRender.com.
June 2022 | Volume 13 | Article 896745

https://BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhang et al. PELNs and Periodontitis Treatment
ultracentrifugation, gel filtration chromatography, ultrafiltration,
immunoaffinity separation, etc. are the methods of PELNs
isolation (59). Differential ultracentrifugation is still the “gold
standard” due to its wide applicability, large capacity, easy scale-
up, and relatively high purity (59). Figure 2 demonstrates the
procedure of the commonly used differential ultracentrifugation
method of PELNs isolation.
Frontiers in Immunology | www.frontiersin.org 4
INTERNALIZATION OF PELNS BY
MAMMALIAN CELLS AND MECHANISMS
OF CARGO RELEASE

Several studies had reported that PELNs can be internalized by
mammalian cells and do not exert cytotoxicity (30, 31, 60). Ju
et al. indicated that intestinal stem cells take up grape-derived
FIGURE 2 | Scheme of isolation and purification of PELNs by differential ultracentrifugation and sucrose gradient ultracentrifugation. Created with BioRender.com.
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exosome-like nanoparticles (GrELNs) through micropinocytosis,
which can be inhibited by cytochalasin D (30). But the molecular
mechanism of micropinocytosis of PELNs in mammalian cells is
still unclear. Based on the similarity of components and structure
between PELNs and exosomes, it is reasonable to guess that
PELNs can be internalized by way of fusion and endocytosis just
like mammalian cell exosomes (61, 62). Exosomal membrane
proteins play an important role in the uptake of exosomes (61).
So further study and analysis of membrane proteins of PELNs
are the keys to understanding the specific mechanism of
internalization of PELNs in mammalian cells. Besides,
mammalian exosomes can induce cellular responses through
membrane-bound or soluble signaling, which does not require
internalization (63). Whether PELNs can induce cellular
responses in a similar way to mammalian exosomes still needs
to be further investigated.

The PELNs taken up by cells through fusion can release
cargoes into the cytoplasm directly. But the fate of PELNs taken
up through endocytosis may be different. Typically, PELNs taken
up by cells may transport to the lysosome and lead to
degradation-based cargo release (62). Under certain
circumstances, cargoes in PELNs can be released into the
cytoplasm in different ways including fusion with the
lysosome, the disintegration of the early sorting endosome, and
fusion with the endoplasmic reticulum and endosomal
membrane (64). The possible mechanisms of PELNs
Frontiers in Immunology | www.frontiersin.org 5
internalization in mammalian cells and cargo release are
depicted in Figure 3.
PELNS-MEDIATED REGULATION OF
HUMAN CELLS’ FUNCTIONS

Recently, cross-kingdom regulation of human transcripts by
plant miRNAs has been demonstrated (24). PELNs have
shown anti-inflammatory properties in human cells. According
to a recent report, GELNs show anti-inflammation effects by
inhibiting the expression of Nsp12 in lung epithelial cell-
exosome-mediated inhibition of macrophagic inflammation
(18). Teng et al. reported that GELN RNAs ameliorate mouse
colitis by inducing gut probiotic Lactobacillus rhamnosus GG
(LGG) indole-3-carboxaldehyde, which promotes the expression
of interleukin (IL)-22 in gut lymphocytes of mice through
activation of the aryl hydrocarbon receptor (AHR) signaling
pathway (28). Exosome-like nanoparticles (ELNs) from
blueberry counter the response to tumor necrosis factor (TNF-
ɑ)-induced change in gene expression in EA. hy926 cells,
pretreatment with blueberry-derived ELNs counters TNF-ɑ-
induced reactive oxygen species generation and loss of cell
viability and modulates the differential expression of 29 genes
induced by TNF-ɑ compared to control (60).
FIGURE 3 | Scheme of PELNs internalization in mammalian cells and cargo release. Mammalian cells take up PELNs possibly through endocytosis and fusion.
Cargoes in PELNs can be released into the cytoplasm in different ways, i.e., fusion with the lysosome, the disintegration of the early sorting endosome, and fusion
with the endoplasmic reticulum, endosomal membrane and plasma membrane (22, 64). Created with BioRender.com.
June 2022 | Volume 13 | Article 896745
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In addition to anti-inflammatory properties, PELNs have
shown anti-tumorigenic properties. Berry anthocyanidins-
derived ELNs inhibit ovarian cancer cell proliferation in vitro
and tumor growth in vivo (65). Citrus-limon juice-derived ELNs
inhibit tumor cell growth through a significant downregulation
of the Acetyl-CoA Carboxylase 1 (ACACA) (66). Engineered
ELNs from Asparagus cochinchinensis show antitumor activity
via inducing apoptotic pathways (67).
TREATMENT OF PERIODONTITIS

Biological activities targeted during periodontitis prevention and
treatment and periodontal tissue regeneration include inflammation
regulation, anti-bacterial, immune-regulation, osteogenesis,
periodontal ligament regeneration, and angiogenesis. Scaling and
root planing (SRP), the gold standard method for dental plaque
removal, has a significant anti-bacterial effect and inhibits the
development of periodontal diseases (6, 68). But the complex root
anatomy and recolonization of microbiota limits the efficacy of SRP
(6–8). Regenerative surgeries have been used in promoting
osteogenesis and periodontal ligament regeneration, but the
indication and efficacy are limited (69, 70). Although various
materials such as autogenous bone, allogeneic bone, and
alloplastic substitutes, are used in regenerative surgery, limited
materials are currently available with the true periodontal
regeneration potential (71, 72).

To overcome the disadvantages of existing therapeutic
approaches, adjunctive pharmacological therapies have been
used in periodontitis treatment. Antibiotics brought additional
benefits as an adjunct in periodontitis treatment, but the risks
such as bacterial resistance, hypersensitivity, and superinfection
limit the clinical application (73–75). Natural products attract
more and more attention in periodontitis treatment due to their
therapeutic potential, cost-effectiveness, enough source, and
safety. A series of natural products such as honey, propolis,
cannabidiol, and green tea show various benefits in periodontitis
treatment and prevention including inhibition of periodontal
pathogens, anti-inflammation, immunomodulation, and
osteogenesis (76–85). But the low stability, uncertain
bioavailability, and limited therapeutic effect of natural
products limit their clinical application.
THE POSSIBLE ROLE OF PELNS IN THE
PREVENTION AND TREATMENT OF
PERIODONTITIS

PELNs have shown anti-inflammatory, microbiome modulatory,
immunomodulatory, and tissue regenerative properties that
could be beneficial for the prevention and treatment of
periodontitis. To achieve superior therapeutic effects against
periodontitis, PELNs can be used in drug delivery systems to
increase the bioavailability and biodistribution of the drugs (25).
Compared with natural products, PELNs have a broader
application range and higher stability. Unlike mammalian
Frontiers in Immunology | www.frontiersin.org 6
exosomes, PELNs can be easily isolated and purified in large
quantities, and have better biocompatibility (18). Since PELNs
come from plants, there are fewer ethical issues during clinical
applications. Therefore, with these properties and advantages,
PELNs have shown great value in the prevention and treatment
of periodontitis (Table 1).

Immune Regulation and Anti-Inflammation
Macrophages are important parts of the immune system. In
periodontitis, macrophages mediate the development and
progression of periodontitis through M1 and M2 polarization
(97). M1 macrophages produce a series of pro-inflammatory
factors including TNF-a and IL-6 to kill bacteria, promote
inflammation, and activate osteoclasts that cause absorption of
the alveolar ridge. In contrast, M2 macrophages produce
anti-inflammatory factors including IL-10 and transforming
growth factor (TGF)-b to exert anti-inflammation and
angiogenic effects, and activate osteoblasts to restore bone
tissue (97–99). A recent study indicated that PELNs can be
absorbed by intestinal macrophages and regulate immune
response (86). GELNs can be absorbed by macrophages and
upregulate the expression of heme oxygenase-1 (HO-1), IL-6,
and IL-10. Carrot-derived ELNs induce IL-10 expression in
macrophages. Grapefruit, carrot, and ginger-derived ELNs
promote activation of nuclear factor (erythroid-derived 2)-like-
2 (Nrf2) in macrophages (86). GELNs block the assembly of the
NLRP3 inflammasome in macrophages (53). In addition,
ginseng-derived ELNs suppress IL-4 and IL-13-induced M2-
like polarization of macrophages and increased the secretion of
M1-macrophage-associated cytokines including TNF-a, IL-12,
and IL-6 (89).

Shreds of literature have reported that ginger, grapes,
grapefruit, carrots, and blueberry-derived ELNs have
anti-inflammatory effects (18, 60, 86, 100). Mu et al.
demonstrated that GELNs induce the expression of heme
oxygenase-1 and IL-10 in macrophages, and grapefruit, ginger,
and carrot-derived ELNs promote activation of Nrf2 in
macrophages (86). GrELNs cause significant induction of
intestinal stem cells through the Wnt/b-catenin pathway,
which protects mice from dextran sulfate sodium-induced
colitis (30). Cabbage and red cabbage-derived ELNs decrease
the levels of IL-6, IL-1b, and COX-2 expression in LPS-treated
macrophages, showing clear anti-inflammatory effects (55).
Orange (Citrus sinensis)-derived ELNs limit inflammation and
restore the functional intestinal barrier by altering the expression
of HMOX-1, ICAM1, OCLN, CLDN1, and MLCK (91). The
anti-inflammatory properties of PELNs could be possibly
attributed to the micro-RNA in PELNs. Aquilano et al.
reported that mimics of miR159a and miR156c target Tnfrsf1a
gene transcript in adipocytes. Nuts (Juglans california, Corylus
avellana, and Juglans regia)-derived ELNs containing miR159a
and miR156c show anti-inflammatory effects through reducing
Tnfrsf1a protein and dampening TNF-a signaling in adipocytes
(88). Aly-miR396a-5p present in GELNs inhibits inflammation
and cell apoptosis by inhibiting the expression of the Nsp12 viral
gene (18). Besides, the natural substance phenolic compounds
may also be responsible for the anti-inflammatory effects of
June 2022 | Volume 13 | Article 896745
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PELNs. GrELNs loaded with phenolic compounds inhibit colitis
inflammation by decreasing TNF-a and NF-kB (100). Lipids of
PELNs also show anti-inflammatory properties. Lipids in
Broccoli-derived ELNs inhibit gut inflammation by driving the
induction of CD11c tolerogenic dendritic cells (101). A recent
report indicated that proteins in PELNs also show anti-
inflammatory properties. Mulberry bark-derived ELNs prevent
mouse colitis through Mulberry bark ELNs-derived heat stock
protein HSP8 induced AhR/COPS8 pathway (17). The
phospholipid-based vesicular system enhances the delivery and
safety of aceclofenac by topical route (102). As nanoparticles
with bilayer phospholipid structure, PELNs can be used as a
carrier for anti-inflammatory drug loading. Orally administrated
infliximab-loaded GELNs show gastrointestinal stability, colon-
targeted delivery, high intestinal epithelium permeability, and
better efficacy in colitis than the intravenously administered
infliximab (103). PELNs are innocuous and non-immunogenic
nanoparticles with higher uptake in human cells compared with
other artificial nanoparticles used in drug delivery (15). In
addition, natural active components in PELNs could exert a
better therapeutic effect than artificially synthesized
nanoparticles such as liposomes. Although this field of research
has not been explored in-depth, the reports from literature
suggest the important role of PELNs in the treatment of
inflammatory diseases. Inflammation plays an important role
in the tissue destruction of periodontitis. Therefore, PELNs could
have the potential to decrease periodontal tissue destruction and
slow the rate periodontitis progression through inhibition
of inflammation.
Frontiers in Immunology | www.frontiersin.org 7
Modulation of Microbiota Composition
As a secondary inflammatory response caused by oral
microbiome dysbiosis, periodontitis is initiated by the host
immune response to changes in the oral microbiome (104).
Among the more than 500 bacterial species living in the oral
cavity, a bacterial complex called “red complex”, which is made
of P. gingivalis, Treponema denticola, and Tannerella forsythia,
express various virulence factors, which enable these bacteria to
colonize in subgingival space, destroy the host’s defense system,
invade periodontal tissue, and promote the host’s immune
destruction response (105). Given the role of microbiota in
periodontitis, it is crucial to maintain the dynamic equilibrium
of oral microecology (106). It is widely accepted that PELNs
have a key role in plant-pathogen interactions (107). PELNs
have shown regulatory effects not only in immune cells but also
in microbiota. PELNs play an important role in immune
responses against the fungal pathogen in plants. For instance,
Arabidopsis-derived ELNs delivered host sRNA into
pathogenic B. cinerea to inhibit its pathogenicity (108).
PELNs also inhibit various pathogens such as P. gingivalis
and promote the growth of probiotics. Sundaram et al.
reported that GELNs inhibit P. gingivalis growth through
phosphatidic acid by binding to hemin-binding protein 35
(HBP35) on the surface of P. gingivalis (19). Besides, PELNs
show microbiome regulatory properties through the promotion
of the growth of probiotics. Lemon-derived ELNs protect LGG
from bile possibly through inhibition of the expression of Msps
protein, induction of specific bacterial tRNA decay, and
inhibition of S.24-7 growth (93). Lemon-derived ELNs
TABLE 1 | Overview of PELNs biological activities that could be applied in periodontitis treatment.

PELNs Function Mechanism Ref.

Grapefruit Immune-regulation
and anti-inflammation

Increase nuclear translocation of Nrf2 in macrophages (86)
Ginger Reduce TNF-a, IL-6, and IL-1b, inhibit NLRP3, and increase IL-10 and IL-22 in colitis mice (34,

53)
Cabbage Reduce IL-1b, IL-6, and COX-2 in macrophages (55)
Red
cabbage

Reduce IL-1b and IL-6 in macrophages (55)

Carrot Increase nuclear translocation of Nrf2 in macrophages (86)
Blueberry Reverse the effect of IL-6, IL1RL1, MAPK1, ICAM1, TRL8, and TNF-a in endothelial cells.Decrease the level of reactive

oxygen species and Bax protein, and induce the expression of Bcl-2 and HO-1 in human hepatocytes
(60,
87)

Strawberry Deliver vitamin C to adipose-derived mesenchymal stem cells (31)
Nut Reduce Tnfrsf1a protein and dampen the TNF-a signaling pathway in adipocytes (88)
Ginseng Polarize M1 macrophages and repress M2 macrophages (89)
Garlic Inhibit NLRP3 inflammasome activation in macrophages (90)
Orange Modulate the expression of HMOX-1, ICAM1, OCLN, CLDN1, and MLCK in intestinal epithelial cells (91)
Tea Inhibit the expression of TNF-a, IL-6, and IL-12, increase HO-1 expression level, and eliminate reactive oxygen species in

macrophages
(92)

Mulberry
bark

HSPA8 activates the AhR signaling pathway and induces the production of anti-microbial peptides in mice (17)

Ginger Modulate microbiota Reduce FimA expression in P. gingivalis to inhibit its’ adhesion to epithelial cells (19)
Lemon Induce tRNA decay in LGG and treat Clostridioides difficile infection by enhancing the survivability of probiotics (93,

94)
Tea Increase overall abundance and diversity of gut microbiota (92)
Grape Regeneration Induce proliferation of Lgr5hi intestinal stem cells (30)
Wheat Enhance mRNA level of collagen type I and promote proliferation and migration of endothelial, epithelial, and dermal

fibroblast cells
(95)

Green tea Inhibit the expression of MMP12, MMP13, and NOTCH3, and increase FGF12 in keratinocytes (96)
Ginseng Inhibit the expression of MMP13 and NOTCH3 in keratinocytes (96)
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manipulate LGG and Streptococcus thermophilus ST-21 to
protect mice from Clostridioides difficile infection (94). In
addition, plant miRNAs in PELNs modulate microbiota gene
expression contributing to the dietary effect on the gut
microbiota community’s assembly (109). PELNs-derived
small RNAs shape the homeostatic balance between host
immunity and gut microbiota and regulate microbiota (28).
Teng et al. indicated that GELNs-RNA induces Lactobacillus
rhamnosus indole-3-carboxaldehyde to promote the expression
of IL-22 through activation of the AHR signaling pathway
exerting anti-microbiota immunity and tissue repair (28).
With the ability to modulate oral and gut microbiota, it is
reasonable to suppose that PELNs have the potential to be used
in the treatment of periodontitis through the regulation of the
periodontal microbiome.

Periodontal Tissue Regeneration
The progressive loss of periodontal tissues is one of the
characterizations of periodontitis, and the unique anatomy and
composition of periodontal tissues make periodontal tissue
regeneration a complex process (110). The reconstruction of
periodontal tissues including cementum, periodontal ligament
fibers, and bone remains a major challenge in periodontal
treatment (111). Osteogenesis, inflammatory response,
angiogenesis, and remodeling play a significant role in
periodontal bone regeneration (112). Reports from the
literature indicate that mammalian exosomes stimulate both
osteogenesis and angiogenesis (113). With component and
structure similarity to mammalian exosomes, PELNs could
Frontiers in Immunology | www.frontiersin.org 8
have application potential in tissue regeneration. According to
recent research, PELNs have regulatory effects on tissue
regeneration. Sahin et al. reported that wheat-derived ELNs
promote collagen type I production, proliferation, and
migration of fibroblasts (95). Wheat-derived ELNs exert anti-
apoptotic activity in human dermal fibroblast, human
keratinocyte cell, and human keratinocyte cell. In addition,
wheat-derived ELNs induce angiogenesis in human umbilical
vein endothelial cells (95). These results suggest the possible
periodontal soft tissue regeneration and angiogenesis potential of
PELNs. Besides, Syrah GrELNs induce the expression of leucine-
rich repeat-containing G-protein-coupled receptor 5 of intestinal
stem cells through activating downstream canonical Wnt signals,
which is beneficial for the regeneration of intestinal epithelium
(30, 114). Lipid contents in GrELNs promote the proliferation of
intestinal stem cells (30). Whether PELNs can promote
periodontal tissue regeneration by inducing tissue-specific
differentiation of precursor cells remains a mystery. Green tea
and ginseng-derived ELNs show potential benefits to skin
regeneration, through modulating the expression of genes
including MMP12, MMP13, HS3ST3A1, FGF12, LOX, VIM,
ELOVLs, KRT1, and NOTCH3 in keratinocytes, which are
related to skin aging, regeneration, barriers, and moisturizing
(96). According to the existing data, we can reasonably guess that
PELNs have a potential therapeutic effect on promoting the
proliferation of periodontal stem cells and promoting the repair
and regeneration of periodontal tissue. The possible applications
of PELNs in the treatment of periodontitis are shown
in Figure 4.
AB

C

FIGURE 4 | Scheme of PELNs’ possible application in the treatment of periodontitis. PELNs show therapeutic potential for periodontitis via anti-inflammatory effect,
microbiota modulation, and tissue regeneration. (A) Anti-inflammatory properties: PELNs inhibit pro-inflammatory protein expression in macrophages, such as IL-1b,
IL-6, and TNF-a (55). (B) Modulate microbiota: PELNs inhibit pathogenic bacteria such as P. gingivalis through PA binding to HBP35 (19). PELNs protect probiotics
through decay tRNA in probiotics (93). PELNs transform miRNA to microbiota, which has the potential to modulate oral microbiota. (C) Tissue regeneration: PELNs
promote the proliferation of stem cells through activation of Wnt signals (30, 114). PENLs promote the production of collagen type I in epithelial cells (95).Created
with BioRender.com.
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SUMMARY

As a type of plant-derived extracellular nanovesicles, PELNs can be
taken into the human circulation from the gut and participate in
cross-kingdom communication. The biological properties of PELNs
are based on the transmission of miRNAs, proteins, lipids, and
other active components. Recent studies indicated that plants
communicate with mammalian cells and bacteria through PELNs,
and miRNAs in PELNs show the potential to regulate human
mRNAs’ activities (24, 28, 86). Increasing evidence indicated that
PELNs had great potential in immune regulation and treatment/
prevention of periodontitis due to their drug delivery ability
and various therapeutic effects including anti-inflammatory,
immunomodulatory, microbiota modulatory, and regenerative
effects. Besides, compared with conventional chemical drugs and
natural products, the special properties including therapeutic and
drug delivery ability, stability, and safety enable the PELNs-based
therapeutic approaches to break the limitations of the existing
periodontitis treatment. Furthermore, compared with mainstream
oral hygiene maintenance methods such as chlorhexidine, PELNs
are more suitable for daily prevention of periodontitis, such as
mouthwash, toothpaste, and chewing gum.
CHALLENGES

Although PELNs show various advantages in the prevention and
treatment of periodontitis, there are still some barriers that need
to be overcome to explore possibilities for their clinical
applications. PELNs as nanocarriers cannot load a high
quantity of drugs. To augment cargo loading capability, PELNs
amalgamation with artificially synthesized liposomes by the
membrane fusion technique may be a feasible approach (25).
In addition, the mechanism of PELNs uptake by mammalian
cells is also unclear. To further explore the potential of clinical
application, it is necessary to determine the mechanisms that
facilitate PELNs’ internalization in mammalian cells. The
standards of biochemical analysis and biomarker confirmation
of PELNs need to be developed for the quality control and
engineering process. PELNs derived from the same species of
plant may vary from batch to batch. Therefore, it is necessary to
develop strategies to minimize the batch-dependent variation of
PELNs’ contents.
PROSPECTS

As a cell-free therapy, PELNs are safer than cell therapy and
PELNs can target specific cells or organs (115). Compared with
other cell-free therapies, such as mammal exosomes, PELNs are
easier to extract and have unique advantages including
biocompatibility, large-scale production capability, and low
immunogenicity (116). PELNs also have the potential to use in
oral care products such as buccal tablets for daily prevention of
Frontiers in Immunology | www.frontiersin.org 9
periodontitis. As lipid-based nanoparticles, PELNs can carry and
deliver hydrophilic, hydrophobic, and lipophilic drugs (117). It
has been reported that Acerola-derived ELNs can encapsulate
nucleic acids without the use of special reagents (118, 119).
Various methods such as loading by electroporation, saponin
membrane permeabilization, and extrusion had been developed
drug loading in exosomes, which can be adapted to load desired
drugs in PELNs. Besides, PELNs have good stability and can
protect the contents from physicochemical damage in vivo. The
encapsulated siRNA in PELNs is shown to be stable against
physical stimuli including sterilization, homogenization, and
sonication (119). These results allow us to hypothesize that
PELNs can load anti-inflammatory, anti-microbial drugs or
special siRNA for periodontal treatment in the future. In
addition, PELNs can be imparted with target specificity
through investigating the surface tailoring of PELNs (25). It is
possible to modulate the tropisms of PELNs by introducing
tissue-specific peptides or proteins onto the surfaces of PELNs
(120). Membrane fusion with other extracellular vesicles or cell
membranes with special receptors may also be a feasible way to
enhance the targeted specificity of PELNs. The combination of
PELNs and new clinical techniques of minimally invasive
targeted delivery such as convection-enhanced delivery may
also extend the application of PELNs by improving the
reliability and limiting the confusion of various target
bioavailability (121). Wang et al. proposed a new method that
GrELNs coated with inflammation-related receptor enriched
membranes of activated leukocytes, which showed better target
ability to inflammatory tumor tissues (122). Therefore, PELNs
have great potential to be developed as a drug delivery system for
periodontitis treatment. Potential modifications of PELNs that
can improve therapeutic efficacy against periodontitis are listed
in Figure 5.
CONCLUSIONS

In conclusion, PELNs have shown many advantages including
biocompatibility, specific cell targeting capability, cost-
effectiveness, large-scale production, and drug delivery
capability. The biological activities of PELNs including
immune-regulation, effect on microbiome homeostasis,
inflammation modulation, and tissue regeneration could be
applied to the treatment of periodontitis. Although great
progress has been obtained in the field of PELNs especially
edible PELNs in the last decade, this field is still in its infancy.
A lot of challenges should be overcome before the clinical
application of PELNs. The relationship between components of
natural products and PELNs has not been fully clarified. It is
unclear which PELNs have therapeutic effects on periodontitis.
The active components and mechanism of PELNs in the
treatment of periodontitis are still unknown. In addition,
although some PELNs show benefits to tissue regeneration,
only one study had been reported so far regarding the
therapeutic role of PELNs in periodontal disease. Based on the
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results from the recent literature, the direct use of PELNs to treat
periodontitis or loading drugs and miRNAs, shRNAs, and
siRNAs in PELNs to treat periodontitis could be a new era in
the prevention and treatment of periodontitis.
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